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Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be
realized experimentally by placing transition-metal atoms that form a ferromagnetic chain on a superconducting
substrate. We address some properties of this type of system by using a Slater-Koster tight-binding model to
account for important features of the electronic structure of the transition-metal chains on the superconducting
substrate. We predict that topological superconductivity is nearly universal when ferromagnetic transition-metal
chains form straight lines on superconducting substrates and that it is possible for more complex chain structures.
When the chain is weakly coupled to the substrate and is longer than superconducting coherence lengths, its
proximity-induced superconducting gap is ∼�ESO/J where � is the s-wave pair potential on the chain, ESO is
the spin-orbit splitting energy induced in the normal chain state bands by hybridization with the superconducting
substrate, and J is the exchange splitting of the ferromagnetic chain d bands. Because of the topological character
of the 1D superconducting state, Majorana end modes appear within the gaps of finite length chains. We find,
in agreement with the experiment, that when the chain and substrate orbitals are strongly hybridized, Majorana
end modes are substantially reduced in amplitude when separated from the chain end by less than the coherence
length defined by the p-wave superconducting gap. We conclude that Pb is a particularly favorable substrate
material for ferromagnetic chain topological superconductivity because it provides both strong s-wave pairing and
strong Rashba spin-orbit coupling, but that there is an opportunity to optimize properties by varying the atomic
composition and structure of the chain. Finally, we note that in the absence of disorder, a new chain magnetic
symmetry, one that is also present in the crystalline topological insulators, can stabilize multiple Majorana modes
at the end of a single chain.
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I. INTRODUCTION

Recent interest in exploiting the exchange properties of
Majorana states [1] in p-wave superconductors [2–4] as a basis
for more robust quantum computation [5,6] has motivated
the invention of a variety of different strategies which can
in principle be used to engineer topological superconductiv-
ity [7]. One-dimensional topological superconductivity can
be achieved by combining spin-orbit coupling with broken
time-reversal symmetry in a variety of different ways to create
effective p-wave superconductors. Ideas have been proposed
based on quantum spin Hall edge states [8], semiconductor
quantum wires [9,10], half-metallic ferromagnets [11,12],
topological insulator nanowires [13], metallic chains [14],
strongly spin-orbit coupled superconductors, and helical mag-
netic chains [15–21]. Indeed, there is strong, but at present still
inconclusive, evidence [22–24] that Majorana states have been
realized by following the semiconductor nanowire strategy.
This work is motivated by the appearance [25,26] of telltale
zero-bias anomalies in experimental work that was originally
motivated by the helical magnetic chain idea, but finally
interpreted [26,27] in terms of the properties of ferromagnetic
chains. Reference [27] reports strong evidence that Fe chains
on Pb are ferromagnetic, that they are one-dimensional
topological superconductors, and that Majorana end states
are responsible for zero-bias anomalies in the local density
of states measured near the ends of finite length chains. In
this paper, we explain why topological states are not only
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possible, but for some structures overwhelmingly likely, when
atomic chains formed from late 3d transition elements (or
other strong magnetic materials) are placed on the surface of
a superconductor.

The ubiquity of topological states is related to features in the
electronic structure of straight transition-metal chains detailed
later. In order to bring out the essential physics in a transparent
fashion, we first study a simplified but still realistic chain
model with proximity-induced s-wave pairing and d-orbital
Slater-Koster tight-binding bands. We then model the case of
a one-dimensional ferromagnetic chain embedded in the (110)
surface of bulk Pb, the situation studied experimentally in
Ref. [27]. We provide quantitative results for substrate-induced
spin-orbit coupling on the chain, for the superconducting gap
of the chain, for the structure of Shiba states in this system, and
for the spatial decay properties of Majorana states localized
at the chain ends. Importantly, we find that iron chains on Pb
substrates are partially submerged beneath the surface, that
the chain and substrate orbitals are strongly hybridized, and
that spatial decay of Majorana end modes along the chain
can consequently occur on length scales shorter than the
coherence length associated with the p-wave superconducting
gap induced in the chain. Finally, we also point out that in the
absence of disorder, a combined magnetic symmetry (mirror
times time reversal) first identified in Ref. [28] can stabilize
multiple Majoranas at the end of a single Fe chain.

Under most circumstances, ferromagnetism and supercon-
ductivity are antagonistic [29]. Superconductivity is, however,
able to survive on a ferromagnetic chain because a single row
of aligned spins does not generate significant magnetic flux
density, obviating damaging orbital effects, and because the
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FIG. 1. (Color online) Bogoliubov quasiparticle bands of a sys-
tem with strong exchange splitting strength J , and pair potential �

and spin-orbit coupling strengths ESO that are by comparison weaker.
This illustration assumes that the majority-spin d bands (red) are full
and the minority-spin d bands (blue) are partially filled, the usual
case for transition-metal ferromagnets. The minority-spin electron
(solid) and hole (dashed) bands which cross at the Fermi level are
coupled via a virtual process in which the pair potential � couples
minority-spin electrons (holes) to majority-spin holes (electrons) and
ESO couples minority-spin holes (electrons) to majority-spin holes
(electrons). It follows that the quasiparticle gap at the Fermi energy
indicated in the inset is ∼�ESO/J .

substrate provides a nonmagnetic Cooper pair reservoir. The
mean-field Hamiltonian of the ferromagnetic chain contains
two spin-dependent terms: a very large spin-splitting term
produced by magnetic order which is odd under time reversal,
and a much smaller spin-orbit coupling term that is even
under time reversal. When only the large term is retained,
quasiparticle wave functions are unperturbed and spin-↑ and
-↓ quasiparticle energies are shifted in opposite directions by
half the exchange splitting J . When the Fermi level lies in
the minority-spin bands (see Fig. 1), the electron and hole
Bogoliubov bands which cross at the Fermi level have the same
spin, the pair potential � couples quasiparticles with different
bare energies, and the pair amplitude on the chain is small. The
reservoir of Cooper pairs in the substrate effectively allows
superconductivity to survive in the chain when it would be
suppressed in a bulk system. Spin-orbit interactions produce a
gap at the Fermi level because like-spin electrons and holes are
coupled by a virtual process in which the pair potential reverses
both spin and electron/hole character, whereas spin-orbit
coupling reverses spin without reversing charge. It follows
that the gap at the Fermi energy is ∼�ESO/J where ESO is
the spin-orbit coupling strength [30]. The effective spin-orbit
interaction matrix elements responsible for the gap are closely
related to the pair creation and annihilation terms which were
already carefully analyzed in the original BCS paper [31,32].
Pb substrates are rather unique in providing both relatively

strong s-wave pairing and strong spin-orbit coupling. Because
ESO is not as small compared to J as �, at least in systems
with a Pb substrate, sizable Fermi level gaps are possible
even though the Clogston [33] limit is enormously exceeded,
i.e., J � �. The main focus of this paper is on explaining
why this gapped superconducting state is topological more
often than not. The system-parameter regime over which
topological superconductivity can appear is wider than that
for most previously studied mechanisms for effective p-wave
superconductivity. The material in this paper expands on
theoretical ideas that were partially presented in Ref. [27].

The paper is organized as follows: In Sec. II, we address
the electronic structure of isolated transition-metal chains and
discuss how it is altered by proximity-induced superconduc-
tivity. We explain why straight ferromagnetic transition-metal
chains almost always exhibit topological superconductivity
and show why Rashba spin-orbit interactions, allowed in
systems with broken inversion symmetry, are necessary to
open a superconducting gap in the system. In Sec. III, we
look at more realistic chain geometric configurations similar
to those appearing in the experiment described in Ref. [27] and
calculate their phase diagram when they are suspended and
influenced by a singlet pair potential whose strength is treated
as a phenomenological parameter. In Sec. IV, we consider
the experimental situation of one-dimensional Fe chains on
the surface of a Pb superconductor to which it is strongly
hybridized. We model the Pb substrate using a realistic tight-
binding Hamiltonian with parameter values obtained from ab
initio calculations. We also identify a new magnetic symmetry
that can protect more than one Majorana at one end of the chain,
and construct a phase diagram for the number of Majorana
modes per end. We also calculate the spatial extent of the
Majorana states and show that in the strongly hybridized case
the Majorana state amplitude exhibits strong deviations from
the simple exponential decay of a suspended one-dimensional
chain. Finally, in Sec. V we present our conclusions.

II. SUPERCONDUCTIVITY IN
FERROMAGNETIC CHAINS

A. Slater-Koster model of a superconducting
ferromagnetic chain

Our discussion of topological superconductivity in ferro-
magnetic metal chains is informed by realistic electronic-
structure considerations. Since metallic ferromagnetism is
most often associated with Fermi level d electrons, we focus
our attention here on chains formed by transition-metal atoms.
Chains formed by rare-earth atoms like Gd could, however,
also be of interest. We first discuss the properties of band
Hamiltonians H0 with d-orbital Slater-Koster approximation
tight-binding (HSK), Stoner-theory spin-splitting (HJ ), and
atomiclike spin-orbit coupling (HSO) contributions:

H0 = HSK + HJ + HSO. (1)

Of the three terms in the band Hamiltonian, only the hopping
term HSK is spin independent:

HSK =
∑

〈ij〉α′ασ

tα′α c
†
iα′σ cjασ . (2)
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TABLE I. Slater-Koster tight-binding model parameters for Fe
(in eV). The hopping integral values are for the nearest-neighbor
distance of bulk Fe(bcc), r0 = 2.383 Å.

Parameters Value (eV)

Vddσ −0.6702
Vddπ 0.5760
Vddδ −0.1445

Here, i and j label sites, 〈ij 〉 implies a restriction to nearest-
neighbor sites, σ labels spin, and α′α label the five d orbitals
on each site. As will become clear later, neither the inclusion
of s orbitals, which are not strongly spin polarized according
to ab initio calculations [27], nor the inclusion of longer-range
hopping processes would modify our main conclusions. The
tα′α hopping parameters are real Slater-Koster integrals that
depend for each orbital pair on the direction cosines of
the vector connecting nearest neighbors, and on the three
Slater-Koster parameters Vddσ , Vddπ , and Vddδ . We focus our
attention first on straight chains, using this geometry to identify
important trends. Real chains need not be straight [27] or,
because of incommensurability between the isolated chain and
substrate lattice constants, even periodic. However, we expect
that straight chain features in the electronic structure will
sometimes be reflected in actual geometries. For concrete cal-
culations, we use the Slater-Koster parameter values proposed
for bulk Fe in Ref. [34], which are listed in Table I for com-
pleteness. These parameters exhibit the generic [35] metallic
band property |Vddσ | > |Vddπ | > |Vddδ| which we will see is
key to the ubiquity of topological states in straight chains.

We first consider models in which both spin-dependent
terms HJ and HSO are diagonal in site:

HJ = −J m̂ · s, HSO = λSO L · s, (3)

where J is the ferromagnetic state quasiparticle spin-splitting
energy, m̂ is the magnetization direction on the chain, λSO is the
spin-orbit coupling parameter, and L and s are, respectively,
the atomic angular momentum and electron spin operators. It
will be important in what follows that HJ changes sign under
time reversal, whereas HSO is time-reversal invariant. For Fe
J ∼ 2.5 eV and λSO ∼ 0.06 eV. By comparing with ab initio
electronic-structure calculations one can confirm that this
simple model accounts accurately for the electronic structure
and magnetic anisotropy of isolated Fe chains. We will see
later that in straight chains the ESO coupling required in Fig. 1
to produce gaps is not provided by atomic spin-orbit coupling.
This observation elevates the importance of spin-orbit coupling
inherited from the superconducting substrate through orbital
hybridization.

Figure 2(a) shows the band structure of a straight Fe
chain without atomic spin-orbit coupling. Due to rotational
symmetry around the chain direction (x̂), there are two pairs
of spin-degenerate bands, two ddπ bands (zx and xy orbitals)
with minima at ka = π and two narrower ddδ bands (yz and
y2-z2 orbitals) with minima at ka = 0. The broadest ddσ

band is not orbitally degenerate and also has its minimum
at the zone center. Because the spin splitting exceeds the chain
bandwidth, which is smaller than the bulk bandwidth because

FIG. 2. Model band structures for straight Fe chain. (a) λSO = 0.
(b) λSO = 0.2 eV. (c) BdG spectrum with λSO = 0.2 eV and
� = 0.2 eV. The pair-potential value used in this illustration is
unrealistically large and has been chosen for easy visualization. The
inset highlights the quasiparticle bands which cross at the Fermi
energy. (d) Same as (c) but with an orbital-independent Rashba
spin-orbit term with coupling constant tR = 0.05 eV (see text).
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of the reduced coordination number in a one-dimensional
(1D) system, the minority- and majority-spin d bands do not
overlap. When spin-orbit coupling (HSO) is added [Fig. 2(b)],
with m̂ · x̂ = 0, corresponding to an easy magnetization
direction perpendicular to the chain [27,36], states near the
Fermi level of a late transition-metal system are still nearly
pure minority spin in character and the twofold degeneracy
of the ddδ and ddπ bands is only weakly lifted. Neglecting
this small splitting, the number of minority-spin bands which
cross the Fermi level is always odd. This property will be
responsible for superconductivity that is always topological,
provided that spin-orbit coupling mixes the superconducting
quasiparticle states which cross at the exchange-shifted Fermi
energy. Straight transition-metal chains are therefore favorable
for topological superconductivity. (Since the Fe chains in
the initial experimental studies [27] were not straight, this
observation suggests one strategy to follow in an effort to
make progress in improving the magnetic-chain Majorana
platform.) In Sec. III, we will provide a more detailed analysis
of nonstraight (zigzag) chains in terms of their topological
properties.

We now add a pair-potential term to the Hamiltonian,
assuming that it is dominated by a local, orbital-independent,
spin-singlet contribution:

Hpair = �
∑

α

(c†α↑c
†
α↓ + cα↓cα↑), (4)

where we have chosen a real Slater-Koster basis for the d

orbitals. Although outside the scope of this work, it will
also be interesting to consider spin-triplet contributions to the
pair potential, which are inevitably present in the presence
of broken inversion symmetry and strong spin-orbit coupling.
We neglect it in the same spirit as we neglect longer-range
hopping on the chain, i.e., as an expedient to reduce the
number of parameters in our model calculations. We have
not identified a mechanism by which weak triplet pairing
would alter our main conclusions. Fully realistic calculations
of pair potentials would have to account for modifications
of phonons and electron-phonon coupling near the surface of
the superconducting substrate. Although these calculations are
feasible, we judge that it would be premature to undertake this
effort at present.

In its doubled particle-hole Nambu space, the 20N×20N

Bogoliubov–de Gennes (BdG) mean-field Hamiltonian [37]
for a chain with singlet pairing and N sites is

HBdG =
(

Hchain � I5N×5N ⊗ iσy

−� I5N×5N ⊗ iσy −H ∗
chain

)
, (5)

where σy is a Pauli matrix acting on spin labels.
The spectrum obtained by diagonalizing HBdG is illustrated

in Fig. 2(c). Interestingly, no gap is opened at the Fermi level,
indicating that the singlet pairing induced virtual coupling
between minority-spin electrons and holes vanishes. This
property can be traced to the charge conjugation symmetry
of the BdG equations combined with the inversion symmetry
of the model described thus far, as explained in detail in
Sec. II B. Spin-orbit coupling within the chain, which usually
provides the largest spin-orbit coupling scale, does not support
the formation of a gapped topological state unless the chain

structure breaks inversion symmetry. We conclude that chain
structures that break inversion symmetry can potentially
be favorable for topological state formation. Fortunately,
inversion symmetry is always broken for chains which lie
on the surface of a substrate. At a surface hopping processes
in which the spin component perpendicular to the surface is
flipped are always allowed to depend on hopping direction,
leading to band Hamiltonian terms that are odd in momentum.
This effect is generically referred to as Rashba spin-orbit
coupling. We therefore add a band-independent term of the
form

HR = itR
∑

〈ij〉γ τ

c
†
iγ cjτ (d̂ij×σ γ τ ) · ẑ (6)

to the toy model Hamiltonian. Here, d̂ij is a unit vector
pointing from site i to site j , and γ , τ are spin indices. As
shown in Fig. 2(d), as soon as tR becomes nonzero, a gap
opens at the Fermi level. We conclude that chains on the
surface of a superconductor should generally have more robust
topological states than submerged chains because they have
stronger inversion symmetry breaking and should therefore
generally have stronger Rashba spin-orbit interactions. The
Rashba process is discussed in more detail in Sec. II C.

B. Inversion symmetry and finite gaps

In this subsection, we explain the observation made in
the previous subsection that inversion symmetry protects
gapless points in one-dimensional spinful charge-conjugation-
symmetric systems. We will show that when inversion and
spinful charge conjugation symmetry are both present in 1D,
gapless Fermi points are stable. Adding inversion symmetry
to the BdG equation leads to an analog of Weyl fermions in
three dimensions (3D), which however do not need symmetry
to be protected, and of the two-dimensional (2D) fermions in
graphene, which need combined inversion and time-reversal
symmetry to be protected (in the absence of spin-orbit
coupling) from gapping. In all these cases, the issue of
whether or not gapped points are allowed can be addressed by
considering an effective Hamiltonian including only the bands
involved at the gapless crossing point, counting the number of
symmetry-allowed parameters in this reduced Hamiltonian,
and checking to see whether or not it is larger than the
space dimension of the system. When the number of allowed
Hamiltonian parameters is equal to (or smaller) than the space
dimension, momentum tuning parameters can be adjusted
to points (or surfaces) at which the reduced Hamiltonian
vanishes. In this case, level crossings are generally allowed
and do not require fine tuning of the Hamiltonian.

Since the BdG Hamiltonian of a ferromagnetic chain always
breaks time-reversal symmetry, bands are singly degenerate at
generic points in the 1D Brillouin zone. In order to analyze a
gap-closing transition, we have to consider a 1D k-dependent
reduced Hamiltonian describing two Bogoliubov bands that
are about to touch at zero energy due to charge conjugation.
To examine whether or not spin-orbit coupling is almost certain
to open a gap, we expand the 2×2 reduced BdG Hamiltonian
in terms of Pauli matrices

H (k) =
∑

i=1,2,3

di(k)σi. (7)
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Inversion P and charge conjugation C operations transform
the Hamiltonian as follows:

PH (k)P −1 = H (−k); CH (k)C−1 = −H ∗(−k). (8)

Hence, the little group of the Hamiltonian at k is

(PC)H (k)(PC)−1 = −H ∗(k). (9)

For spinful fermions, the matrix C has the property (CK)2 = 1
where K is complex conjugation. For fermions in the presence
of SU(2) symmetry (no spin-orbit coupling), a basis rotation
can be made in spin space to make (CK)2 = −1 (effectively
spinless), but this is not a physical situation.

For the spinful fermion case we can choose from several
representations of the inversion and charge conjugation op-
erators on the two crossing bands described by the reduced
Hamiltonian in Eq. (7). The only restriction is that these
operators satisfy the squaring relations discussed above, and
the commutation relation [P,CK] = 0. Suppose the inversion
operator is the identity operator I . Then, for the C operator we
can choose C = σx or σz. In the first case imposing the little
group symmetry requires that dx(k) = dy(k) = 0, ∀ k, while
in the second case it requires dz(k) = dy(k) = 0, ∀ k. The
Hamiltonian therefore has codimension zero. For example,
the Hamiltonian for the first case is dz(k)σz. A gapless point
at some point K0 has dz(k) ∼ (k − K0). Adding a small dz

term can only move the 1D Dirac point, and cannot produce
a gap. One can pick other representations of inversion and
convince oneself that the Hamiltonian still has codimension
zero. For example, P = σz, C = I is just a shuffling of the
representation above.

For completeness, we also discuss the situation of effec-
tively spinless fermions [(CK)2 = −1]. The representation of
C in this case is iσy . Taking P = I we have σyH (k)σy =
−H ∗(k) which does not impose any constraints on the
Hamiltonian. The codimension in this case is 2, and the system
is almost certainly gapped.

C. Rashba spin-orbit coupling

As explained above, inversion-symmetry-breaking Rashba
spin-orbit coupling is crucial to realize topological supercon-
ductivity in ferromagnetic chains with 1D inversion symmetry.
Rashba spin-orbit coupling is always present in the supported
chain system because inversion symmetry is inevitably broken
by the position of the chain on top of a substrate. Previ-
ous proposals for Majorana end modes in 1D chains have
mainly focused on inversion symmetry breaking within the
chains [9,10]. For a 3d ferromagnetic chain on Pb, however,
hybridization with the strongly spin-orbit coupled states of the
substrate likely [27] plays the dominant role.

In this section, we discuss the physical processes leading to
Rashba spin-orbit coupling in a ferromagnetic chain coupled to
a substrate that has strong atomic spin-orbit coupling. We start
from the heuristic example of two atoms with a single s orbital,
linked by an atom with only p orbitals only, and assume that
there is no direct hopping between the two s atoms (Fig. 3). The
choices of s and p orbitals are not essential and the argument
below can be easily applied to other types of orbitals. The angle
θ between the line defined by the two s atoms and one sp bond
determines the extent of inversion symmetry breaking in this

FIG. 3. (Color online) Heuristic example of Rashba spin-orbit
coupling induced by hopping on the chain via substrate sites with
strong spin-orbit coupling. In this illustration, the two blue atoms can
be associated with neighboring atoms on the chain and the green atom
with a Pb atom in the substrate. Inversion symmetry is broken because
the substrate atom is below the chain atoms. The Rashba coupling
strength is proportional to the difference between left to right and right
to left, spin-↑ to spin-↓ virtual hopping between the chain atoms. The
Rashba spin-orbit coupling for this simple toy model is plotted here
as a function of the chain-substrate-chain bond angle.

simple three-atom system. Choosing the zero of energy as the
s-orbital site energy and assuming that the s-p hybridization
is weak, the Hamiltonian for virtual hopping between the two
s atoms from right to left via the p atom is

Tss = T †
spH−1

p Tsp, (10)

where Tsp is the spin-independent but orbital-dependent
hopping matrix between s and p orbitals proportional to the
Vspσ Slater-Koster parameter, and Hp is the local Hamiltonian
of the p atom including both a site energy Ep and atomic
spin-orbit coupling:

Hp = Ep + λL · S. (11)

Tss is a 2×2 matrix in which the first label is the s-orbital spin
on the left site and the second label is the s-orbital spin on
the right site. Because the overall Hamiltonian is Hermitian,
the left to right hopping Hamiltonian can be obtained by
reversing spin labels and taking a complex conjugate. Be-
cause the system lacks 3D inversion symmetry, we expect a
Rashba contribution to the effective hopping Hamiltonian, and
characterize its strength by the coupling constant

tR = 1
2 (Ts↑,s↓ − T ∗

s↓,s↑). (12)

Assuming Ep to be much larger than Vspσ and λ, we arrive at
the following expression for the Rashba coupling constant of
this illustrative toy model:

tR = V 2
spσ

Ep

λ

2Ep

sin(2θ ). (13)

Although this simplified model does not apply directly to
realistic transition-metal chains on Pb substrates, there are
several general remarks we can make based on Eq. (13). (i)
Rashba spin-orbit coupling is due to both atomic spin-orbit
coupling and structural inversion symmetry breaking. Note,
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however, that even in this simple model tR is not a monotonic
function of θ . The Rashba spin-orbit coupling strength on a
chain will always depend sensitively on the chain structure
and on its coordination with the structure of the substrate. If
these are known, it is conceptually straightforward to calculate
Rashba interactions quantitatively. (ii) tR should be roughly
proportional to t2/δE, where t is a typical hopping parameter
between the system of interest (e.g., an atomic chain) and
the environment (e.g., a substrate), and δE is the energy
difference between the system and the environment. This is
easy to understand from a perturbation theory point of view.
In general, both t and δE can be matrices due to the presence
of many orbitals. In particular, if the band structure of the
system is diagonal in some localized Wannier orbital basis
(such as in the straight Fe chain), different bands will in general
acquire different Rashba spin-orbit coupling by interacting
differently with the environment, in addition to possible orbital
off-diagonal hopping. The largest Rashba spin-orbit coupling
will be in the bands whose orbitals have strongest hybridization
with the spin-orbit coupled environmental states. (iii) The
calculation described here includes only the lowest-order
process leading to Rashba spin-orbit coupling. In general,
an electron in the system of interest can be scattered into
the environment, travel a long distance, and then be scattered
back to the system. Contributions from higher-order processes
are important especially when the states of the system and
that of the environment have similar energy, i.e., when δE

is small. This is likely the main qualitative consideration
influencing trends of effective Rashba spin-orbit coupling
strengths across materials, and can therefore play a role
in formulating strategies to optimize ferromagnetic chain
topological superconductivity.

The heuristic analysis explained above suggests that a
Green’s function (or the scattering) method [38] might often
be convenient in studying realistic systems, which we will also
employ to study the spatial profile of the Majorana end modes
in Sec. IV D. In this approach, the whole substrate is viewed
as a scatterer and its influence on the electronic states of the
chain it supports can be captured by a self-energy term �S .
The single-particle retarded Green’s function of the chain is

Gr
chain(ω) = [ω + iη − Hchain − �S(ω)]−1, (14)

where η is an infinitesimal real number. For example, if we
assume an infinite chain is along the x̂ direction and a surface
normal ẑ,

�S(ω,kx) = h
†
t gSht

=
∑
ky

H
†
t (kx,ky)GS(kx,ky)Ht (kx,ky), (15)

where ht is the hopping matrix between the chain and the
substrate, and gS is the surface Green’s function of the substrate
which can be conveniently calculated using an iterative
approach [39] when a tight-binding model of the substrate can
be constructed. Note that we have used the convention that
lowercase letters stand for matrices of infinite dimension,
while uppercase letters refer to finite matrices diagonal in a
momentum representation.

If the substrate is metallic, �S will in general have a
large non-Hermitian contribution representing decay from the

atomic chain into the substrate. Nonetheless, one can still
crudely define the effective chain Hamiltonian including the
substrate contribution as

Heff ≡ Hchain + 1
2 [�S(ω = 0) + �

†
S(ω = 0)]. (16)

If one is especially interested in the size of the induced Rashba
spin-orbit coupling, it can be extracted from �S(ω = 0) as the
net spin-flip hopping contribution that is odd in kx , similar to
our definition of tR in Eq. (12). However, the Rashba spin-orbit
coupling will now be a matrix, have a nontrivial dependence
on kx , and sensitively depend on the relative positions of the
chain and the lattice of the substrate. For model calculation
purposes, different approximations can be further made to
obtain a manageable form of the Rashba spin-orbit coupling.
One example following this approach is described in Ref. [27].

III. MAJORANA STATES ON A TRANSITION-METAL
FERROMAGNETIC CHAIN

Figure 4 illustrates where topological superconductivity
occurs as a function of band filling and exchange splitting J

in straight transition-metal chains. Note that in the physically
realistic part of this phase diagram, where J is comparable to or
larger than the bandwidth, the superconducting state is almost
always topological for the reasons explained previously.
This phase diagram has been determined by evaluating the
Majorana number [3] of an infinite chain, but is of course
in agreement with the simple heuristic requirement that

J (eV) 

μ 
(e

V
) 

 = 1 

 = -1 

FIG. 4. (Color online) Topological phase diagram for the 3d

straight ferromagnetic chain model. Blue regions in chemical po-
tential vs exchange coupling strength phase diagram have Majorana
number M = −1 while white regions have M = 1. This figure was
constructed using the hopping parameters listed in Table I. When the
exchange splitting is larger than the bandwidth, the realistic case for
transition-metal chains, the gapped superconducting state is almost
always topological.
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θ (deg.) 

μ 
( e

V)
 

M = 1 M = -1

FIG. 5. (Color online) Majorana phase diagram of a zigzag chain
with nearest-neighbor hopping vs chemical potential and bond angle
(cf. Fig. 3) at fixed exchange coupling J = 2.65 eV. The blue and the
white regions correspond to M = −1 and 1, respectively.

superconducting states are topological when the number of
bands crossing the Fermi level in the absence of pairing is odd.

When placed on a superconducting substrate, transition-
metal atoms do not in general form straight chain structures.
For example, the structure formed by iron atoms in the
chains studied in Ref. [27] consists of several rows of atoms.
The structure in general will depend both on the details of
the chemical bonding between transition-metal and substrate
atoms and on the growth protocol used to produce the
chains. Within single-row structures, the straight chain can be
generalized to zigzag chains in which the metal-metal-metal

FIG. 6. (Color online) Spatial distribution of one of the two
Majorana states (E ≈ ±2×10−6 eV) for a finite chain with 200 atoms.
� = 0.9 eV, tR = 0.1 eV, so that the zero-energy gap is ∼0.1 eV in
the infinite chain.

bonding angles alternate around 180◦. Angular momentum
along the chain axis is no longer a good quantum number
in zigzag chains, and higher-energy minority-spin bands are
no longer populated in pairs. As a result, the topologically
nontrivial regions in the phase diagram will in general shrink
when the bonding angles deviate from 180◦. This trend is
illustrated in Fig. 5, where we have fixed the exchange splitting
at J = 2.65 eV, but varied the bond angle along a zigzag chain
between 180◦ (corresponding to a straight chain) and 120◦.

To confirm that zero-energy Majorana modes exist in
topologically nontrivial chains, we have also solved the
BdG equations for finite length chains. For example, when
parameters are chosen so that the energy gap is ∼0.1 eV
in the infinite chain, we find two BdG eigenstates with
|E| ≈ 2×10−6 eV. Figure 6 demonstrates that these eigenstates
are localized at the chain ends. The spatial extent of Majorana
states in systems with realistic gap values will be discussed in
detail in Sec. IV D.
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FIG. 7. (Color online) (a) Local density of states at the end of
a semi-infinite chain (blue) and in the middle of an infinite chain
(red). Both calculations were performed for chains with M = −1.
� = 1.5 meV, tR = 0.1 eV, J = 2.65 eV, and μ = 1.3 eV. (b), (c)
Nonmonotonic dependence of the height of the zero-energy peak
with the parameters (b) tR and (c) �. The left panel in each figure is
the spectral function of the end Green’s function in an energy window
around zero energy, and the right panel is the zero-energy value of
the spectral function. In (b), � is fixed at 0.1 eV and in (c), tR is fixed
at 0.1 eV. Values of the other parameters in (b) and (c) are the same
as those in (a).
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Given a model Hamiltonian the local density of states,
which is closely related to STM dI/dV data, can be con-
veniently calculated for infinite or semi-infinite chains using
an iterative Green’s function method [39]. In Fig. 7(a), we
compare the local density of states at the end of a semi-infinite
chain and in the middle of an infinite chain. Although both
chains are topologically nontrivial and have the same parame-
ter values, a zero-energy peak corresponding to the Majorana
state appears only at the end of the semi-infinite chain.

The decay length of the Majorana states in the direction
toward the center of the chain is, roughly speaking, inversely
proportional to the superconducting gap. However, for multi-
orbital systems, such a simple proportionality may not hold. To
see this, we point out that in our isolated chain model the decay
length of the end states is proportional to the height of the local
density of states peak. In Figs. 7(b) and 7(c), we plot the local
density of states or spectral function at the end of a semi-infinite
chain as a function of s-wave pairing � and Rashba spin-orbit
coupling tR , respectively. One can see that the height of the
local density of states is neither monotonically proportional to
these parameters nor to the apparent superconducting gap of
the chain. This behavior originates from the multiorbital nature
of the chain model, in which different bands may have different
zero-energy splitting due to the same pairing potential, and
each of them influences the decay length of the Majorana
end state to some extent. We will discuss the length scale of
the Majorana end states in detail with more realistic model
calculations in Sec. IV.

IV. HYBRID SYSTEM WITH AN Fe CHAIN COUPLED
TO A Pb(110) SUBSTRATE

The experimental system studied in Ref. [27] is not purely
one dimensional. The Fe chain is embedded in a bulk Pb
superconductor to which it is strongly hybridized. The physics
of this hybrid system is more complicated than that of a purely
one-dimensional chain. The strong coupling between orbitals
localized on the one-dimensional magnetic wire and those
in the bulk superconductor has important consequences for
many physical properties of the system, including the possible
presence of multiple flavors of Majorana end modes, the
spatial profile of the Majorana end modes, and the presence
of other in-gap bands along the wire known as Shiba bands.
These elements distinguish this platform [18,27] from other
previously proposed Majorana host systems.

In this section, we build a more realistic but still simpli-
fied model of our system by coupling the Fe tight-binding
Hamiltonian to the Pb substrate through a tunneling term.
This tunneling term induces both the Rashba-type spin-orbit
coupling and the superconductivity in the Fe chain. Both are
essential ingredients for Majorana physics, but not native to Fe.
The geometry of our model hybrid system, shown in Fig. 8, is a
commensurate version of the one obtained by comparing DFT
calculations and experiments [27]. Although it is most likely
that the Fe atoms form triple chains in the samples investigated
in Ref. [27], here we will first present conceptually important
results by using linear chains as examples, to be consistent
with the previous sections, and then discuss results for triple
chains that are more relevant to experiments.

x

y

z

x

y

z

a = 4.95 Å

2
a

2
a

a

FIG. 8. (Color online) Geometry of the hybrid system: an Fe
(orange) chain is embedded into the (110) surface of a bulk Pb (gray)
superconducting substrate.

A. Tight-binding Hamiltonian

The tight-binding Hamiltonian for the hybrid system is

Hhybrid = HFe + HPb + HFe-Pb, (17)

HFe =
∑

r

d†
rξFe(r)dr +

∑
r1 �=r2

d†
r1

τFe(r1 − r2)dr2 , (18)

HPb =
∑

r

c†rξPb(r)cr +
∑

r1 �=r2

c†r1
τPb(r1 − r2)cr2

+
∑

r

c†r�(r)(c†r )T + H.c. , (19)

HFe-Pb =
∑
r1,r2

c†r1
τFe-Pb(r1 − r2)dr2 + H.c. . (20)

Here, d†
r (c†r ) is the vector of electron creation operators for

the Fe 3d orbitals (Pb 6p orbitals) and spins at site r; ξ ’s, τ ’s,
and � are matrices corresponding to normal onsite, hopping,
and conventional superconducting pairing terms, respectively.
These matrices are explicitly given as follows:

ξFe(r) = {[εFe(r) − μFe]s0 − JFe · s} ⊗ L
(d)
0

+ λFe

3∑
i=1

si ⊗ L
(d)
i , (21)

ξPb(r) = εPb(r)s0 ⊗ L
(p)
0 + λPb

3∑
i=1

si ⊗ L
(p)
i , (22)

τFe(δr) =
∑

β={σ,π,δ}
Eddβ (|δr|) Addβ(δr/|δr|) ⊗ s0, (23)

τPb(δr) =
∑

β={σ,π}
Eppβ(|δr|) Appβ(δr/|δr|) ⊗ s0, (24)

τFe-Pb(δr) =
∑

β={σ,π}
Epdβ(|δr|) Apdβ (δr/|δr|) ⊗ s0, (25)

�(r) = � (iσ2) ⊗ L
(p)
0 , (26)
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where εFe and εPb are onsite energies, μFe is the chemical
potential, JFe is the magnetization vector in Fe, λFe and λPb

are atomic spin-orbit coupling energies, Eddβ , Eppβ , and Epdβ

are the Slater-Koster bond integrals that depend on the types of
bond (β) and the distance between atoms (|δr|), Addβ , Appβ ,
and Apdβ are the real coefficient matrices of Slater-Koster
integrals in the cubic harmonic basis and are dependent only
on the relative angle between atoms [40], � is the (real) s-
wave pairing potential, s and L (the superscripts indicating the
type of the orbitals) are spin and orbital angular momentum
operators with s0 and L0 the corresponding identity matrices.
We use the convention s = 1

2σ where σ is the vector of Pauli
matrices, and

L
(p)
1 =

⎛
⎝0 0 0

0 0 i

0 −i 0

⎞
⎠, L

(p)
2 =

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠,

L
(p)
3 =

⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠, (27)

L
(d)
1 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 i 0 0

0 0 0 i
√

3i

−i 0 0 0 0
0 −i 0 0 0

0 −√
3i 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

L
(d)
2 =

⎛
⎜⎜⎜⎜⎜⎝

0 i 0 0 0
−i 0 0 0 0

0 0 0 −i
√

3i

0 0 i 0 0

0 0 −√
3i 0 0

⎞
⎟⎟⎟⎟⎟⎠

, (28)

L
(d)
3 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 −2i 0
0 0 −i 0 0
0 i 0 0 0
2i 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

The above Hamiltonian has a very general form. When
the Fe atoms lie in a mirror plane of the Pb lattice, as in
Fig. 8 for example, and when εFe(r), εPb(r), and JFe are
all symmetric with respect to the same mirror plane, the
Hamiltonian satisfies an antiunitary symmetry that combines
mirror and time-reversal operations. Assuming the xz plane
to be the mirror plane, the mirror and time-reversal-symmetry
operators, in the cubic harmonic basis for orbitals, are given
by

Mxz = (−1)l exp(−iπL2) ⊗ exp(−iπs2)M(y → −y), (29)

T = L0 ⊗ exp(−iπs2)K, (30)

where l is the orbital angular momentum quantum number
(l = 1 for p orbitals; l = 2 for d orbitals),M(y → −y) stands
for the real-space mirror reflection with respect to the xz plane,
and K is the complex conjugate operator. The invariance of the
Hamiltonian under the combined symmetry MT = MxzT can

be broken down to the following invariance relations:

MT ξFe(x,y,z) M−1
T = ξFe(x, − y,z), (31)

Mxz ξPb(x,y,z) M−1
xz = ξPb(x, − y,z), (32)

T ξPb(x,y,z) T −1 = ξPb(x,y,z), (33)

Mxz τ (δx,δy,δz) M−1
xz = τ (δx, − δy,δz), (34)

T τ (δx,δy,δz) T −1 = τ (δx,δy,δz), (35)

where τ stands for each of τFe, τPb, and τFe-Pb. In addition, the
invariance of the superconducting pairing term under MT is
trivially satisfied. In the Nambu basis, the BdG Hamiltonian
satisfies the particle-hole (charge conjugation) symmetry given
by

C = L0 ⊗ exp(−iπs2) ⊗ (iρ2)K, (36)

where ρ is the vector of Pauli matrices for the particle-hole
degree of freedom. The combination of MT and C results in a
chiral symmetry

Uχ = MT C = Mxz ⊗ (−iρ2), (37)

which is unitary and transforms the Hamiltonian as
UχHhybridU

−1
χ = −Hhybrid. The implications of these symme-

tries will be analyzed in detail in Sec. IV B.
Most of our following results are obtained by performing

exact diagonalizations of the above Hamiltonian. In order
to maintain a limited yet realistic parameter set, we further
assume

εFe(r) = εFe, εPb(r) = εPb, (38)

JFe = (0,0,JFe), (39)

Eddβ(|δr|) = Vddβ (r0/|δr|)nddβ (|δr| � a/
√

2), (40)

Eppβ(|δr|) = V 1
ppβ if |δr| = a/

√
2, (41)

Eppβ(|δr|) = V 2
ppβ if |δr| = a, (42)

Epdβ (|δr|) = Vpdβ

(
a√
8
/|δr|

)npdβ
(

|δr| �
√

3

8
a

)
, (43)

where r0 = 2.383 Å is the nearest-neighbor distance in bulk
Fe(bcc), and a = 4.95 Å is the lattice constant of bulk Pb(fcc).
Equations (40)–(43) imply that in all types of hopping terms we
include up to the second-nearest neighbors (cf. Fig. 8). We list
all the parameters, except for εFe and �, and their references
(if applicable) in Table II. Since εFe and μFe are not actually
independent parameters in the model, εFe will be chosen in
the linear Fe chain case such that μFe = 0 corresponds to the
center of the minority-spin band, and in the triple Fe chain
case according to experiment [27].

B. Multi-Majorana chains protected by a magnetic symmetry

In this section, we investigate a new symmetry that could
be present in our systems, and which permits the presence of
multiple Majorana fermions at the end of the chain. It was first
shown in the theoretical part of the Supplemental Material of
Ref. [27] that in certain cases, multiple Majorana zero modes
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TABLE II. Parameters for the tight-binding Hamiltonian. The un-
determined parameters μFe and Vpdπ are variables in the simulations.

Parameters Ref. Value Parameters Ref. Value

μFe ? εPb [42] 0.97 eV
λFe [41] 0.06 eV λPb [42] 0.665 eV
Vddσ [34] −0.6702 eV V 1

ppσ [42] 1.134 eV
Vddπ [34] 0.5760 eV V 1

ppπ [42] 0.080 eV
Vddδ [34] −0.1445 eV V 2

ppσ [42] 0.146 eV
nddσ [34] 3 V 2

ppπ [42] 0
nddπ [34] 4 Vpdσ /Vpdπ [43] −2.17
nddδ [34] 4 npdσ , npdπ [44] 4
JFe DFT 2.5 eV Vpdπ ?

can appear at the end of the Fe chain. We here explain those
results. The conditions needed are as follows: the chain must
be perfectly straight within a mirror plane of the Pb substrate;
the magnetic moment of the iron must have no component
perpendicular to the chain and parallel to the Pb surface; the
Pb substrate must be disorder free. In this case, we show that
a magnetic symmetry first proposed in Ref. [28] can stabilize
an integer number of Majorana fermions at the end of the Fe
chain.

For a straight Fe chain along the x direction, on an infinite
xy Pb surface with the z direction perpendicular to the surface,
and in the absence of any magnetism in the chain, the xz plane
is a mirror plane. We call the mirror operator along that plane
Mxz with the properties

[Mxz,H ] = 0, M2
xz = −1, (44)

where H is the superconducting Pb and nonmagnetic Fe
hybrid structure Hamiltonian operator. Without magnetism,
the system is also time-reversal invariant with a spinful
time-reversal operator T , T 2 = −1.

We now add magnetism in the system, on the Fe chain.
A magnetic moment breaks time-reversal symmetry which
generically also breaks the Mxz mirror symmetry. Only a
magnetic moment polarized along the y direction does not
break Mxz, but still breaks T . However, if localized in the
xz plane, the magnetic moment is still invariant under the
combination of mirror and time reversal, a magnetic symmetry
MT = MxzT . This is indeed true as each of the operations
flips the magnetic moment so that their combination leaves
it untouched. This magnetic symmetry was considered first
in Ref. [28], in a different context, where it was shown that
it stabilizes an integer Z number of Majoranas in the vortex
core of a crystalline topological insulator. We here repeat the
argument to show this symmetry.

The magnetic symmetry MT has the properties (since
[Mxz,T ] = 0)

[MT ,Hhybrid] = 0, M2
T = M2

xzT
2 = 1, [MT ,C] = 0, (45)

where C is the charge conjugation operator. Hence, MT acts
like spinless time reversal (squares to 1 and it is antiunitary),
and it can stabilize multiple Majoranas at the edge because any
mass terms iγaγb between any Majorana are not allowed due
to the i which breaks MT because of the complex conjugation.

In terms of topological classifications [45], our system
falls into the BDI symmetry class because of the presence
of both MT and C symmetries, and hence a chiral symmetry
Uχ = MT C. The bulk of the hybrid system, which is effec-
tively 1D inside the superconducting gap of the Pb substrate,
can be classified by a winding number

w = i

∫ 2π

0

dk

2π
Tr[h(k)−1∂kh(k)], (46)

where h(k) is defined such that the Bloch Hamiltonian
Hhybrid(k) is brought to the following form by the eigenstates
of charge conjugation operator

V †
χHhybrid(k)Vχ =

(
0 h(k)

h(k)† 0

)
, (47)

V †
χUχVχ =

(
1 0
0 −1

)
. (48)
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FIG. 9. (Color online) Typical low-energy spectra of a finite-size
hybrid system (left axis) with a linear Fe chain along with the
corresponding values of both topological invariants (right axis),
the Majorana number ν, and the winding number w, computed from
the bulk Hamiltonian. In these calculations, the Fe chain is 120 unit
cells long, � = 0.1 eV, and the finite size of the Pb substrate is 21 unit
cells in the y direction, 1 in the z direction, and 140 in the x direction.
The parameter μFe which is varied specifies the band line up between
the Fe and Pb states as described in the text. Results are presented for
two different strengths of the Pb/Fe hybridization parameter Vpdπ .
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FIG. 10. (Color online) Phase diagrams of a hybrid structure with a linear Fe chain and a 2D superconducting Pb substrate. Panel (a) shows
the band structure (for the minority band only) of the Fe chain when it is suspended. Panels (b), (c), and (d) are all plotted as a function of μFe

and Vpdπ , showing the gaps of the hybrid structure, the Majorana number ν, and the topological invariant (winding number) w, respectively.
The parameter Vpdπ signifies the strength of the hybridization. The calculations of w suffer significantly from numerical errors when the system
gap is small. In order to reduce these errors, we set � = 0.1 eV in the present calculations. When the errors of w are insignificant, we find
ν = w mod 2, as expected. The size of the Pb substrate used here is 21 unit cells in the y direction and 1 in the z direction (infinite in the x

direction).

Furthermore, the Majorana number ν, defined and investigated
in the previous sections [where M = (−1)ν has been used], is
related to the winding number by ν = w mod 2.

We now exemplify the above reasoning for the specific
model for Fe chains on the surface of Pb explained above. As
presented previously, the hybrid Hamiltonian (17) is invariant
under the magnetic symmetry MT . We therefore expect multi-
ple pairs of Majoranas appearing at the end of the chain. This is
indeed confirmed by diagonalizing the Hamiltonian for a finite-
size hybrid system. Several such examples are shown in Fig. 9.
In addition, we show phase diagrams of such a hybrid structure
in Fig. 10, where in particular a phase diagram of the winding
numbers (the topological invariant for a Hamiltonian exhibit-
ing MT ) as a function of μFe and Vpdπ is shown in Fig. 10(c).

This new idea could also potentially allow us to experi-
mentally investigate interaction effects in Majorana fermions.
While the multiple integer Majorana classification is noninter-
acting, we expect that interactions will lift the degeneracy of 8
Majoranas providing a Z → Z8 classification. With significant
experimental effort, this could be potentially tested in the
future.

C. Phase diagram of a triple Fe chain hybridized
with a 2D Pb substrate

We now discuss the hybrid structure with a triple Fe chain,
which is more relevant to existing experiments presented in
Ref. [27]. In this case, the band structure of a suspended
Fe chain is significantly more complicated than that of the
linear chain shown in Figs. 2 and 10(a). STM measurements
suggest that the Fermi energy in the triple chain is likely to lie
between two sets of narrow bands predicted by a chain band
structure calculation [27]. We will refer to this energy as the
μFe = 0 point in the following presentations. In Fig. 11, we
show two phase diagrams in the {μFe,Vpdπ } space, in terms of
the Majorana numbers and the winding numbers, respectively.
Remarkably, but not surprisingly, although the phase diagram
in terms of the Majorana numbers contains almost equal areas
for ν = 1 and 0 phases, because of the larger number of
degeneracies lifted in a triple chain compared with a linear
chain, the phase diagram in terms of the winding numbers
is still dominated by topologically nontrivial (w �= 0) phases.
This implies that Majorana end modes are almost certainly

235433-11



JIAN LI et al. PHYSICAL REVIEW B 90, 235433 (2014)

0.2 0.3 0.4 0.5 0.6

−0.4

−0.2

0

0.2

−3

−2

−1

0

1

2

3

−0.4

−0.2

0

0.2

ν = 0

ν = 1

w

μ
 (e

V
)

Fe
μ

 (e
V

)
Fe

V  (eV)pdπ

FIG. 11. (Color online) Phase diagrams of a hybrid structure with
a triple Fe chain coupled to a 2D superconducting Pb substrate. The
upper panel shows the phase diagram in terms of the Majorana number
ν, while the lower panel shows the phase diagram in terms of the
the winding number w. In these calculations, � = 0.1 eV, and the
size of the Pb substrate is 15 unit cells in the y direction and 1 in
the z direction (infinite with periodic boundary conditions in the x

direction).

present in the current hybrid structure. To further identify
the actual number of Majorana modes in experiments will
be interesting but challenging.

D. Spatial extent of the Majorana fermions

The hybrid nature of our setup is most evident in its
influence on the spatial extent of the Majorana end modes.
In a purely one-dimensional system, it is well known that the
Majorana modes are exponentially localized at the end of the
chain as exp(−r/L). The localization length L ∼ t/�p (in
units of the chain lattice constant), equal to the coherence
length of the effective p-wave superconductor. In our system,
the p-wave wire coherence length inferred from the measured
gap near the middle of the chain is very large (L ∼ 104 unit
cells) because the proximity-induced gap �p is an order of
magnitude smaller than that of a bulk Pb superconductor
�, of the order �p ∼ �ESO/J . If the system were purely
one dimensional, the localization length of the Majorana
end states would have been much larger than the length of

the chain (typically �102 lattice constants) and no zero-bias
anomaly would have been observed near the chain ends.
However, when the one-dimensional chain is embedded in
the higher-dimensional superconductor, the spatial profile of
the Majorana end mode is predicted to acquire an additional
power-law decay [in simplified model calculations: 1/

√
kF r

for 2D superconductors [46] and 1/(kF r) for 3D supercon-
ductors [18]] which significantly decreases the spatial extent
of the Majorana end state. We now numerically analyze
the spatial extent of the Majorana end modes in our hybrid
one-dimensional Fe chain embedded in the superconducting
Pb substrate, with � set to the realistic value 1.3 meV.

In Fig. 12, we show one representative wave function of the
lowest-energy eigenstate obtained from exact diagonalizing
the Hamiltonian of a finite-size hybrid system. The amplitude
of the wave function is localized within 20 Å of the ends of the
Fe chain, which is about a couple of Fermi wavelength, and the
energy corresponding to this eigenstate is about 0.09 meV, far
below the 1.3-meV gap of the host superconductor (also see
the highlighted point in Fig. 13 upper panel). This is a typical
eigenstate in a finite-size system where two Majorana end
states are unavoidably coupled [47]: in this case, both through
the Fe chain and through the bulk of Pb. The spatial profile
of such a state is in good agreement with the experimental
observation reported in Ref. [27], and is reminiscent of the
atomic length scale of single Shiba impurity states [48]. In the
lower panel of Fig. 12, we plot the wave function on each sub-
lattice of the Fe chain in logarithm scale, which shows clearly
a nonexponential decay on top of oscillations associated with
the Fermi wavelength. In the inset of the same panel, we further
plot the squared amplitude of the wave functions scaled by a
factor linear in distance [48], in order to compare with the
predicted 1/

√
r prefactor in the Majorana wave function for

a 2D host superconductor [46]. In fact, we cannot draw a
consistent conclusion about the power-law prefactors of the
strongly localized (Majorana) eigenstates generically found
in the hybird system, possibly because of the involvement of
multiple bands in our model and the complicated interplay
between the iron states and the Shiba states. Alternatively,
another possible explanation for the short localization length of
the Majorana end states is the strongly renormalized velocity of
the low-energy quasiparticles in the hybrid system [49]. A full
understanding of these states will be a subject of future work.

The difference between the hybrid system and a purely 1D
system is obvious in terms of both their spectra and the wave
functions. As a reference of a purely 1D system, we choose
a suspended triple Fe chain with artificially added Rashba
spin-orbit coupling [Eq. (6)] and spin-singlet pairing-potential
[Eq. (4)] terms. With exactly the same length of chain and the
same realistic �, the two systems exhibit a sharp contrast at low
energy E � � (see Fig. 13): in the hybrid system, abundant
subgap states can be found from exactly diagonalizing a finite-
size Hamiltonian, and the low-energy states generically show
localized profiles at the chain ends as illustrated in Fig. 12; in
the suspended chain, subgap states are barely seen in a 210-
Å-long chain with a reasonable Rashba spin-orbit coupling
strength because of strong finite-size effect: low-energy states
showing pronounced decay from the ends can only occur in
such a chain when � is larger than 0.01 eV. This sharp contrast
emphasizes the fact that in order to understand various features
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FIG. 12. (Color online) A representative eigenstate wave func-
tion of a finite-size hybrid structure composed of a 60-unit-cell-long
triple Fe chain and a Pb substrate of size 90×21×2 unit cells. The
upper panel shows the wave-function amplitude on both the Fe chain
and the Pb substrate (amplitudes for overlap points in the xy plane
are summed up); the lower panel shows details of the wave function
on the Fe chain separately for each sublattice (see text). The energy
corresponding to this eigenstate is 0.09 meV (see the highlighted
point in Fig. 13, upper panel); the ratio of the total weight of this wave
function on the Pb substrate to that on the Fe chain is approximately
9.3 because of the strong hybridization and the significantly larger
size of the substrate. Periodical boundary conditions for the substrate
are adopted in both the x and the y directions in order to stabilize
our numerical calculations, which leads to relatively strong coupling
between the end states across the boundaries (see the enhanced
wave-function amplitudes in the substrate across the boundaries).
The pairing parameter in Pb has a realistic value � = 1.3 meV; the
coupling parameter in this specific example is Vpdπ = 0.65 eV.

(including the zero-bias peaks and the short length profile)
inside the host superconducting gap reported in Ref. [27], it
is necessary to go beyond a simple 1D (or quasi-1D) model,
and to take into account the hybrid nature of the experimental
structures.

To further reveal the origin of this difference, we return to
Eq. (14) and investigate the properties of the self-energy due to
coupling to the superconducting substrate, which effectively
differentiates the two systems. To this end, we consider a Pb
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FIG. 13. (Color online) Comparison between the low-energy
spectrum in the hybrid system (upper panel) and that in a suspended
triple Fe chain with artificially added Rashba spin-orbit coupling
and spin-singlet pairing terms (lower panel). In the upper panel, the
spectrum is plotted as a function of the coupling between Fe and Pb
atoms; in the lower panel, the spectrum is plotted as a function of
the Rashba spin-orbit coupling strength (α) in a realistic range. The
two models have Fe chains of the same length (about 210 Å), and
the same pairing parameter (� = 1.3 meV). The small circle in the
upper panel highlights the eigenstate that is plotted in Fig. 12.

substrate that is infinite in the xy plane and semi-infinite in
the z direction. This distinguishes the following results from
those in the previous part by removing the finite-size effect and
recovering the full translational invariance in the self-energy.
The self-energy for the Fe chain [50] is given by [cf. Eq. (15)]

�S(E+; r1 − r2)

=
∑
r ′

1,r
′
2

τFe-Pb(r1 − r ′
1)G(0)

Pb (E+; r ′
1 − r ′

2)τ †
Fe-Pb(r2 − r ′

2),

(49)

where G
(0)
Pb is the Green’s function for the Pb substrate in the

presence of superconducting pairing and without coupling to
the Fe chain. We are particularly interested in the energy range
inside the superconducting gap, where G

(0)
Pb has no poles. For

concreteness, we focus on zero energy, and define effective
hopping parameters t�(x) as the singular values of the matrix
[�S(x) + �S(x)†]/2, as well as effective inverse-lifetime pa-
rameters τ�(x) as the singular values of i[�S(x) − �S(x)†]/2.

In Fig. 14, we plot two of the largest t�’s and τ�’s as a
function of x, assuming Vpdπ = 1 eV (note that �S ∝ V 2

pdπ ).
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FIG. 14. (Color online) Effective hopping parameters t� (upper
panel) and inverse-lifetime parameters τ� (lower panel; see text for
the definitions of these parameters), extracted from the self-energy
due to the superconducting substrate (assuming zero energy and
Vpdπ = 1 eV), as a function of distance x. Only two of the largest
parameters are shown in each plot. The insets show the same curves
scaled by appropriate power-law prefactors in terms of x.

We find that both t�(x) and τ�(x) show long-range characters
that can be fitted by either an x−1/2 prefactor or an x−1 prefactor
(see Fig. 14 insets). This is reasonable because in the present
case we have considered a Pb substrate that is semi-infinite in
the z direction; both 2D-like surface states and 3D-like bulk
states exist in such a substrate; the effective hoppings that
decay as x−1/2 have to do with virtual processes through the
surface states of the substrate, and those that decay as x−1

have to do with virtual processes through the bulk states [18].
Moreover, we see that the magnitude of t�(x) is typically
of order 1 eV, the same as the original hopping parameters
in the Fe chain, when x is within several lattice constants
(3.5 Å). This implies that as long as the coupling between
Fe and Pb atoms is sufficiently strong (Vpdπ > 0.1 eV), the
effective Hamiltonian of the Fe chain will be significantly
modified by the self-energy contribution. In particular, if
the self-energy contribution becomes dominant, the chain is
essentially governed by the physics of the long-ranged Shiba
lattice [18]. Incidentally, we find that the magnitude of τ� ,
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FIG. 15. (Color online) Spatial dependence of the zero-energy
spectral functions in a 60-unit-cell-long triple Fe chain, with different
values of coupling Vpdπ between Fe and Pb atoms. Data for different
Vpdπ are shifted by an increment of 0.01 for clarity. The Pb substrate
is infinite in the xy plane and semi-infinite in the z direction, and has
a spin-singlet pairing gap � = 1.3 meV.

corresponding to the intrinsic linewidth (or inverse lifetime)
of the subgap states, is much smaller than that of t� , which
is expected as we have focused on the energy far below the
superconducting gap.

As a consequence of the substrate self-energy, not only
p-wave pairing gaps can be induced in the Fe chain, the
spatial profile of Majorana end states is also strongly modified.
This can be seen, within the current formalism, in the
spatial profiles of spectral functions at zero energy ρ0(x) =
− 1

π
Im[TrGr

Fe(E = 0; x,x)], plotted in Fig. 15. Clearly, when
the coupling between the Fe chain and the Pb substrate,
characterized by the parameter Vpdπ , is strong enough, ρ0 is
sharply localized at the ends within a few Fermi wavelengths.
The spatial profile of such a spectral function does not obey
simple exponential decay, and agrees very well with that of
the low-energy eigenstates obtained in the finite-size system
exemplified previously in Fig. 12, as well as the experimental
results in Ref. [27].

V. DISCUSSION AND CONCLUSIONS

Motivated by recent STM experiments [27] which identified
zero-bias peaks in the tunneling density of states of iron
atomic chains placed on the surface of lead and interpreted
them as Majorana states, we have carried out a theoretical
study aimed at shedding light on strategies for developing
magnetic transition-metal atom chains on the surface of
superconductors as a platform for one-dimensional topological
superconductivity. Our conclusions are generally speaking
optimistic. Even though the exchange spin splitting on the
chain typically exceeds the superconductor’s Clogston limit
by orders of magnitude, nanostructures of this type typically
form gapped superconducting states through a mechanism
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illustrated schematically in Fig. 1, and these states are often
topological.

Our theoretical study aims to identify some general trends
and is not exhaustive. We have restricted our attention to
transition-metal atomic chains. The case of rare-earth chains
will differ in some important respects and deserves attention.
We have also assumed that spin-singlet pairing is dominant
on the transition-metal chains and treated its strength as a
phenomenological model parameter. Constructing a realistic
theory of pairing on the transition-metal chain should be feasi-
ble since the pairing mechanism is almost certainly dominated
by phonon-mediated attractive electron-electron interactions,
but still challenging in several respects and beyond the scope
of this work. In addition, we have based our conclusions
on models which do not include s orbitals centered on the
transition-metal atoms. This omission seems to be justified by
two different considerations, namely, that s orbitals are both
more weakly spin polarized than d orbitals and more strongly
dispersive. Adding s orbitals to the models we have studied
will almost always increase the number of bands which cross
the normal-state Fermi level by two, and will therefore not
alter the topological character of the state. Because it is easier
to analyze, we have also focused a good part of our attention
on the suspended chain limit in which we do not account
explicitly for the degrees of freedom of the superconducting
substrate and instead integrate them out, retaining only the
pair-potential and the spin-orbit coupling terms induced by
virtual occupation of the substrate orbitals. We have also ex-
amined the limit of strongly hybridized chains, which appears
to be closer to the circumstance examined experimentally in
Ref. [27]. In particular, accounting for strong hybridization
with the Pb substrate explains the experimental finding that
the chain end states are weakly coupled and strongly localized
in space, even though these studied chains were shorter than
estimated superconducting coherence lengths.

There is a strong interplay between the possibility of
achieving topological superconductivity in transition-metal
atom chains and the nature of the magnetic order in these
chains. In this paper, we have addressed the case of ferromag-
netic chains with an easy magnetic axis perpendicular to the
chain. We have therefore been assuming that the magnetic
stiffness along the chain is sufficiently large to justify a
macrospin limit and that the magnetic anisotropy is sufficiently
strong that the overall spin orientation does not suffer thermal
fluctuations. For Fe on Pb, these conclusions are supported
by ab initio electronic-structure calculations. There is in fact a
large experimental and theoretical literature on magnetic order
in one-dimensional chains [51–57]. Magnetism is influenced
by bond lengths, bond angles, band fillings, and substrate
among other factors. Chains made from elements that are
magnetic in the bulk do not necessarily have ferromagnetic
order and, conversely, chains made from elements that are
not magnetic in the bulk can be ferromagnetic as a chain. It
is generally a nontrivial task to experimentally determine the
magnetic order of a specific chain. On the theory side, ab initio
density functional theory calculations can be helpful in
identifying the magnetic order of a chain once its structure and
composition is known. Generally speaking, transition-metal
atom chains tend to be ferromagnetic when the atoms are close
together and antiferromagnetic when the atoms are far apart.

The magnetic interactions in these limits can be interpreted
as being dominated by double exchange and superexchange,
respectively. Helical and other more complex textures tend to
occur close to the crossover between these limits. For the par-
ticular case of transition-metal atoms on lead, however, strong
p-d bonding leads to closely spaced transition-metal atoms.
We expect simple ferromagnetism in nearly every case and
this has motivated our restriction to uniform exchange fields.

Our model studies have allowed us to reach two main
conclusions which will, we hope, inform efforts to develop
ferromagnetic chains on superconducting substrates as a
practical Majorana state factory.

(i) Pb is an excellent superconducting substrate. It is a rela-
tively large-gap superconductor. Its p orbitals readily hybridize
with d orbitals in the transition-metal chain allowing Cooper
pairs to hop from the substrate to the magnetic chain. Its strong
spin-orbit coupling not only provides the Rashba spin-orbit
coupling required for gapped superconducting states, but also
has a favorable influence on chain magnetic properties by
enhancing the chain magnetocrystalline anisotropy and by
inducing Dzyaloshinskii-Moriya (DM) interactions [58,59]
between the chain magnetic atoms. A large magnetocrystalline
anisotropy stabilizes the magnetic order of the chain and
is generally desirable. The DM interactions can lead to
canted/spiral magnetic order, which, in combination with the
onsite spin splitting, can contribute to the effective Rashba
spin-orbit coupling [17,19].

(ii) The iron atoms chains studied in Ref. [27] probably do
not optimize ferromagnetic chain topological superconductiv-
ity. This conclusion motivates a program of experimental and
theoretical research aimed at forming topological supercon-
ductors with the largest possible gaps and the most robustly
reproducible topological character. Our model calculations
indicate, for example, that the superconducting state is most
likely to be topological when the ferromagnetic atom chain is
straight. The structure formed by ferromagnetic atoms on lead
is influenced both by the mixture of atoms that are present and
by the chain growth conditions. If protocols can be established
for growing straight chains, they should enable perfectly repro-
ducible topological behavior. Our model calculations indicate
that the one-dimensional superconducting gap is ∼�ESO/J .
� and ESO should be enhanced by strong hybridization
with a strongly spin-orbit coupled superconductor like Pb.
This formula indicates, however, that larger superconducting
gaps might be achievable in chains with itinerant electron
ferromagnetism that is weaker than in iron, perhaps in a chain
formed by atoms that are not magnetic in the bulk and barely
magnetic in the less coordinated chain geometry.

In summary, we carried out a study of topological super-
conductivity and Majorana end states in 3d ferromagnetic
chain tight-binding models with spin-orbit coupling, inversion
symmetry breaking, and s-wave superconductivity pairing. We
found that the atomic spin-orbit coupling is in general not
sufficient for a p-wave superconducting gap to be opened in
the ferromagnetic chain, and that one needs to break inversion
symmetry or introduce Rashba spin-orbit coupling. This prop-
erty can be explained with an argument similar to that used for
the 3D Weyl semimetals. Motivated by recent experiments, we
discussed in detail how a sizable Rashba spin-orbit coupling
is induced in the ferromagnetic chain when it is deposited on
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a strongly spin-orbit coupled substrate. We have constructed
topological phase diagram in model parameter spaces, varying
band filling, exchange splitting strength, and chain structural
parameters. In straight magnetic chains, we found that the
half-metallicity which appears at strong exchange splitting
makes topological superconductivity particularly robust, es-
pecially compared to the case of the semiconductor quantum
wire Majorana platform. Finally, we discussed the possible
appearance of a new symmetry protecting an integer number
of Majorana modes (where interaction effects could potentially
be seen), and highlighted the crucial role that the hybrid
structure plays in the decay of the Majorana end modes.

Note added in proof. We thank Felix von Oppen and Falko
Pientka for helpful discussions and for sharing with us their
unpublished results.
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APPENDIX: CALCULATION OF MAJORANA NUMBER

To calculate the Majorana number (defined below), we need
first to write the BdG Hamiltonian into Majorana fermion
basis. For any fermion operator ψ one can define two Majorana
operators

γa = ψ + ψ†, γb = −i(ψ − ψ†). (A1)

The Majorana operators fulfill the following relations:

γ
†
i,α = γi,α, α = a,b

{γi,α,γj,β} = 2δij δαβ. (A2)

By explicitly writing all possible terms in a quadratic fermionic
Hamiltonian in the Majorana basis, and considering the
Hermiticity of the coefficients, we can prove that any quadratic
fermionic Hamiltonian up to a constant can be written as

H = i

2

∑
ij

γ T
i Aij γj , (A3)

where γi ≡ (γi,a,γi,b)T , and the matrix A is real and antisym-
metric.

The Fourier transform of Majorana fermions is

γi,α = 1√
N

∑
i

e−ik·r i γk,α, (A4)

which implies that γ †
k,α = γ−k,α . The Hamiltonian after Fourier

transform becomes

H = i

2

∑
k

γ
†
k Ãkγk, (A5)

and Ãk is still antisymmetric but not necessarily real.
Equation (A5) is closely related to the BdG Hamiltonian
written in Nambu spinors. Below we follow the prescription
given in Ref. [60].

In real space, the Majorana spinor γi = (γi,a,γi,b)T is related
to the Nambu spinor �i = (ψi,ψ

†
i )T by

γi =
√

2U�i, U = 1√
2

(
1 1
−i i

)
. (A6)

Therefore, after Fourier transform we have

Ãk = −iUHBdG(k)U †, (A7)

which makes it convenient to obtain Ãk from the BdG
Hamiltonian.

The Majorana number M of an infinite 1D chain is defined
as

M = sgn
[
Pf(Ãk=0)Pf

(
Ãk= π

a

)]
, (A8)

where a is the lattice constant, and Pf means Pfaffian of
an antisymmetric matrix. When M = −1, i.e., Pf(Ãk) takes
opposite signs at zone center and zone boundary, the chain
is topologically nontrivial and there should be isolated zero-
energy Majorana edge modes in a finite chain.
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