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SO(5) symmetry in the quantum Hall effect in graphene
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Electrons in graphene have four flavors associated with low-energy spin and valley degrees of freedom. The
fractional quantum Hall effect in graphene is dominated by long-range Coulomb interactions, which are invariant
under rotations in spin-valley space. This SU(4) symmetry is spontaneously broken at most filling factors, and
also weakly broken by atomic scale valley-dependent and valley-exchange interactions with coupling constants
gz and g⊥. In this paper, we demonstrate that when gz = −g⊥, an exact SO(5) symmetry survives which unifies
the Néel spin order parameter of the antiferromagnetic state and the XY valley order parameter of the Kekulé
distortion state into a single five-component order parameter. The proximity of the highly insulating quantum
Hall state observed in graphene at ν = 0 to an ideal SO(5) symmetric quantum Hall state remains an open
experimental question. We illustrate the physics associated with this SO(5) symmetry by studying the multiplet
structure and collective dynamics of filling factor ν = 0 quantum Hall states based on exact-diagonalization and
low-energy effective theory approaches. This allows to illustrate how manifestations of the SO(5) symmetry
would survive even when it is weakly broken.
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I. INTRODUCTION

Electron-electron interactions in the fractional quantum
Hall effect (FQHE) regime give rise to a host of nonper-
turbative and unexpected phenomena, including importantly
the emergence of quasiparticles with fractional charge and
statistics. In this paper, we suggest that neutral graphene in the
FQHE regime could also provide a relatively simple example
of the complex many-particle physics that occurs in systems
with simultaneous quantum fluctuations of competing order
parameters. Because each of its Landau levels has a fourfold
spin/valley flavor degeneracy in the absence of Zeeman
coupling, large gaps and associated quantum Hall effects
are produced by single-particle physics only at filling factors
ν = ±2,±6, . . .. The quantum Hall effect nevertheless occurs
at all intermediate integer filling factors [1,2], and at many frac-
tional filling factors [3–5], usually [6] with a broken symmetry
incompressible ground state. When lattice corrections to the
continuum Dirac model’s Coulomb interactions are ignored,
the ground state at neutrality (ν = 0) is a Slater determinant [7]
with all the N = 0 single-particle states of two arbitrarily
chosen flavors occupied and, because the Hamiltonian is SU(4)
invariant, it has four independent degenerate Goldstone modes.
The rich flavor physics of graphene in the quantum Hall regime
has already been established by experiments that demonstrate
that phase transitions between distinct many-electron states
with the same filling factor ν can be driven by tuning the
magnetic field strength or the tilt angle [8–12].

In graphene, the competition between states with Kekulé-
distorion (KD), antiferromagnetic (AF), ferromagnetic (F),
charge-density wave (CDW), and other types of order is
controlled by Zeeman coupling to the electron spin, and
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also by weak atomic-range valley-dependent [13] interactions.
A variety of approaches have been used to estimate these
short-range corrections to the Coulomb interaction [14–20].
In this paper, we adopt a two-parameter phenomenological
model motivated by crystal momentum conservation and by
the expectation that corrections to the Coulomb interaction
are significant only at distances shorter than a magnetic
length [20] lB = √

�c/eB⊥. (B⊥ is the magnetic field com-
ponent perpendicular to the graphene plane.) We demonstrate
that along a line in this parameter space SU(4) symmetry is
reduced only to a SO(5) subgroup. In this paper, we take
interaction-driven quantum Hall states at ν = 0 as an example
to illustrate the physical manifestation of the SO(5) symmetry.
We explicitly derive a low-energy theory at ν = 0 that is able
to account simultaneously for Néel antiferromagnetism and
Kekulé lattice-distortion order and demonstrate that along the
SO(5) line the four collective modes remain gapless in spite
of the reduced symmetry. The exact SO(5) symmetry we have
identified in graphene’s quantum Hall regime is analogous
to the approximate symmetry conjectured in some models of
high-Tc superconductivity [21]. Our work demonstrates that an
enlarged symmetry like SO(5) can indeed be exactly realized
in a realistic microscopic Hamiltonian. In the following, we
start with a systematic analysis of Hamiltonian symmetries and
then use both exact-diagonalization and low-energy effective
models at ν = 0 to identify some symmetry-related properties.

Although our work focuses on the properties of the
quantum Hall state at neutrality, we demonstrate that the SO(5)
symmetry is an exact symmetry of the interaction Hamiltonian
for the quantum Hall states in the zero-energy Landau level of
graphene. Therefore this symmetry is expected to emerge as
well in the phase diagrams at arbitrary filling fractions in this
Landau level.

The quantum Hall state of graphene at neutrality is believed
to be a canted antiferromagnet, as indicated by the behavior
of the edge conductance in experiments with tilted magnetic
fields [10]. However, as we argue below, these experiments
are not sufficient to determine the proximity of graphene to
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the ideal SO(5) symmetric state. Even if graphene is in the
antiferromagnetic side of the phase diagram, the presence
of a weakly broken SO(5) symmetry would have important
consequences, such as the existence of additional weakly
gapped neutral collective modes as we will discuss in detail in
Sec. IV and in Appendix D.

II. HAMILTONIAN SYMMETRIES

When projected to the N = 0 Landau level (LL) the
graphene Hamiltonian is

H = HC + Hv + HZ,

HC = 1

2

∑
i �=j

e2

ε|�ri − �rj | ,
(1)

Hv = 1

2

∑
i �=j

[
gzτ

i
z τ

j
z + g⊥

(
τ i
xτ

j
x + τ i

yτ
j
y

)]
δ(�ri − �rj ),

HZ = −εZ

∑
i

σ i
z .

In Eq. (1), HC is the valley-independent Coulomb interaction,
ε is an environment-dependent effective dielectric constant, Hv

is the short-range valley-dependent interaction, τα(α = x,y,z)
are Pauli matrices which act in valley space, HZ is the Zeeman
energy [1], εZ = μBB where μB is the Bohr magneton and B

is the total magnetic field strength, and σα are Pauli matrices,
which act in spin space. Note that B can have components
both perpendicular and parallel to the graphene plane and that
we have chosen the ẑ direction in spin space to be aligned
with B. The form used for Hv in Eq. (1) was proposed by
Kharitonov [20,22].

The short-range interaction coupling constants gz,⊥/l2
B are

estimated to be ∼a0/lB times the Coulomb energy scale
e2/εlB , where a0 ∼ 0.01lB is the lattice constant of graphene.
They are therefore weak and physically relevant mainly when
they lift low-energy Coulomb-only model degeneracies. For
later notational convenience, we define the energy scales
uz,⊥ = gz,⊥/(2πl2

B). The Coulomb interaction HC in Eq. (1)
commutes with the fifteen SU(4) transformation generators
which can be chosen as follows:

Sα = 1

2

∑
i

σ i
α, Tα = 1

2

∑
i

τ i
α,

Nα = 1

2

∑
i

τ i
zσ

i
α, 	β

α = 1

2

∑
i

τ i
βσ i

α,

(2)

where the indices α = x,y,z and β = x,y. Sα and Tα are,
respectively, the total spin and valley pseudospin. Due to the
equivalence between valley and sublattice degrees of freedom
in the N = 0 LL of graphene, Nα can be identified as a
Néel vector. The physical meaning of the six 	β

α operators
is discussed below.

SU(4) symmetry is broken by the valley-dependent short-
range interactions. At a generic point in the (gz,g⊥) plane, Hv

breaks the SU(4) symmetry down to SU(2)s×U(1)v with the
U(1)v symmetry corresponding to conservation of the valley
polarization Tz and the SU(2)s symmetry corresponding to
global spin-rotational invariance. Two high-symmetry lines

N

Tx
Ty

S

Tz

FIG. 1. (Color online) Schematic illustration of the five-
component (Tx,y,Nx,y,z) order parameter space, and of rotations in
this vector space produced by the SO(5) generators.

in the (gz,g⊥) parameter space are evident: (1) for g⊥ = 0,
the system is invariant under separate spin rotations in each
valley yielding symmetry group SU(2)Ks ×SU(2)K

′
s ×U(1)v and

(2) for g⊥ = gz, there is a full rotational symmetry in valley
space yielding symmetry group SU(2)s×SU(2)v. We have
discovered that there is even higher symmetry along the
g⊥ = −gz line where the generic SU(2)s×U(1)v symmetry is
enlarged to SO(5): see Appendix A for an explicit proof. Along
this line, the Hamiltonian commutes with ten (�S, Tz, and the
six 	 operators) of the fifteen SU(4) generators identified in
Eq. (2). The other five (Tx,y,Nx,y,z) SU(4) generators form a a
natural order-parameter vector space on which the SO(5) group
acts. As illustrated schematically in Fig. 1, spin operators �S
generate rotations in the Néel vector space �N , Tz generates
rotations in the valley XY vector space Tx,y , and the 	

operators generate rotations that connect these two spaces.
When the Zeeman term is added to the Hamiltonian, the spin
symmetry is limited to the invariance under rotations about
the direction of the magnetic field. The symmetry groups of
HC + Hv and H and the corresponding generators are listed
in Table I.

As we will demonstrate, the SO(5) symmetry is sponta-
neously broken when it is exact. Provided that the Zeeman and
short-range interaction terms, which explicitly break SO(5)
symmetry, are not too strong, the (Tx,y,Nx,y,z) vectors can
be used to construct a useful Ginzburg-Landau model or
quantum effective-field theory. The Néel vector components
of the order parameter characterize the AF part of the order,
while the valley XY components capture the KD [18,20]
part of the order. The SO(5) symmetry demonstrates that
states which appear quite different at a first glance are close
in energy and that they can be continuously transformed
into one another by appropriate rotations in the SO(5) order
parameter space. The 5D vector (Tx,y,Nx,y,z) identified here
provides a concrete example for the 56 possible quintuplets
proposed in graphene [23,24]. Although we focus here mainly
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TABLE I. Expanded symmetries along high-symmetry lines in the (gz, g⊥) plane. At a generic point in the (gz, g⊥) plane, HC + Hv has
SU(2)s×U(1)v symmetry and H = HC + Hv + HZ has U(1)s×U(1)v symmetry.

Symmetry of HC + Hv Generators Symmetry of H Generators

g⊥ = 0 SU(2)Ks ×SU(2)K
′

s ×U(1)v Sα , Nα , Tz U(1)Ks ×U(1)K
′

s ×U(1)v Sz, Nz, Tz

g⊥ = gz SU(2)s×SU(2)v Sα , Tα U(1)s×SU(2)v Sz, Tα

g⊥ + gz = 0 SO(5) Sα , Tz, 	x
α , 	y

α U(1)s×SU(2) Sz, Tz, 	x
z , 	y

z

on monolayer graphene, a similar symmetry analysis applies
to the N = 0 LL in bilayer graphene [25–27].

III. EXACT DIAGONALIZATION

We have performed exact diagonalization (ED) studies
for the Hamiltonian specified in Eq. (1) acting in a ν = 0
torus-geometry Hilbert space with up to Nφ = 8 orbitals per
flavor. When only Coulomb interactions are included, we
verify that the ground state is a single Slater determinant
with two occupied and two empty flavors [7]. The SU(4)
multiplet structure of this broken-symmetry state is discussed
in Appendix B. We specify the ratio of gz to g⊥ by
the angle θg = tan−1(gz/g⊥) and fix the valley-dependent

interaction strength g/l2
B =

√
g2

⊥ + g2
z / l2

B at 0.01e2/(εlB).

Because gNφ/l2
B is small compared to the Coulomb model

charge-neutral energy gap that separates the ground state
multiplet from the first excited multiplet at zero momentum,
the role of the valley-dependent interactions is simply to lift
the Coulomb model degeneracy and split the corresponding
SU(4) ground state multiplet. Over the angle ranges θg ∈
[−π/4,π/2] and θg ∈ [5π/4,7π/4], the exact ground states
of HC + Hv are single-Slater determinants, with F and CDW
orders, respectively. For other values of θg , valley-dependent
interactions are nontrivial.

Figure 2 illustrates the θg dependence of the Hamiltonian
spectrum for Ne = 16 electrons in N = 0 Landau levels
with Nφ = 8 over the θg ∈ [π/2,5π/4] interval. Figure 2(a)
plots ground state energies in various (Sz,Tz) sectors and
demonstrates that the overall ground state has total valley
polarization Tz = 0 and total spin S = 0 at all θg values
in this range. Note that the dependence of energy on Tz is
suppressed as the CDW state is approached (θg → 5π/4)
and that the dependence of energy on S is suppressed as
the F state is approached (θg → π/2). Figure 2(b) illustrates
how the Tz = 0 sector of the SU(4) Coulomb ground-state
multiplet is split by Hv. Since Hv preserves SU(2)s spin
symmetry, all energies in Figs. 2(a) and 2(b) occur in SU(2)s

multiplets. At θg = 3π/4, eigenvalues with different values of
S merge to form SO(5) multiplets, each forming an irreducible
representation of the SO(5) group. (A geometric representation
of the SO(5) multiplet structure is provided in Appendix B).
All eigenstates have a definite value of the SO(5) Casimir
operator [28] 2 = S2 + T 2

z + 	2 = l(l + 3), with integer
l = 0,1, . . . ,Nφ . The low-energy spectrum at θg = 3π/4 is
accurately fit by the following equation:

H eff
v

(
θg = 3π

4

)
= uz

[
22

Nφ + 1
− Nφ(Nφ + 5)

Nφ + 1

]
, (3)

implying that the ground state, |G(3π/4)〉, is a SO(5) singlet
with 2 = 0. It follows that the 5D order parameter vector
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FIG. 2. (Color online) Low-energy spectrum on the torus geom-
etry for zero total momentum, filling factor ν = 0, and orbital Landau
level degeneracy Nφ = 8 as a function of θg in the range [π/2,5π/4].
Ev is defined as the difference between the eigenvalues of HC + Hv

and the Coulomb-only ground state energy. All plotted eigenvalues
are degenerate in the absence of Hv. (a) Ground-state energies in
a series of (Tz,S) sectors. The solid lines show the lowest Tz = 0
energies for different total spin S values. Similarly, the dashed lines
show the lowest spin singlet (S = 0) energies in different Tz sectors.
The ground state has S = 0 and Tz = 0 throughout the plotted θg

range. The inset shows the mean-field phase diagram over the full θg

range from Ref. [20]. (b) Low-energy states in the Tz = 0 sector for
a series of total spin S quantum numbers. Note that at θg = 3π/4,
states with different S values are degenerate because of the hidden
SO(5) symmetry.
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(Tx,y,Nx,y,z) is maximally polarized:〈
T 2

x + T 2
y + N2

〉
3π/4 = 〈C4 − 2〉3π/4 = 〈C4〉3π/4 ≈ C∗

4 ,

(4)

where 〈· · · 〉3π/4 denotes expectation values in the ground state
|G(3π/4)〉 and C∗

4 = Nφ(Nφ + 4) is the value of the SU(4)
Casimir operator C4 in the Coulomb model SU(4) multiplet.
The approximation leading to C∗

4 in Eq. (4) is validated by
numerical calculation, and also follows from the argument that
|G(3π/4)〉 is adiabatically connected to a state in the SU(4)
multiplet. Because |G(3π/4)〉 does not break SO(5) symmetry,
〈N2

α〉3π/4 = 〈T 2
β 〉3π/4 ≈ C∗

4/5 with α = x,y,z and β = x,y.
Equation (3) predicts that in the thermodynamic limit

Nφ → ∞, small l multiplets will approach degeneracy. By
making an analogy with the quantum rotor model, we can
see that this property signals spontaneous SO(5) symmetry
breaking. The energy in Eq. (3) can be interpreted as the
kinetic energy of a generalized rotor model in the 5D
(Tx,y,Nx,y,z) space with the SO(5) generators playing the role
of angular momenta. In the thermodynamic limit Nφ → ∞,
the moments of inertia of the rotors diverge and it can be stuck
in a spontaneously chosen direction, resulting in symmetry
breaking. The absence of ground state level crossings along
the θg = 3π/4 line in Fig. 2 indicates that the crossover
between AF and KD states is smooth in finite-size systems.
However, the level crossings between the low-lying excited
states in Fig. 2 signals a first-order phase transition in the
thermodynamic limit.

IV. LOW-ENERGY EFFECTIVE THEORY
AND COLLECTIVE MODES

Following Refs. [20,29,30], we can derive a low-energy
effective-field theory for ν = 0 quantum Hall states by
constructing the Lagrangian,

L = 〈ψ |i∂t − H |ψ〉 =
∫

d2r

2πl2
B

[B − H], (5)

where |ψ〉 is a Slater-determinant state in which two orthogo-
nal occupied spinors χ1,2 are allowed to vary slowly in space
and time. The Lagrangian density L = B − H has kinetic
Berry phase [B = i(χ †

1∂tχ1 + χ
†
2∂tχ2)] and energy-density H

contributions. As detailed in Appendix C we find that

H = −u⊥ − 2εZsz + (uz + u⊥)

(
t2
z −

∑
α=x,y,z

s2
α

)

+ 2u⊥
∑

β=x,y

t2
β + (u⊥ − uz)

∑
α=x,y,z

n2
α

+ l2
B

[
ρz(∇tz)

2 + ρ⊥
∑

β=x,y

(∇tβ)2 +
∑

α=x,y,z

ρs(∇sα)2

+ ρn(∇nα)2 + ρπ

((∇πx
α

)2 + (∇πy
α

)2)]
. (6)

The stiffness coefficients ρz = ρ0 − (3uz + 2u⊥)/4, ρ⊥ =
ρ0 − (uz + u⊥)/4, ρs = ρ0 + (uz + 2u⊥)4, ρn = ρ0 + (uz −
2u⊥)/4 and ρπ = ρ0 − uz/4, are dominated by the common
Coulomb contribution ρ0 = √

2πe2/(16εlB). It is easy to

check that the energy density function H has the same symme-
tries as the Hamiltonian H . The mean-field theory ground state
is determined by assuming that all fields are static and spatially
uniform. The energy competitions behind the mean-field phase
diagram previously derived by Kharitonov [20] are transparent
when Eq. (6) is combined with the normalization constraint∑

α(t2
α + n2

α + s2
α + (πx

α )2 + (πy
α )2) = 1 (see Appendix C). In

the absence of a Zeeman field the four mean-field phases are
the F state (

∑
s2
α = 1), the AF state (

∑
n2

α = 1), the KD
state (t2

x + t2
y = 1), and the CDW state (t2

z = 1). The phase
boundaries between these states, shown in the inset of Fig. 2(a),
lie along the high symmetry lines identified in Table I.

We now concentrate on physics near uz + u⊥ = 0 where a
first order phase transition occurs between KD and AF states
and the system exhibits SO(5) symmetry. The uz + u⊥ = 0
line in graphene is analogous to the Jxy = Jz line in a
XXZ spin model, along which a phase transition occurs
between Ising and XY ground states and the system exhibits
expanded O(3) symmetry. One physical manifestation of
SO(5) symmetry along the transition line is the response to
an external Zeeman field, which induces a finite z direction
spin polarization sz. It follows from orthogonality constraints
on the fields discussed in Appendix C that when among the
ten SO(5) generators only sz has a finite expectation value, tx,y

and nz must vanish. A finite Zeeman energy therefore favors
the AF state over the KD state because the AF state can distort
to a canted AF with a finite sz and a Néel vector lying in the
xy plane. A sufficiently strong Zeeman field eventually favors
the F state. Because experiments detect what appears to be a
continuous phase transition as a function of Zeeman coupling
strength [10], they suggest that the ground state in the absence
of Zeeman coupling lies in the AF region of the phase diagram.

Close to the uz + u⊥ = 0 line, the system retains crucial
SO(5) properties in the presence of a small Zeeman term. Ap-
proximate SO(5) symmetry is revealed in the collective mode
spectra of both KD and AF states. The KD phase spontaneously
breaks the valley U(1)v symmetry. Choosing the ground state
to have valley polarization tx with a spontaneous nonzero
value, we see that infinitesimal SU(4) rotations [31] give
rise to infinitesimal values of eight fields, {ty,z,nx,y,z,π

y
x,y,z},

and leave the remaining six fields, {sx,y,z,π
x
x,y,z} at zero. The

eight dynamical fields parametrize the tangent manifold of the
mean-field ground state. By evaluating the Berry phase, we
find that for small fluctuations the valley pseudospin fields ty
and tz are canonically conjugate, and that the Néel vector field
nα is conjugate to π

y
α . The valley pseudospin and Néel vector

collective modes therefore decouple. The valley collective
mode is gapless because of the Kekulé state’s broken U(1)
symmetry and has dispersion

ω1(KD) = 2k
√

ρ⊥(uz − u⊥ + ρzk2), (7)

where k is wave vector and lengths are in units of lB . The three
additional collective modes are kinetically coupled Néel-π
modes and have energy

ω2,3,4(KD) = 2
√

(|uz + u⊥| + ρnk2)(2|u⊥| + ρπk2). (8)

Note that these modes become gapless as the SO(5) symmetry
line is approached and the energy cost of Néel fluctuations
away from the KD state vanishes, and that the Zeeman
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field does not influence collective mode energies in the KD
phase because sz is not a dynamical field. Similarly, the
AF state spontaneously breaks the spin SU(2)s symmetry.
When the Néel vector is chosen to lie along the x axis, the
dynamical fields generated by infinitesimal SU(4) rotations are
{sy,z,ny,z,tx,y,π

x,y
x }. Evaluating the Berry phase, we find that sy

is conjugate to nz and sz to ny , as in a standard antiferromagnet.
The spin-collective modes are

ω1,2(AF) = 2k
√

ρn(2|u⊥| + ρsk2). (9)

In the AF state, (tx ,πy
x ) and (ty ,πx

x ) fluctuations form kinetically
coupled conjugate pairs and give rise to the sublattice/π
collective mode energies:

ω3,4(AF) = 2
√

(uz + u⊥ + ρ⊥k2)(uz − u⊥ + ρπk2). (10)

Note that all four collective modes are gapless and degenerate
along the uz + u⊥ = 0 line. The degeneracy arises from the
SO(5) symmetry. Appendix D describes how the collective
modes in Eqs. (9) and (10) are modified by the Zeeman field.

V. DISCUSSION AND SUMMARY

In ordered systems a Landau-Ginzburg or quantum effective
model which includes a single-order parameter, for example, a
complex pair-amplitude order parameter for a superconductor
or a magnetization direction order parameter for a magnetic
system, is often able to describe thermodynamic, fluctuation,
and response properties over wide ranges of temperature and
experimentally tunable system parameters. These theories can
be powerfully predictive even when their parameters cannot be
reliably calculated from the underlying microscopic physics.
The naive effective-field-theory approach sometimes fails
however. A notable example is the case of high-temperature
superconductors in which experiments indicate that charge-
density, spin-density, and pair-amplitude order parameters
have correlated quantum and thermal fluctuations that must
be treated simultaneously. Unlike the case discussed in the
present paper in which an N = 5 component effective theory
can be motivated and its parameters estimated on the basis
of microscopic physics, large-N field theories [21,32,33] are
typically constructed on the basis of hints from experimental
data, for example, from observed correlations in the tempera-
ture and parameter dependence of the fluctuation amplitudes
of different observables. In these theories, it is often difficult
to be certain that all relevant fields have been identified, and
to identify constraints imposed on the fluctuations of these
fields by the underlying microscopic physics. As discussed
below, the remarkably simple example of ordered states in
graphene quantum Hall systems, particularly ordered states at
ν = 0, suggests criteria which can be tested experimentally to
validate large-N unified theories of systems with competing
orders.

As summarized in Table II, there is a close analogy between
SO(5) symmetry in the quantum Hall effect of graphene and
SO(5) symmetry in some theories of high-Tc superconductivity
(HTS) [21]. The SO(5) theory of HTS theory unifies antiferro-
magnetism and d-wave superconductivity (dSC). The analog
of d-wave superconductivity in the graphene quantum Hall
case is Kekulé distortion order. The order parameters of both
theories involve a sublattice degree of freedom, the honeycomb

TABLE II. Comparison between the Kekulé-distortion state in
graphene and the d-wave state in high-temperature superconductors.

Parameter Kekulé-distortion state d-wave state

Order Parameter (Tx , Ty) (�x , �y)
U(1) generator Tz Charge Q

External Potential Staggered potential εv Chemical potential μ

sublattice degree-of-freedom in the case of graphene and
the sublattice degree of freedom of the magnetically ordered
state in HTS SO(5) theory case. The graphene analog of the
chemical potential μ term, which tunes transitions between
antiferromagnetic and d-wave superconducting states in the
HTS case, is a sublattice-staggered potential εv. Interestingly
this field is easily tunable experimentally [34–37] in the
bilayer graphene case. SO(5) symmetry in HTS is conjectured
to emerge in low-energy effective theory [21], and can be
exactly realized in extended Hubbard model with artificial
long-range interactions [38,39]; however, it never becomes
exact for commonly used models like t-J or Hubbard model. In
contrast, SO(5) symmetry and its explicit symmetry breaking
naturally appear in the microscopic Hamiltonian [Eq. (1)] for
the quantum Hall effect in graphene at any filling factors within
N = 0 LL. We note that generic SO(5) symmetry without
any fine-tuning parameters can appear in a spin-3/2 ultracold
femionic system [40,41].

The SO(5) symmetry in graphene is manifested by a mul-
tiplet structure in the exact diagonalization spectra, and by the
appearance of soft collective modes beyond those associated
with Kekulé or antiferromagnetic order. In particular, the
antiferromagnetic state of graphene has π -operator fluctuation
collective modes. The observation of the analogous collective
modes in the antiferromagnetic state of high-temperature
superconductors would provide powerful evidence for the
applicability of an effective theory, which unifies antiferro-
magnetism and superconductivity only. On the other hand,
their absence would likely indicate that an effective theory
of this type is not adequate over a useful range of the
tunable doping-level parameter of HTSs. Similarly, a recently
proposed alternate N = 6 parameter theory [32], which unifies
charge-density-wave and d-wave superconducting order, also
has implications for the collective mode structure, which, if
verified, would provide a powerful validation.

Finally, we would like to comment on the relevance of our
study to the understanding of the highly insulating quantum
Hall state found in graphene at neutrality. Experiments with
tilted magnetic fields [10] are consistent with the view that
the state at neutrality is a canted antiferromagnet. Since the
transition between a canted antiferromagnet and the spin
polarized state is controlled solely by the ratio of the Zeeman
term to the u⊥ interaction strength [20], these very experiments
serve to estimate the value of u⊥, which is found to be about
u⊥ ∼ −10εZ [11,12]. This experiment, however, does not
serve to estimate the value of uz, but simply to constrain it
to satisfy uz � |u⊥|, from the requirement that the system
is in the canted antiferromagnet phase. The determination
of the value of uz, relevant for monolayer graphene and,
hence, of its proximity to the ideal SO(5) symmetric state,
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is therefore an open experimental problem. The presence
of a weakly broken SO(5) symmetry would have important
physical consequences, such as the existence of additional
weakly gapped neutral collective modes as we illustrated in
Sec. IV and in Appendix D.

ACKNOWLEDGMENTS

This work was supported by the DOE Division of Materials
Sciences and Engineering under Grant DE-FG03-02ER45958,
and by the Welch foundation under Grant TBF1473. We
gratefully thank Texas Advanced Computing Center (TACC)
and IDRIS-CNRS Project 100383 for providing technical
assistance and computer time allocations.

APPENDIX A: PROOF OF SO(5) SYMMETRY
FOR gz + g⊥ = 0

Let us first briefly review how SO(5) arises naturally as
a subgroup of SU(4). The fifteen generators of SU(4) can
be chosen to be the Pauli matrices in spin and valley space
and their direct products: {σα,τβ,σατβ}. The Clifford algebra,
{γμ,γν} = 2δμν , is realized by a subset of these generators,
namely the 4×4 γ matrices, which can be chosen as

γ1 = τx, γ2 = τzσx, γ3 = τzσy, γ4 = τzσz, γ5 = τy.

(A1)

SO(5) can be shown to be generated by the commutators
of these γ matrices: [γμ,γν]. More specifically, we have the
following ten generators of SO(5):

γab = − i

2
[γa,γb], (A2)

which can be thought of as a 5×5 antisymmetric tensor

γab =

⎛
⎜⎜⎜⎝

0
τyσx 0
τyσy −σz 0
τyσz σy −σx 0
−τz τxσx τxσy τxσz 0

⎞
⎟⎟⎟⎠ . (A3)

These matrices satisfy the following commutation relations:

[γab,γcd ] = 2i(δacγbd + δbdγac − δadγbc − δbcγad ), (A4)

[γab,γc] = 2i(δacγb − δbcγa). (A5)

Equation (A4) shows that the ten independent γab matrices
obey a set of closed commutation relations, which is the SO(5)
Lie algebra. Additionally, according to Eqs. (A4) and (A5),
when the group is viewed as acting on γab and γa by matrix
conjugation, we have, respectively, a tensor and a vector
representation of SO(5) [42].

We will now demonstrate explicitly that SO(5) is an exact
symmetry of the Hamiltonian in the absence of Zeeman
coupling for gz + g⊥ = 0. From among the fifteen generators
of SU(4) identified in the main text, the spin operator Sα , the
valley polarization operator Tz and the 	β

α operators are the
ten generators of the SO(5) group. Sα and Tz automatically
commute with Hv for any values of gz and g⊥. Thus SO(5)
will be a symmetry group if the six 	β

α operators also commute

with Hv. To simplify the calculation of these commutators, we
define the 	 ladder operators:

	λ
λ′ =

∑
i

τ i
λσ

i
λ′ , 	λ

z =
∑

i

τ i
λσ

i
z , (A6)

where λ and λ′ can be + or −. τ± = (τx ± iτy)/2 are ladder
operators in valley space, and the spin ladder operators σ± are
similarly defined. We work out the commutator [	+

+,Hv] in
detail below:

[	+
+,Hv] = 2

∑
i �=j

(−gzτ
j
z τ i

+σ i
+ + g⊥τ

j
+τ i

zσ
i
+
)
δ(�ri − �rj )

= 2
∑
v,s

∑
p1p2p3p4

τ vv
z Dp1p2p3p4

(−gzc
†
p1K↑c†p2vscp3vs

×cp4K ′↓ + g⊥c
†
p1v↑c

†
p2Kscp3K ′scp4v↓

)
= 2(gz + g⊥)

∑
p1p2p3p4

Dp1p2p3p4

(
c
†
p1K↑c

†
p2K ′↑cp3K ′↑

×cp4K ′↓ + c
†
p1K↑c

†
p2K↓cp3K ′↓cp4K↓

)
. (A7)

The second line of Eq. (A7) is the Landau gauge second
quantized form of the first line. c

†
pvs (cpvs) is an electron

creation (annihilation) operator, p denotes the orbital index
within the N = 0 Landau level, v = K,K ′ labels valley, and
s = ↑,↓ labels spin. Dp1p2p3p4 is the orbital two-particle
matrix element for the δ function interaction:

Dp1p2p3p4 =
∫ ∫

d�r1d�r2 φ∗
p1

(�r1)φ∗
p2

(�r2)δ(�r1 − �r2)φp3 (�r2)

×φp4 (�r1)

=
∫

d�r φ∗
p1

(�r)φ∗
p2

(�r)φp3 (�r)φp4 (�r), (A8)

where φp(�r) is the wave function for orbital p. In the
simplification leading to the last line of Eq. (A7), we used
(i) fermion anticommutation relations, and (ii) the identity
Dp1p2p3p4 = Dp1p2p4p3 , which is a special property of δ

function interaction. Equation (A7) shows that [	+
+,Hv] = 0

at gz + g⊥ = 0. In a similar fashion, it can be shown that the
other 	 operators also commute with Hv at gz + g⊥ = 0. Thus
Hv has the exact SO(5) symmetry for gz + g⊥ = 0 independent
of filling factors. The symmetry follows from the short-range
nature of the valley-symmetry breaking interaction combined
with the Pauli exclusion principle for electrons. Note that in
Eq. (A7), we did not make use of the explicit form of the
wave function φp(�r). The same Hamiltonian in Eq. (1) has
also been used to describe the physics in N = 0 LL of bilayer
graphene(BLG) [25–27]. There is a similar equivalence among
valley, sublattice, and layer degrees of freedom within N = 0
LL in BLG. The main difference is that N = 0 LL in BLG
contains both n = 0 and n = 1 magnetic oscillator states. Since
the SO(5) symmetry identified for the Hamiltonian in Eq. (1)
is independent of the single-particle wave function basis, it can
also be applied to the case of BLG.

APPENDIX B: EXACT DIAGONALIZATION RESULTS

Our ED results for finite-size systems with up to 16
electrons verify that the ground state at ν = 0 for Coulomb
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FIG. 3. (Color online) Geometric representation of SU(4) mul-
tiplet structures. (a) The octahedron in (Sz,Nz,Tz) space represents
the SU(4) multiplet structure of Coulomb ground states at ν = 0. (b)
A Tz-constant plane in the octahedron displayed for Tz = Nφ − 4
reached by applying lowering operators to the CDW state with
Tz = Nφ . The size of the symbols indicates the degeneracy at each
point in the (Sz,Nz) plane. (c) Multiplet structures of the first three
levels of SO(5).

interactions only (H = HC) is given exactly by mean-field
theory. The ground-state wave functions at ν = 0 are single
Slater determinants with filled Landau levels for two of four
flavors. This property is a generalization of simple, quantum
Hall ferromagnetism, the occurrence of spontaneously spin-
polarized states at odd filling factors when the spin degree-of-
freedom is added to the physics of a parabolic band system
Landau levels. We have used periodic boundary conditions
and classified many-body states by their magnetic translation
symmetries [43]. In graphene, the ν = 0 ground states occur
at zero momentum and form an irreducible representation of
SU(4).

The ν = 0 F, AF, and CDW states are included in the
ground-state multiplet and can be expressed in the form

|χ1,2〉 =
Nφ∏
p=1

c†pχ1
c†pχ2

|0〉, (B1)

where χ1,2 are the two spinors defining the state and p is
the index of the LL orbital. When considered as a tensor
representation of SU(4), this formula implies that the states in
this multiplet are tensors with 2Nφ indices in two symmetric
sets each with Nφ indices, i.e., they are described by the Young
tableau:

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

with Nφ columns and two rows. Figure 3(a) represents
the SU(4) multiplet structure geometrically in terms of an
octahedron in (Sz,Nz,Tz) space [44]. The octahedral shape is

understood to bound a tetrahedral lattice of points in which
each point designates the states within the multiplet with
common Sz,Nz,Tz quantum numbers. Figure 3(b) shows a
slice of this lattice with Tz = Nφ − 4. F, AF and CDW states
are located at vertices of the octahedron, and other orthogonal
degenerate states are derived from them by applying suitable
SU(4) transformations.

States in the SU(4) ground-state multiplet share the same
value of the SU(4) guadratic Casimir operator:

C4 = S2 + N2 + T 2 + 	2, (B2)

where S2 = ∑
α=x,y,z

S2
α , N2 and T 2 are similarly defined, and

	2 = ∑
α=x,y,z

(	x
α)2 + (	y

α)2. C4 takes value Nφ(Nφ + 4) for

the Coulomb ground-state multiplet at ν = 0. Figure 3(b)
demonstrates that there can be more than one state in the
multiplet at a given (Sz,Nz,Tz) point. Hence, an additional
quantum number, such as S2 + N2, is needed to uniquely label
a state within the SU(4) multiplet of interest [44]. S2 + N2 is
one of the quadratic Casimir operator of the SU(2)Ks ×SU(2)K

′
s

subgroup of SU(4). We note that SU(2)Ks ×SU(2)K
′

s group
has another quadratic Casimir operator

∑
α=x,y,z

SαNα , which

is identical to 0 for Coulomb ground states at ν = 0.
SU(4) symmetry is lifted by the valley-symmetry breaking

interaction Hv, and the octahedral multiplet is split. At
θg = 3π/4, SU(4) symmetry is reduced to SO(5) symmetry.
Figure 3(c) shows the SO(5) multiplet structure of the
three lowest energy states, which coincide with the lowest
degeneracies. Within a level, states are distinguished by Tz, Sz

and total spin S quantum numbers, and share the same value of
the SO(5) Casimir operator 2 = S2 + T 2

z + 	2 = l(l + 3), l

being a nonnegative integer. We note that the same SO(5)
multiplet structure has arisen previously in numerical studies
of the t-J model [45]. Interestingly, along the SO(5) line, i.e.,
for θg = 3π/4, we find numerically that the eigenenergies are
linear in 2, as illustrated in Fig. 4(a). The low-energy part
of the spectrum along the SO(5) line is accurately fit by the
following equation:

H eff
v

(
θg = 3π

4

)
= uz

[
22

Nφ + 1
− Nφ(Nφ + 5)

Nφ + 1

]
. (B3)

The ground state at θg = 3π/4 is an SO(5) singlet with 2 = 0.
Away from θg = 3π/4, SO(5) symmetry is explicitly

broken, leading to anisotropy in the 5D space. Interestingly,
the spectrum can also be fit by a linear form in the appropriate
quadratic Casimir operators along other high symmetry lines.
For example, at θg = π/2, the Casimir operators of the
corresponding symmetry group SU(2)Ks ×SU(2)K

′
s ×U(1)v are

S2 + N2 and T 2
z . For a Tz−constant plane shown in Fig. 3(b),

S2 + N2 takes values f (f + 2), with non-negative f = Nφ −
|Tz|,Nφ − |Tz| − 2, · · · . In analogy with the θg = 3π/4 case,
the low-energy spectrum at θg = π/2 is accurately fit by

H eff
v

(
θg = π

2

)
= uz

T 2
z − (S2 + N2) + Nφ

Nφ + 1
. (B4)

By interpolating between Eqs. (B3) and (B4), we arrive at an
expression which describes the low-energy spectrum of the
SU(4) ground state manifold over the full θg ∈ (π/2,5π/4)
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FIG. 4. (Color online) Finite size scaling analysis. (a) Ev/g at θg = 3π/4 as a function of 2 for Nφ ranging from 4 to 8. (b) In a given
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θg = π as a function of T 2

z . The inset in each figure shows the inverse of slope vs Nφ . See text for a more detailed description.

interval:

H eff
v = 1

Nφ + 1

[ − 2u⊥2 + (uz + u⊥)
(
T 2

z − S2 − N2
)

+uzNφ + u⊥Nφ(Nφ + 6)
]
. (B5)

Equation (B5) is limited in two ways: (1) it describes only the
low-energy part of the spectrum which evolves adiabatically
from the SU(4) ground state multiplet, and (2) it is obtained by
fitting numerical data at the high-symmetry points θg = π/2
and 3π/4. The SO(5) symmetry-breaking states at θg = 3π/4
were discussed in the main text.

Equation (B5) makes the nature of the transition betwen
AF and Kekulé phases at θg = 3π/4 clear. As illustrated
in Fig. 2(a) and discussed in the main text, the ground
state throughout the entire θg ∈ (π/2,5π/4) range is singly
degenerate and has S2 = 0 and Tz = 0. Therefore, on the
θg < 3π/4 side of the SO(5) line, the quantity −(uz + u⊥)N2

in Eq. (B5) is an easy-plane anisotropy in the 5D space with the
Néel vector space being the easy-plane; Néel order is favored
over Kekulé order for θg < 3π/4. On the θg > 3π/4 side of
SO(5) point, the Kekulé state is favored and the Tx,y vectors
lie in the easy plane. We conclude that there is a spin-flop
phase transition in the 5D space across the SO(5) point. The
phase transition is of first order. Our analysis is in agreement
with the mean-field prediction of a zero temperature first-order
phase transition and places it on rigorous grounds.

We will now describe how the finite size scaling demon-
strates the existence of spontaneous symmetry-breaking away
from the SO(5) point. In Fig. 4(b), we plot the lowest energy
at a representative angle θg = 4π/7 in different (Tz = 0,S)
sectors as a function of S2 for Nφ from 4 up to 8. There is
good linear relationship between the plotted energy and S2.
The quantity IS , defined as the inverse of the slope, increases
linearly as Nφ increases. This quantity is a generalized moment
of inertia and its divergence indicates spontaneous SU(2)s

symmetry breaking in the thermodynamic limit at θg = 4π/7.
The reasoning is analogous as that for the SO(5) symmetry
breaking at θg = 3π/4. In Fig. 4(c), a similar scaling analysis
is applied to the spin singlet sector with varying Tz numbers at
θg = π . In this case, the analysis signals a spontaneous U(1)v

symmetry breaking in the thermodynamic limit. We remark

that the finite-size scaling behavior in our system is very similar
to that in the two-dimensional antiferromagnetic Heisenberg
model. The ground state of the latter model is a spin singlet [46]
in any finite size system. However, low-lying energy levels
collapse to the ground state in the thermodynamical limit,
resulting in spontaneous symmetry breaking [47,48]. This set
of low-lying states is often referred to as a tower of states.

So far, the Zeeman field has been neglected. Since Sz

has been chosen as a good quantum number in our exact
diagonalization calculations, the Zeeman field simply shifts
the energy of a state by an amount proportional to its Sz value.
We found that the mean-field phase boundary between canted
antiferromagnetic state and KD in the presence of a Zeeman
field is in quantitative agreement with exact diagonalization
results for Nφ = 8.

APPENDIX C: LOW-ENERGY EFFECTIVE THEORY

The continuum model Lagrangian

L = 〈ψ |i∂t − H |ψ〉 =
∫

d2r

2πl2
B

[B − H], (C1)

where |ψ〉 is a Slater-determinant state in which two orthogo-
nal occupied spinors χ1,2 are allowed to vary slowly in space
and time. The Lagrangian density L = B − H has a Berry
phase part

B = i(χ †
1∂tχ1 + χ

†
2∂tχ2) (C2)

and an energy density contribution

H = l2
BE0(∇P ) + Ev(P ) − l2

B

2
Ev(∇P ) + EZ(P ), (C3)

where P is the local density matrix, P = χ1χ
†
1 + χ2χ

†
2

and E0(∇P ) is the contribution from the SU(4) symmetric
Coulomb interaction, which is nonzero only when P is space
dependent:

E0(P ) = ρ0Tr[∇P∇P ], (C4)
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with stiffness ρ0 = √
2πe2/(16εlB). The next two terms are

contributed by the valley-dependent interactions:

Ev(P ) = 1

2

∑
α=x,y,z

uαξα(P ), (C5)

where ux,y = u⊥ = g⊥/(2πl2
B), uz = gz/(2πl2

B), and ξα(P ) =
Tr[ταP ] Tr[ταP ] − Tr[ταP ταP ]. Ev(∇P ) is a gradient term,
and has a similar expression as Ev(P ). The last term is the
Zeeman energy

EZ(P ) = −εZ Tr[σzP ]. (C6)

The position-dependent density matrix P has the following
properties:

P † = P, TrP = 2, P 2 = P. (C7)

It is convenient to reparametrize the state with a matrix R,
where P = 1

2 (1 + R). R is Hermitian, traceless, and R2 = 1.
Thus, R can be expressed in terms of SU(4) generators:

R =
∑

a

laγa +
∑
a>b

labγab, (C8)

where la and lab are classical real fields. The condition R2 =
1 gives rise to constraints on these fields. One type is the

normalization constraint enforcing Tr[R2] = 4:∑
a

l2
a +

∑
a>b

l2
ab = 1. (C9)

Another type are the orthogonality constraints:

εabcdelcd le = 0, εabcdelbclde = 0, (C10)

where εabcde is the fully antisymmetric Levi-Civita symbol
in five dimensions. The orthogonality constraint is given by
Tr[R2γab] = 0 and Tr[R2γa] = 0.

The SO(5) theory of high-Tc superconductivity [21] re-
quires a similar orthogonality constraint, which plays an
essential role in predicting the phase transition between AF
and dSC phases. There, it was proposed based on a geometric
interpretation of rotations in 5D [21], and separately based
on maximum entropy [49] considerations. In our theory,
the orthogonality constraint naturally appears because of the
assumption that at each LL orbital two spinors are occupied,
i.e., that charge fluctuations are quenched. To make the
physical meaning of the fifteen fields {la,lab} transparent, we
rename them using the spin and valley language:

l34,42,23 = sx,y,z, l1,5 = tx,y, l15 = tz,

l2,3,4 = nx,y,z,

l52,53,54 = πx
x,y,z, l21,31,41 = πy

x,y,z.

(C11)

sα, tα , and nα with α = x,y,z are respectively the spin, valley
and Néel fields, and there are six π fields. The explicit form
of the energy density H expressed in terms of these classical
fields is given in Eq. (6) of the main text.

APPENDIX D: COLLECTIVE MODES IN THE PRESENCE OF A ZEEMAN FIELD

In the presence of Zeeman field, the AF is transformed to a canted antiferromagnetic (CAF) state in which the spin polarizations
on opposite sublattices are not collinear. In the CAF state, the density matrix is P (CAF) = 1

2 (1 + sin θsτzσx + cos θsσz), where
the canting angle is cos θs = εZ/|2u⊥| [20]. One of the spin wave mode remains gapless in the CAF state:

ω1(CAF) = 2
√

ρn(2|u⊥| sin2 θs + (ρn cos2 θs + ρs sin2 θs)k2)k. (D1)

This gapless mode corresponds to the rotation of Néel vector within the xy plane. Another spin wave mode acquires a gap:

ω2(CAF) = 2
√

(εZ cos θs + (ρn sin2 θs + ρs cos2 θs)k2)(2|u⊥| + ρsk2). (D2)

The Zeeman field also modifies the dispersion of the sublattice/π modes:

ω3,4(CAF) = 2
√

(uz + u⊥ + εZ cos θs + (ρ⊥ sin2 θs + ρπ cos2 θs)k2)(uz − u⊥ + ρπk2), (D3)

which remain gapped in the CAF phase and become gapless at the CAF/KD phase boundary uz + u⊥ + εZ cos θs = 0 [20].
At the SO(5) point uz + u⊥ = 0, the gapped spin wave mode ω2(CAF) and sublattice/π modes ω3,4(CAF) become degenerate.

The degeneracy is due to the unbroken part of the SO(5) symmetry in the presence of Zeeman field.
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