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Quantum transport and spintronics regimes are studied in p- and n-doped atomic layers of hexagonal transition-
metal dichalcogenides (TMDCs), subject to the interplay between the valley structure and spin-orbit coupling.
We find how spin relaxation of carriers depends on their areal density and show that it vanishes for holes
near the band edge, leading to the density-independent spin-diffusion length, and we develop a theory of weak
localization/antilocalization, describing the crossovers between the orthogonal, double-unitary, and symplectic
regimes of quantum transport in TMDCs.
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I. INTRODUCTION

Among the novel two-dimensional materials that have
attracted a lot of attention during the recent years, semi-
conducting transition-metal dichalcogenides (TMDCs) [1] are
particularly interesting due to their potential for applications in
electronics and optoelectronics [2–6]. They have been recently
implemented in field-effect transistors [7–14], showing large
in-plane mobilities and a high current on/off ratio, which make
them also very interesting for sensors. This has motivated a
big effort in the study of the transport properties of these
single-layer crystals [15–20].

Contrary to their bulk counterparts, single-layer TMDCs
are considered to have a direct band gap [21], which appears
at the corners K± of the hexagonal Brillouin zone (see Fig. 1).
Simultaneously, the large spin-orbit (SO) interaction provided
by the heavy transition-metal atoms together with the lack of
inversion symmetry splits the energy bands around K± points
[22–29], where the out-of-plane spin polarization is still a
good quantum number due to the mirror symmetry (z → −z)
of the system. The interplay between valley and spin degrees
of freedom influences charge and spin transport characteristics
of these materials. In general, magnetotransport experiments
in systems with large SO coupling provide insights about the
nature of momentum scattering and spin relaxation processes,
whereas the interplay between spin-lattice relaxation and
quantum transport leads to a crossover between orthogonal and
symplectic classes of quantum disordered systems [30,31],
manifested in measurements as weak localization [32]
(WL) and weak antilocalization [33] (WAL) magnetoresis-
tance (MR). This interplay acquires an additional twist in
two-dimensional (2D) conductors with a multivalley band
structure [34–38]. In the case of TMDCs, the SO spin splitting
tends to suppress spin relaxation, whereas lattice defects
and deformations mimic time-inversion symmetry breaking
for the intravalley propagation of carriers (although the true
time-inversion symmetry is preserved because it involves
interchanging the valleys).

In this work, we study in detail the interplay between
SO coupling and multivalley properties in spintronics and
quantum transport of single-layer TMDCs. We identify three
regimes of quantum transport, which are distinguished by the

relative size of the SO splitting and the Fermi energy of charge
carriers, as sketched in Fig. 1. The structure of the paper is
the following: In Sec. II, we present the phenomenological
model for TMDCs band structure and disorder, supported by
k · p theory derivation in Appendices A and B. In Sec. III,
we analyze the interference correction to the conductivity
and show that it displays various forms of the WL to WAL
crossover, depending on the relation between the spin splitting
and Fermi energy of the carriers. In Sec. IV, we discuss the
occurrence of such crossovers in, e.g., MoS2.

II. MODEL

Two-dimensional unit cells of TMDCs consist on X-M-X
layers, where the transition-metal atoms (M) are ordered in
a triangular lattice, each of them bonded to six chalcogen
atoms (X) located in the top and bottom layers (see Fig. 1).
We focus on the dynamics of spinful electrons and holes
around the K± valleys. To that end, we introduce Pauli algebras
associated to valley (τ matrices) and spin (s matrices), which
can be classified according to the irreducible representations
of D′′

3h (see Table I). Here, we deal with D′′
3h, the point

group associated to the tripled unit cell, because it allows
us to treat excitations at both valleys on an equal footing (see
Appendix A).

The k · p theory Hamiltonian for electrons and holes in
TMDCs has the form [23–25,39–42]

H = |p|2
2m∗ + μ

(
p3

x − 3pxp
2
y

)
τz + λ

2
τzsz + δH (r) . (1a)

This takes into account trigonal warping μ of their dispersion
inverted in K± valleys and SO splitting λ [large (small) in
the valence (conduction) band (see Table II)]. The last term in
Eq. (1a),

δH (r) = u0 (r) + uz(r)τzsz + {p,ag(r)}τz + {p,agz(r)}sz

+ usf (r) · sτz +
∑

α=x,y

{p,wα(r)}sα + ui(r) · τ

+
∑

α=x,y

{p,wzα}ταsz +
∑

α,β=x,y

{p,wαβ}ταsβ, (1b)
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FIG. 1. (Color online) Left: lattice, unit cell, and Brillouin zone
of TMDC monolayers. Right: schematic view of the quantum
transport regimes discussed through the text.

describes imperfections in the 2D crystal that, in principle,
break all its symmetries except for time reversal.

The first two terms in δH (r) stand for intravalley disorder,
sensitive to the allowed spin state of the electron in each valley.
The next two terms account for both lattice deformations (re-
sponsible for a valley-/spin-dependent pseudomagnetic field
[34,35]) and the Berry curvature specific for the bands at the
corners of the Brillouin zone. Their k · p theory [25] derivation
is described in Appendix B. The presence of the last two
terms in the first line, with spin operators (sx,sy) ≡ s, requires
z → −z symmetry breaking, e.g., by flexural deformations of
the 2D crystal in the case of the last term [43].

The second line in Eq. (1b), with valley Pauli matrices
(τx,τy) ≡ τ , describes intervalley disorder due to atomic
defects in the crystal. The first two terms account for intervalley
scattering without spin flip; the last term represents the
only intervalley spin-flip perturbation permitted by the time-
inversion symmetry in the lowest-order k · p expansion around
K±. The momentum dependence of such a term suggests that
the intervalley spin-flip scattering is absent for the carriers at
the band edge [44,45].

III. QUANTUM TRANSPORT REGIMES

We study the phase-coherent quantum interference correc-
tion to conductivity since the typical mean-free paths deduced
from the mobilities reported in monolayers of TMDCs (see
Table II) are of the order of � ∼ 1–10 nm, whereas the phase-
coherence lengths reported in magnetotransport experiments
in few-layer samples are of the order of �ϕ ∼ 50–100 nm
[46,47]. The analysis of quantum transport characteristics of
TMDCs is based on the diagrammatic perturbation theory
calculations similar to those performed earlier in graphene
[36,37,48] and other 2D materials [38]. Depending on the

TABLE I. Definitions of valley and spin matrices.

Irrep t → −t invariant t → −t odd

A′
2 τz, sz

E′′
(

sx

sy

)

E′
1,2

(
τx

τy

)

relative size of SO splitting and Fermi energy εF of charge
carriers (see Fig. 1), we identify three distinct spin/valley
relaxation and quantum transport regimes:

(A) λ > εF : lightly p-doped monolayers of MoX2 and
WX2 (X = S, Se, Te) with holes fully spin polarized in
opposite directions in the opposite valleys [26–29].

(B) εF�λ: specific for heavily p-doped MoS2.
(C) εF � λ: typical for n-doped MoX2 monolayers.

A. Regime A: λ > εF (valence band)

Energy conservation and spin polarization of electrons
in opposite directions (↑↓) in valleys K± do not leave any
space for intravalley spin-flip and intervalley spin-conserving
scatterings. This makes redundant the last two terms in the
first line of Eq. (1b) and first two terms in the second line.
Then, spin-conserving intravalley disorder is characterized by
the scattering rate

τ−1
0 = 2πν(�0 + �z)

�
, ν = m∗

2π�2
,

(2a)〈uα(r)uβ(r′)〉 = �αδαβδ(r − r′), α = (0,z).

The gauge-field-like part of δH determines the rate

τ−1
g = 2πνp2

F (g + gz)

�
∝ nh,

(2b)〈
ai

α(r)aj

β(r′)
〉 = αδαβδij δ(r − r′), α = (g,gz)

which scale linearly with the hole density nh. The last term in
Eq. (1b), with (α,β = x,y) is responsible for the only possible
intervalley scattering process in the regime A, accompanied
by a spin flip, which determines the hole spin relaxation rate
[44]

τ−1
is = 8πνp2

F is

�
∝ nh,

(2c)〈
wi

αβ(r)wj

α′β ′(r′)
〉 = isδαα′δββ ′δij δ(r − r′),

which also scales linearly with the hole density.
Rates (2) sum up into the momentum relaxation rate

τ−1 = τ−1
0 + τ−1

g + τ−1
is ,

which determines the value of Drude conductivity and diffu-
sion coefficient D = 1

2τv2
F , and the result of Eq. (2c) suggests

that in p-doped TMDCs spin-diffusion lengths

L
(a)
is =

√
Dτis ∼

√
�3τ/2ism3∗ (3)

are almost independent of the carrier density at nh → 0.
The corrections due to quantum interference are exppressed

in terms of particle-particle correlation functions known as
cooperons, whose dynamics are governed by the Bethe-
Salpeter equation, diagrammatically depicted in Fig. 2. Since
spin and valley degrees of freedom are coupled in this regime,
we simplify the notation by introducing a set of generators
of U(2), σ0,x,y,z, with σ0 the identity and σx,y,z Pauli matrices
acting on the Hilbert space span by the doublet (K+,↑), (K−,↓)
[49]. First, we decompose the disorder correlators introduced
in the main text [Fig. 2(a)] and cooperons [Fig. 2(b)] in singlet
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TABLE II. Effective mass, SO splitting, and mobilities for conduction (e−) and valence (h+) bands of some best-studies semiconducting
TMDCs.

Material Band m∗
m0

λ (meV) Mobility (cm2/sV)

MoS2 e− 0.46 [25,42] 3 [25,42] 20–350 [7,11,15–18]
h+ 0.54 [25,42] 148 [25,42]

MoSe2 e− 0.56 [42] 22 [42]
h+ −0.59 [42] 186 [42]

WS2 e− 0.26 [42] −32 [42]
h+ −0.35 [42] 430 [19,22,42] 50–120 [20]

WSe2 e− 0.28 [42] −37 [42]
h+ −0.36 [42] 460 [19,22,42] 140 [10]

(l,s = 0) and triplet (l,s = x,y,z) modes as

Css ′ ≡ 1
2 [σyσs]αβCαβα′β ′ [σs ′σy]β ′α′ ,

Wss ′ ≡ 1
2 [σyσs]αβWαβα′β ′[σs ′σy]β ′α′ ,

where the sum in α,β,α′,β ′ indices is assumed. Then, the
Bethe-Salpeter equations [Fig. 2(c)] can be written in a
compact way as

Cs1s2 (Q,ω) = Ws1s2 +
∑
s,s ′

∑
l,l′

Ws1s ′Css2 (Q,ω) �ss ′ (Q,ω) ,

where

�ss ′ (Q,ω) ≡ 1

2

∫
d2p

(2π�)2
Tr[σsσy(ĜR(p,�ω + εF ))T

× σyσs ′ĜA(Q − p,εF )]. (4)

The retarded/advanced Green operators are just

ĜR,A (p,ω) = 1

�ω − εp ± i �

2τ

σ0, (5)

so then we have

�ss ′ (Q,ω) = ≈2πντ

�
(1 + iτω − τD|Q|2) × δss ′ , (6)

where the last result corresponds to the polarization operator
in the so-called diffusive approximation (τD |Q|2 ,τω  1).

Wab a b

a
α

a
α

b
β

b
β

C α β α β
a b a b

α
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FIG. 2. Diagrammatic representation of (a) disorder correlator,
(b) cooperon, and (c) Bethe-Salpeter equation.

The WL correction to conductivity can be written as the
contribution of four cooperon modes [one singlet s = 0 and
three triplet s = x,y,z, with C̃s ≡ 2πντ 2

�
Css (Q)]

δgii = −2e2D

π�

∫
d2Q

(2π )2
[C̃x + C̃y + C̃z − C̃0], (7)

which are fundamental solutions of diffusion-relaxation
kernels

[−D∇2 − iω + �s]C̃s(r − r′,ω) = δ(r − r′). (8)

This is deduced from the Bethe-Salpeter equation (4), as-
suming the low frequency and momentum expansion for the
polarization operator (6), and also that diagonal scattering
dominates over the rest, τ/τ0 ∼ 1 [50].

The relations between the relaxation gaps �s and the rates
associated to different scattering mechanisms are summarized
in Table III. Similarly to other multivalley conductors without
intervalley scattering, lattice defects [34–37,48] and trigonal
warping in the valley dispersion [36,37] suppress the low-
temperature part of the quantum correction to conductivity
caused by the interference of phase-coherent diffusive waves
encircling the same random walk trajectory in the reversed
directions. This is because inhomogeneous deformations
generate a random pseudomagnetic field with the opposite
sign in K± valleys, whereas trigonal anisotropy splits hole’s
wave number for the opposite Fermi velocity directions, hence
inducing a random phase difference for the clockwise and
anticlockwise propagating waves (Fig. 3) (with the opposite
sign in the opposite valleys). The cumulative effect of these
two factors determines the decay rate τ−1

∗ of valley-polarized
cooperons [36,37,48] in the set of triplet and singlet two-hole
correlation functions

τ−1
∗ = 2τ−1

g + 15μ2p6
F τ

4�2
∝ Anh + Cn3

h. (9)

TABLE III. Relation between cooperon relaxation gaps and
scattering rates in the regime A.

Relaxation gaps Relaxation rates

�0 = 0 τ−1 = τ−1
0 + τ−1

g + +τ−1
is

�x = �y = τ−1
∗ + τ−1

is

�z = 2τ−1
is τ−1

∗ = 2τ−1
g + 15μ2p6

F
τ

4�2
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FIG. 3. (Color online) Trigonal warping of isoenergy contours
in the valence band in one of the valleys (left), leading to a phase
difference between holes propagating along a closed path in the
reverse directions (right).

Note that, similarly to Lis in Eq. (3),

L∗ ≡
√

Dτ∗ ∼
√

�3τ/(g + gz)m3∗ (10)

is independent of hole densities at nh → 0.
In the diffusive approximation, the integration in Eq. (7) has

a natural ultraviolet cutoff imposed by the inverse of the mean-
free path � = √

Dτ , whereas the infrared cutoff is imposed by
the decoherence length �ϕ = √Dτϕ . Then, the WL correction
to conductivity reads just as

δg = e2

πh

[
ln

(
τ−1

τ−1
ϕ

)
− ln

(
τ−1

τ−1
ϕ + 2τ−1

is

)

− 2 ln

(
τ−1

τ−1
ϕ + τ−1

is + τ−1∗

)]
. (11)

In the presence of an out-of-plane magnetic field B, |Q|2 is
quantized into Q2

n = (n + 1/2) �−2
Bz

, with the magnetic length
defined as �B = √

�/4eB. For �B � � the diffusive approx-
imation is still valid, and the WL correction to conductivity
reads as

δgii (B) = −e2D�−2
B

πh

∑
s

nmax∑
n=0

cs

D�−2
B

(
n + 1

2

)+ �s + τ−1
ϕ

,

with c0,x,y,z = −1,+1,+1,+1. Thanks to the property of the
digamma function

ψ (x + nmax + 1) − ψ (x) =
nmax∑
n=0

1

x + n
,

we can perform the summation, leading to

δgii(B) = − e2

πh

∑
s

cs

[
ln

(
�τ−1

4eDB

)
− ψ

(
1

2
+ Bs + Bϕ

B

)]
,

with Bs = ��s

4eD
. Note that we have taken the limit nmax → ∞,

ψ

(
x + nmax + 3

2

)
→ ln (nmax) ≈ ln

(
�τ−1

4eDB

)
.

Substrating the zero-field correction, the MR defined
as �ρ (B) = ρ (B) − ρ (0) = −�g (B) /ρ2 can be written

0
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FIG. 4. (Color online) MR behavior in regime A as a function of
applied magnetic field B and phase-coherence lengths through Bϕ ∝
�−2

ϕ . Left (in red): no intervalley scattering, τis → ∞. WL saturates
at temperatures/hole densities such that τϕ ∼ τ∗. Right (in blue):
intervalley scattering is present, τis ∼ τ∗. MR displays a crossover
from WL to WAL upon increasing hole densities (decreasing Bϕ).

as

�ρ (B)

ρ2
= e2

πh

[
F

(
B

Bϕ

)
− F

(
B

Bϕ + 2Bis

)

−2F

(
B

Bϕ + Bis + B∗

)]
, (12)

F (z) ≡ ln (z) + ψ

(
1

2
+ 1

z

)
, Bα ≡ �/e

4Dτα

.

Without intervalley scattering, the combined effect of
pseudomagnetic disorder and trigonal warping places the
system in the double-unitary symmetry class [31,51] with a
WL peak saturated at a temperature such that τϕ(T ) ∼ τ∗,
and this interplays with spin-flip intervalley scattering which
drives the system to the WAL regime. The resulting behavior
of MR is illustrated in Fig. 4. From the density dependence of
relaxation rates τ−1

is and τ−1
∗ , Bis ∝ L−2

is and B∗ ∝ L−2
∗ should

be finite at nh → 0 [see Eqs. (3) and (10)], in contrast to Bϕ ∝
n−1

h . Hence, we conclude that magnetoresistance displays a
crossover from WL to WAL behavior upon increasing the
hole density. Here, the form of MR would be dependent on
the amount of atomic defects responsible for the spin-flip
intervalley scattering: for a virtually defectless crystal, MR
would display a two-step crossover, from suppressed WL to
WAL (this behavior is exactly the reverse of the WAL-WL
crossover in monolayer graphene [36]).

B. Regime B: εF � λ (valence band)

When some minority-spin carriers are present on top of
majority-spin Fermi seas in both valleys, both intravalley spin-
flip and intervalley spin-conserving scattering are permitted
for carriers at the Fermi level. Those are characterized by the
intervalley τ−1

v and spin-flip intravalley τ−1
sf scattering rates

τ−1
v/sf = 4πν

�

[
ϒv/sf + p2

F �v/sf

]
, (13)

parametrized by the correlation functions〈
ui

sf (r)uj

sf (r′)
〉 = ϒsf δij δ(r − r′),〈

wi
α(r)wj

β(r′)
〉 = �sf δαβδij δ(r − r′),〈

ui
i(r)uj

i (r′)
〉 = ϒvδij δ(r − r′),〈

wi
zα(r)wj

zβ(r′)
〉 = �vδαβδij δ(r − r′).
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In the crystals with short-range (atomic) defects, these rates are
independent of the carrier density, whereas in a clean smoothly
bent layer they would linearly increase with the density of
carriers.

Firing up new scattering processes at the carrier density
threshold nc = nh(εF = λ) reduces both the mean-free path
of carriers and their spin-diffusion length (now, limited by the
intravalley spin flip). The reduction of the mean-free path by
additional scattering channels leads to a step change in the
resistivity and spin relaxation upon the increase of the density
across the threshold,

ρ(nh) ≈ ρ(nc) + m

e2nh

(
τ−1
v + τ−1

sf

)
θ (nh − nc), (14)

followed by a gradual decrease of resistivity, with a slope
determined by the mobilities of majority- and minority-spin
carriers.

An abrupt change also occurs in the behavior of the
quantum correction to conductivity of defected TMDCs. In
short, opening intervalley and spin-flip intravalley scattering
channel, with finite rates already at nh � nc, drives the
system deeper into the symplectic symmetry class. This
statement is based on the diagrammatic calculation, where
now, similarly to graphene [52], one can classify cooperons
as singlets and triplets in terms of both spin (s) and valley (l)
indexes

Cll′
ss ′ ≡ 1

4 [syss]αβ[τxτl]
abCaba′b′

αβα′β ′ [ss ′sy]β ′α′[τl′τx]b
′a′

.

The Bethe-Salpeter equations for the cooperons can be written
in a compact way as

Cl1l2
s1s2

(Q,ω) = Wl1l2
s1s2

+
∑
s,s ′

∑
l,l′

W
l1l

′
s1s ′C

ll2
ss2

(Q,ω) �ll′
ss ′ (Q,ω) ,

where now the polarization operator reads as

�ll′
ss ′ (Q,ω)

≡ 1

4

∫
d2p

(2π�)2
Tr[(τlτx) ⊗ (sssy)(ĜR(p,�ω + εF ))T

× (τxτl′) ⊗ (syss ′ )ĜA(Q − p,εF )], (15)

and the disorder-averaged Green operators are

ĜR,A (p,ω) =
(
�ω − εp ± i �

2τ

)+ λ
2 τz ⊗ sz(

�ω − εp ± i �

2τ

)2 − λ2

4

. (16)

Hence, the WL correction to conductivity is given by 16
cooperon modes (C̃l

s ≡ 2πντ 2

�
Cll

ss)

δgii = −2e2D

π�

∫
d2Q

(2π )2

∑
s,l

csc
lC̃l

s (Q) , with

c0,x,y,z = −1,+1,+1,+1, (17)

c0,x,y,z = +1,+1,+1,−1.

As before, we take the low momentum and frequency
expansion of the polarization operator assuming the diffusive
approximation τD |Q|2 ,τω  1. Two groups of four cooper-
ons corresponding to singlet and triplet combinations built
separately of two Kramers doublets (K+,↑; K−,↓) and (K+,↓;
K−,↑) are solutions of the diffusion-relaxation kernels[−D∇2 − iω + �l

s

]
C̃l

s(r − r′,ω) = δ(r − r′), (18)

whereas the cross-doublet cooperons do not contribute in the
present regime due to the mismatch between the Fermi surfaces
corresponding to different spin polarizations at each valley.
The WL correction to conductivity and MR in this regime
reads as, in general,

δg = e2

πh

[
ln

(
τ−1

τ−1
ϕ

)
+ ln

(
τ−1

τ−1
ϕ + �z

z

)
− ln

(
τ−1

τ−1
ϕ + �0

z

)
− ln

(
τ−1

τ−1
ϕ + �z

0

)
− 4 ln

(
τ−1

τ−1
ϕ + �x

x

)]
,

(19)
�ρ(B)

ρ2
= e2

πh

[
F

(
B

Bϕ

)
+ F

(
B

Bϕ + Bz
z

)
− F

(
B

Bϕ + B0
z

)
− F

(
B

Bϕ + Bz
0

)
− 4F

(
B

Bϕ + Bx
x

)]
,

where the expressions for the relaxation gaps are summarized in Table IV and we have introduced Bl
s = ��l

s

4eD
.

These expressions can be further simplified if we neglect τ−1
∗ and τ−1

is in the expression for �x
x , �z

0, and �0
z , which are assumed

to be smaller due to their dependence on carrier concentration. Then, we have

δg = e2

πh

[
ln

(
τ−1
ϕ + 2τ−1

sf

)(
τ−1
ϕ + 2τ−1

v

)
τ−1
ϕ

(
τ−1
ϕ + 2τ−1

v + 2τ−1
sf

) − 4 ln

(
τ−1

τ−1
ϕ + τ−1

v + τ−1
sf

)]
;

(20)

�ρ(B)

ρ2
= e2

πh
F

(
B

Bϕ

)
− e2

96πh

[
15B2

(Bv + Bsf )2
+ B2

B2
v

+ B2

B2
sf

]
,

where we have expanded all the F (z) functions to the lowest
order excepting the first term and Bα = �/(4eταD). Note
that in this regime, intravalley spin-flip processes do not lead

immediately to WAL. This happens because the fourth term in
the first line of Eq. (1b) looks like intravalley magnetic disor-
der which suppresses WAL effect coming from intravalley
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TABLE IV. Relation between cooperon relaxation gaps and scattering rates in regimes B and C.

Relaxation gaps Relaxation rates

�0
0 = 0 τ−1 = τ−1

0 + τ−1
g + τ−1

v + τ−1
sf + τ−1

is

�0
x = �0

y = τ−1
λ + 2τ−1

gz + τ−1
v − τ−1

γv
+ τ−1

sf + τ−1
is

�0
z = 2τ−1

sf + 2τ−1
is τ−1

gz = 2πνp2
F

gz

�

�x
0 = �

y

0 = τ−1
λ + τ−1

∗∗ + τ−1
sf + τ−1

γsf
+ τ−1

v + τ−1
is

�x
x = �y

x = �x
y = �y

y = τ−1
∗ + τ−1

v + τ−1
sf + τ−1

is τ−1
∗∗ = τ−1

∗ − 2τ−1
gz

�x
z = �y

z = τ−1
λ + τ−1

∗∗ + τ−1
sf − τ−1

γsf
+ τ−1

v + τ−1
is

�z
0 = 2τ−1

v + 2τ−1
is τ−1

γsf
= 4πν

�

[
ϒsf − p2

F �sf

]
�z

x = �z
y = τ−1

λ + 2τ−1
gz + τ−1

v − τ−1
γv

+ τ−1
sf + τ−1

is

�z
z = 2τ−1

v + 2τ−1
sf τ−1

γv
= 4πν

�

[
ϒv − p2

F �v

]

spin-flip scattering, similarly to how trigonal warping and
Berry curvature [accounted by τ−1

∗ in Eqs. (11) and (12)]
suppress WL in the transport regime A.

C. Regime C: εF � λ (conduction band)

In this case, the crossover between WL and WAL be-
havior of magnetoresistance takes the most complicated
form, especially when λτ < �, since one has to take into
account all 16 cooperons built using valley-spin quartet
(K+,↑; K−,↓; K+,↓; K−,↑). The intrinsic SO splitting acts
as an effective Zeeman coupling making the electron spin
precess around the axis perpendicular to the crystal plane
in the opposite direction for electrons in the opposite val-
leys. SO splitting and spin-dependent disorder determine the
rate

τ−1
λ = λ2τ

�2
+ 4πν�z

�
, (21)

at which the eight cooperon modes that we neglected previ-
ously, C̃0,z

x,y and C̃
x,y

0,z , decay. The SO splitting also couples
them by precession with the rate ωλ ≡ λ/�, similarly to how
real Zeeman coupling mixes singlet/triplet cooperon modes in

a simple disordered metal [53]. These modes satisfy the matrix
equations (for the former)(

� + �0(z)
x −ωλ

ωλ � + �z(0)
y

)(
C̃00(zz)

xx C̃0z(z0)
xy

C̃z0(0z)
yx C̃zz(00)

yy

)
= I, (22)

where we have written � = D |Q|2 − iω for simplicity. After
matrix inversion, we have

C̃0(z)
x = � + �z(0)

y(
� + �

0(z)
x

)(
� + �

z(0)
y

)+ ω2
λ

,

(23)

C̃z(0)
y = � + �0(z)

x(
� + �

z(0)
y

)(
� + �

0(z)
x

)+ ω2
λ

.

For C̃
x,y

0,z we obtain the same swapping the spin and valley
indices. Then, by introducing the coefficients

γv ≡ τ−1
γv√

τ−2
γv

− ω2
λ

, γsf ≡
τ−1
γsf√

τ−2
γsf

− ω2
λ

,

where the rates τ−1
γv

, τ−1
γsf

are defined in the second column of
Table IV, the WL correction to conductivity and MR can be
written as

δg = e2

πh

{
ln

(
τ−1

τ−1
ϕ

)
+ ln

(
τ−1

τ−1
ϕ + �z

z

)
− ln

(
τ−1

τ−1
ϕ + �0

z

)
− ln

(
τ−1

τ−1
ϕ + �z

0

)
− 4 ln

(
τ−1

τ−1
ϕ + �x

x

)

+ 2γv

[
ln

(
τ−1
γv

+ τ−1γv

τ−1
γv

− τ−1γv

)
− ln

(
τ−1
γv

+ (τ−1
ϕ + �0

x/2 + �z
x/2
)
γv

τ−1
γv

− (τ−1
ϕ + �0

x/2 + �z
x/2
)
γv

)]

+ 2γsf

[
ln

(
τ−1
γsf

+ τ−1γs

τ−1
γsf

− τ−1γs

)
− ln

(
τ−1
γsf

+ (τ−1
ϕ + �x

0 /2 + �x
z /2
)
γs

τ−1
γsf

− (τ−1
ϕ + �z

0/2 + �x
z /2
)
γs

)]}
,

�ρ (B)

ρ2
= e2

πh

[
F

(
B

Bϕ

)
+ F

(
B

Bϕ + Bz
z

)
− F

(
B

Bϕ + B0
z

)
− F

(
B

Bϕ + Bz
0

)
− 4F

(
B

Bϕ + Bx
x

)

+ 2γvG

(
B

Bϕ + B0
x+Bz

x

2

,
γvB

Bγv

)
+ 2γsf G

(
B

Bϕ + Bx
0 +Bx

z

2

,
γsf B

Bγsf

)]
, (24)
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where Bγv,sf
≡ �

4eDτγv,sf

, and

G (z1,z2) ≡
∑
±

[
±ψ

(
1

2
+ 1

z1
± 1

z2

)
∓ ln

(
1

z1
± 1

z2

)]
.

We analyze the quantum transport behavior in TMDCs
deduced from these formulas in two extreme situations
depending on their crystalline quality: (i) material where
scattering is dominated by lattice defects and (ii) defect-free
TMDC.

1. Lattice-disordered TMDCs

We take into account only such disorder that leads to finite
scattering rates τ−1

0,v,sf for electrons at the edge of conduction
band, leading to

γv,sf = 1√
1 − λ2τ 2

v,sf

�2

.

In this case, MR has a distinct WAL form, extrapolated from
the WAL behavior in the regime B:

�ρ(B)

ρ2
= e2

πh
F

(
B

Bϕ

)

− e2

96πh

[
15B2

(Bv + Bsf )2
+ B2

B2
v

+ B2

B2
sf

+
∑

α=v,sf

32Bα(Bλ + Bv + Bsf )B2[
B̃2

λ + (Bλ + Bsf + Bv)2 − B2
α

]2
⎤
⎦ , (25)

where we have expanded F (z) and G(z) to the lowest order in
z and Bα = �/(4eταD), B̃λ = λ/(4eD).

2. TMDCs free of atomic defects

In a defect-free 2D crystal with scattering produced by
remote charges in the substrate or smooth lattice deformations,
electrons diffuse conserving their valley state (τv,is → ∞).
Then, spin-diffusion lengths

L(c)
s ∼ �pF

λm∗
× max

[
L√

2〈h2〉
,

√
2πκ

KBT

]
∝ √

ne (26)

are assumed to be limited by either the characteristic height√
〈h2〉 of static wrinkles of lateral size L, or temperature in the

case of flexural vibration modes, where κ is bending stiffness
of the 2D crystal [43,54].

As to the quantum transport, spurious time-inversion
asymmetry for the intravalley electron propagation caused
by SO coupling, Berry phase, and pseudomagnetic field due
to the deformations suppress the interference correction to
conductivity. As a result, MR in such high-quality 2D material

would have a form of a suppressed WL effect

�ρ(B)

ρ2
= −2e2

πh

⎧⎨
⎩2F

(
B

Bϕ + Bsf

)
+ 1√

1 − λ2τ 2
sf

�2

× G

⎛
⎝ B

Bϕ + Bλ + Bsf

,
B

Bsf

√
1 − λ2τ 2

sf

�2

⎞
⎠
⎫⎬
⎭ .

(27)

IV. DISCUSSION

For n-doped TMDCs (regime C), it is interesting to discuss
the extreme of samples free of atomic defects, where the
expression for the MR adopts its easiest form (27). We
see that the suppression of WL is governed by the ratio
between the spin-relaxation rate τ−1

sf and the characteristic
precession frequency defined by the SO splitting ωλ. Taking
MoS2 as a reference, we have τsf ∼ 1 ns [43,54], which
is compatible with optical experiments [55], whereas the
precession frequencies are of the order of THzs, leading
to τsf ωλ ∼ 103. Thus, WL behavior is expected, eventually
suppressed by warping or Berry phase effects. Hence, if
an experiment on n-doped MoS2 displayed WAL behavior,
this would immediately point at the presence of short-range
disorder (such as vacancies in the chalcogen atoms layer, which
break the z → −z symmetry of the system) which scatters
between valleys simultaneously flipping spins.

For p-doped TMDCs, spin relaxation has a rate linear in
the carrier density for εF (nh) < λ, which leads to a density-
independent spin-diffusion length, and that their MR displays
a crossover from WL to WAL behavior upon the increase in
the concentration of holes. At the threshold density nc of the
population of minority-spin states in each valley εF (nc) = λ,
resistivity and spin relaxation rate of holes undergo a steplike
increase, whereas the quantum correction to conductivity
remains of a WAL type.

To complete this discussion, we also consider a generally
ignored but possible occurrence of the �-point band edge in
some TMDCs. To the lowest orders in momentum, the k · p
Hamiltonian, including SO terms, reads as

H = |p|2
2m∗ + α

(
p3

x − 3pxp
2
y

)
sz. (28)

The SO parameter can be roughly estimated as α ≈
λ/(�3|K±|3) = (

√
3a

4π�
)3λ. For a finite concentration of holes

around �, n� , we have

αp3
F

�/τ
∼ �a3n2

c

(
n�

nc

) 3
2

 1.

Hence, the spin splitting of electron states near the � point
plays no role, whereas z → −z symmetry-breaking flexural
deformations and substrate-induced asymmetry would lead
to the typical Bychkov-Rashba SO effects [56], Dyakonov-
Perel [57,58] spin relaxation, and WL-WAL crossover, as
in GaAs/AlGaAs heterostructures [51,59,60]. This should be
contrasted with suppressed WL behavior in high-quality, low-
to-medium p-doped samples characteristic for K± points band
edges. With the references to Eqs. (11) and (12), we suggest
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that if fitting of experimentally measured magnetoresistance
returned τ∗ such that τ  τ∗  τϕ , this would give a distinct
quantitative proof for the multivalley nature of the valence
band edge.
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APPENDIX A: k · p THEORY FOR ELECTRONS
AND HOLES IN TMDCS

In this Appendix, we deduce the band Hamiltonian of
Eq. (1a) from a k · p theory describing lowest conduction and
valence bands [22,25]. These are dominated by d orbitals from
the M atoms d3z2−r2 and (dx2−y2 ± idxy), respectively. Instead
of dealing with degenerate states at K± points one can triple
the unit cell in such a way that the old K± points are now
equivalent to the � point of the folded Brillouin zone. From
the point of view of the lattice symmetries, this means that
the two elementary translations (ta1 , ta2 ) are factorized out of
the translation group and added to the point group D3h, which
becomes D′′

3h = D3h + ta1 × D3h + ta2 × D3h. The character
table of this group is shown in Table V. D′′

3h contains 24 new
elements and 6 additional conjugacy classes, which leads to 6
new two-dimensional irreducible representations (denoted by
E′

1,2,3 and E′′
1,2,3), the valley off-diagonal representations.

The symmetry properties of Bloch wave functions at the
Brillouin zone corners are summarized in Table VI, which
gives the suitable combination of atomic orbitals and the
associated irreducible representation of D′′

3h. In the case of
X atoms, both bonding (b) and antibonding (ab) combinations
of orbitals from the bottom and top layers are considered.
The second and third columns contain the phases picked up
by the wave function at each valley when a 2π/3 rotation
or a mirror reflection is performed. We consider the space of
4-vectors ∼(E′

2,E
′
1) whose entries represent the projection of

the Bloch wave function at conduction and valence states at
the Brillouin zone corners. In order to construct the effective
k · p Hamiltonian acting on this subspace, we must consider
the possible 16 Hermitian operators, whose reduction in terms
of irreducible representations of D′′

3h is inferred from(
E′

2,E
′
1

)× (E′
2,E

′
1

) ∼ 2A′
1 + 2A′

2 + 2E′ + E′
1 + E′

2 + 2E′
3.

This space of electronic operators can be constructed from
two commutating Pauli algebras �i , �i . The definitions are
summarized in Table VII. The basis is (ψc+,ψv+,ψv−,−ψc−),
where ψc,v± represents the wave function of the conduction
or valence state at K± points, in such a way that time-reversal
operation (including spin) reads as isy�y�yK. The operators
�i , �i and all their combinations are 4 × 4 matrices, which in
this basis can be written as

�x,y,z = τ0 ⊗ σx,y,z,

�x,y,z = τx,y,z ⊗ σ0,

0.10 0.05 0.00 0.05 0.10
0.10

0.05

0.00

0.05

0.10

px 2Π a

p y
2Π
a

0.10 0.05 0.00 0.05 0.10
0.10

0.05

0.00

0.05

0.10

px 2Π a

p y
2Π
a

FIG. 5. (Color online) Isoenergy contours around K± points de-
duced from Eq. (A1) for conduction (left) and valence (right) bands.
We take γ = 3.82 eV A, α = 1.72 eV A2, β = −0.13 eV A2, and
κ = −1.02 eV A2 [25]. The spin-orbit splitting is neglected.

where τi and σi are Pauli matrices that act in valley and
conduction/valence subspaces.

The Hamiltonian up to second order in p reads as [61]

H = γ p · � + �

2
�z�z + α + β

2
I|p|2 + α − β

2
�z�z|p|2

+ κ
[(

p2
x − p2

y

)
�z�x − 2pxpy�z�y

]
, (A1)

which corresponds to the Hamiltonian in Eqs. (2a)–(2d) of
Ref. [25]. Microscopically, the linear term in p comes from
the strong hybridization between conduction and valence band
states away from K± points, both dominated by orbitals local-
ized in the metal transition-metal atoms. Such hybridization is
responsible for the nonzero Berry curvature of the bands [62]

�τ
c,v (p) ≈ ∓ 2τγ 2[� − (α − β)|p|2]

[(� + (α − β)2|p|2) + 4γ 2|p|2]3/2
. (A2)

The different orbital composition of conduction and valence
bands introduces certain electron-hole asymmetry, and it is
also responsible for the distinct strengths of the intrinsic spin-
orbit splitting of the bands. We also include trigonal warping
effects in the bands through the last term of the Hamiltonian.
The isoenergy contours around K± points deduced from this
model are shown in Fig. 5.

We project the Hamiltonian of Eq. (A1) onto a single band
by a Schrieffer-Wolf transformation [63]. The Hamiltonian can
be written in the block form as

H =
(
H(0)

c V

V † H(0)
v

)
. (A3)

We take the Green’s function G = (ε − H)−1, then evaluate
the block Gc,v associated to the conduction/valence band, and
use it in order to identify the effective Hamiltonian near the
band edge. If we define G(0)

c,v = (ε − H(0)
c,v)−1, then we can write

(
Gc Gcv

Gvc Gv

)
=
((

G(0)
c

)−1
V

V † (
G(0)

v

)−1

)−1

. (A4)

For the conduction band, we obtain Gc = [(G(0)
c )−1 −

V G(0)
v V †]−1, so ε − G−1

c = Hc + V G(0)
v V †. At the bottom of

the band (ε ≈ �
2 ), the effective Hamiltonian to the lowest order
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TABLE V. Character table of D′′
3h.

D′′
3h E 2T σh 2T σh 2C3 2T C3 2T C2

3 2S3 2T S3 2T S2
3 9T C ′

2 9T σv

A′
1 1 1 1 1 1 1 1 1 1 1 1 1

A′
2 1 1 1 1 1 1 1 1 1 1 −1 −1

A′′
1 1 1 −1 −1 1 1 1 −1 −1 −1 1 −1

A′′
2 1 1 −1 −1 1 1 1 −1 −1 −1 −1 1

E′ 2 2 2 2 −1 −1 −1 −1 −1 −1 0 0
E′′ 2 2 −2 −2 −1 −1 −1 1 1 1 0 0
E′

1 2 −1 2 −1 2 −1 −1 2 −1 −1 0 0
E′′

1 2 −1 −2 1 2 −1 −1 −2 1 1 0 0
E′

2 2 −1 2 −1 −1 2 −1 −1 2 −1 0 0
E′′

2 2 −1 −2 1 −1 2 −1 1 −2 1 0 0
E′

3 2 −1 2 −1 −1 −1 2 −1 −1 2 0 0
E′′

3 2 −1 −2 1 −1 −1 2 1 1 −2 0 0

in �−1 reads as

Hc ≈ H(0)
c +

V
(

0 0
0 1

)
V †

�
. (A5)

Similarly, for the valence band we have

Hv ≈ H(0)
v −

V †
(

1 0
0 0

)
V

�
. (A6)

By this procedure we obtain the Hamiltonian in Eq. (1a) with

m∗
c,v = 1

2
(
α,β ± γ 2

�

) ,
(A7)

μc,v = ±2γ κ

�
.

APPENDIX B: k · p THEORY FOR INTRAVALLEY
AND INTERVALLEY DISORDER

In this Appendix, we deduce the form of the disorder
potentials included in Eq. (1b). Within the two-bands k · p
theory, intravalley disorder enters as scalar, mass, and gauge
like potentials,

δH (r) = U (r) I + M (r) �z�z + �z� · A (r) . (B1)

TABLE VI. Classification of the Bloch wave functions at K±
according to the irreducible representations of D′′

3h. The sign ±
corresponds to combinations of orbitals at K± points, and w = ei 2π

3 .

Irreps C3 σh M atom X atoms

E′
1 1 1

1√
2
(dx2−y2 ± idxy),
1√
2
(px ∓ ipy)

1√
2
(px ± ipy) (b)

E′′
1 1 −1 1√

2
(dxz ∓ idyz) 1√

2
(px ± ipy) (ab)

E′
2 w±1 1 d3z2−r2 , s 1√

2
(px ∓ ipy) (b)

E′
3 w∓1 1

1√
2
(dx2−y2 ∓ idxy),
1√
2
(px ± ipy)

pz (ab), s (b)

E′′
2 w±1 −1 pz

1√
2
(px ∓ ipy) (ab)

E′′
3 w∓1 −1 1√

2
(dxz ± idyz) pz (b), s (ab)

When we project these terms onto a single band by the same
procedure as before we obtain

δHc,v = Uc,v (r) ± γ

�
{p,A (r)} τz, (B2)

with Uc,v (r) = U (r) ± M (r) + γ

�
[∇ × A (r)]z. This corre-

sponds to first and third terms of Eq. (1b) of the main text
with

u0 (r) = U (r) ± M (r) + γ

�
[∇ × A (r)]z ,

(B3)
ag (r) = ± γ

�
A (r) .

Intervalley disorder can be incorporated following the same
procedure. Within the two-bands model we have in general

V int (r) =
∑

n=x,y,z

∑
l=x,y

Vnl (r) �n�l. (B4)

We can write the spin-dependent disorder potentials in
the same fashion, distinguishing even and odd terms

TABLE VII. Definitions of the electronic operators in the two
bands effective model at K± points.

Irrep t → −t even t → −t odd

A′
1 I, �z�z, �zsz, �zsz

A′
2 �z, �z, sz

A′′
1 �xsx + �ysy

A′′
2 �xsy − �ysx

E′ (−�z�y

�z�x

)
,
(−sz�y

sz�x

) (�x

�y

)
E′′ (�zsx

�zsy

)
,
(�zsx

�zsy

)
,
(�xsy + �ysx

�xsx − �ysy

) (−sy

sx

)
E′

1

(�x�x + �y�y

�x�y − �y�x

)
E′′

1

(�xsy − �ysx

�xsx + �ysy

)
E′

2

( �y�y − �x�x

−�x�y − �y�x

)
E′′

2

(�xsy + �ysx

�ysy − �xsx

)
E′

3

(−�z�y

�z�x

)
,
(−sz�y

sz�x

) (�x

�y

)
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under the reflection symmetry z → −z defined by the layer of transition-metal atoms

V e(r) = sz

⎡
⎣ ∑

n=x,y,z

U e
n(r)�n +

∑
l=x,y,z

Ve
l (r)�l

⎤
⎦ ,

(B5)

V o(r) =
∑

j=x,y

sj

⎡
⎣ ∑

n=x,y,z

Uo
jn(r)�n +

∑
l=x,y,z

Vo
jl(r)�l

⎤
⎦ .

Even terms conserve z spin, whereas odd terms induce spin flip. After projecting these terms onto a single band, we obtain for
intervalley disorder potentials [Eq. (B4)]

V int
c,v(r) = Vc,v(r) · τ , with

V x
c,v(r) = Vyy ∓ Vxx − γ

�
(∂yVzx ± ∂xVzy), (B6)

V y
c,v(r) = −Vyx ∓ Vxy − γ

�
(∂yVzy ∓ ∂xVzx).

Similarly, for even and odd spin-dependent disorder potentials [Eqs. (B5)] we arrive at

V e
c,v(r) = (

Ve
z ± U e

z

)
τzsz + γ

�
sz

[± {p,U e
}+ [∇ × U e]zτz + (± {py,Ve

y

}− {px,Ve
x

})
τx − ({px,Ve

y

}± {py,Ve
x

})
τy

]
,

V o
c,v (r) =

∑
j=x,y

sj

{(
Vo

jz ± Uo
jz

)
τz + γ

�

[± {p,Uo
j

}+ [∇ × Uo
j

]
z
τz + (± {py,Vo

jy

}− {px,Vo
jx

})
τx (B7)

− ({px,Vo
jy

}± {py,Vo
jx

})
τy

]}
.

Equations (B6) and (B7) enable us to relate parameters in the phenomenological model for disorder in Eq. (1b) to their microscopic
counterparts as

uz (r) = Ve
z ± U e

z + γ

�
[∇ × U2]z, agz = γ

�
U e, ui

sf = Vo
iz ± Uo

iz + γ

�

[∇ × Uo
i

]
z
,

wα = γ

�
Uo

α, ui = Vc,v, wzx = γ

�

(−Ve
x , ± Ve

y

)
, (B8)

wzy = γ

�

(−Ve
y , ∓ Ve

x

)
, wαx = γ

�

(−Vo
αx, ± Vo

αy

)
, wαy = γ

�

(−Vo
αy, ∓ Vo

αx

)
.
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