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Spin transport in graphene nanostructures
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Graphene is an interesting material for spintronics, showing long spin relaxation lengths even at room
temperature. For future spintronic devices it is important to understand the behavior of the spins and the limitations
for spin transport in structures where the dimensions are smaller than the spin relaxation length. However, the
study of spin injection and transport in graphene nanostructures is highly unexplored. Here we study the spin
injection and relaxation in nanostructured graphene with dimensions smaller than the spin relaxation length. For
graphene nanoislands, where the edge length to area ratio is much higher than for standard devices, we show that
enhanced spin-flip processes at the edges do not seem to play a major role in the spin relaxation. On the other
hand, contact induced spin relaxation has a much more dramatic effect for these low dimensional structures. By
studying the nonlocal spin transport through a graphene quantum dot we observe that the obtained values for
spin relaxation are dominated by the connecting graphene islands and not by the quantum dot itself. Using a
simple model we argue that future nonlocal Hanle precession measurements can obtain a more significant value
for the spin relaxation time for the quantum dot by using high spin polarization contacts in combination with low
tunneling rates.
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I. INTRODUCTION

Experiments and applications in the field of spin
electronics, known as spintronics [1], often require that the
spins keep their information for a long time, travel a long
distance, or that the devices show a large spin dependent
signal. Graphene has attracted a lot of attention for spintronics
because of the long spin relaxation time (τs) [2–4] which,
in combination with its long mean free path (lmfp), leads to
the longest spin relaxation length at room temperature (λs)
[5,6]. The spin accumulation in a device can be defined as
[7] μs = (μ↑ − μ↓)/2, where μ↑ (↓) is the chemical potential
for spin up (down). The relatively high sheet resistance (Rsq)
of graphene flakes when compared to normal metals, and its
robustness to high current densities [8], makes graphene an
efficient system for the creation of large spin accumulation
[9,10] which results in large spin dependent signals.

A successful route for increasing the spin accumulation
in a device without the need of large current densities is by
miniaturizing the devices to scales where their width W and
length L are smaller than λs [11–14]. At these scales the spin
accumulation is confined in a small area and the spins do
not diffuse away as in the case of standard devices [15]. A
twofold increase in the local spin signal was demonstrated in
metallic devices where L > λs [14]. Since graphene has λs ≈
2 μm [7], the fabrication of devices with dimensions smaller
than λs is much easier than for metals, where λs is usually
smaller than 1 μm [16]. Therefore, the increase in spin signal
is expected to be even larger for graphene based nanodevices.
Moreover, it was already demonstrated that the spin signal can
be further increased due to quantum interference effects in
graphene devices where the phase coherence length is smaller
than the device dimensions [17], in a similar way to carbon
nanotube devices [18,19].
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However, it is possible that the edges of the graphene flake
have a limiting influence for the spin relaxation [7,20]. It is
known that edge states in graphene can be spin polarized
[21–23], which can enhance spin-flip processes at the edges
[20]. By lowering the dimensions of the graphene flake to
below λs , the edge length to area ratio increases and the spins
probe the edges of the structure more often than for a regular
size device. Therefore, the study of graphene spin valves with
small dimensions gives insights about the role of the edges on
the spin relaxation.

When the device dimensions are even smaller, in the order
of lmfp, quantum confinement of the electrons can be obtained
[24,25]. For electrons confined in three dimensions we have
the solid state analogous to an atom, a quantum dot (QD),
which shows discrete energy levels [26]. Spins in a QD are
heavily used for quantum information processing and quantum
computation using spin qubits [27]. Graphene quantum dots
are predicted to have spin relaxation times two orders of
magnitude longer than for pristine graphene flakes [28], which
makes graphene very appealing for quantum computation.
However, the study of spin relaxation in quantum dots is not
trivial, usually demanding fast and precise voltage sources
and/or the fabrication of two coupled quantum dots [27]. The
possibility of studying the spin transport properties of QDs
using nonlocal techniques is therefore an appealing alternative.

In order to obtain effective electric spin injection into
graphene we have to overcome the issue known as the
conductivity mismatch problem [29,30]. This issue arises
because the spin resistance of graphene Rλ is generally much
higher than the spin resistance of the ferromagnetic metals
used for spin injection RλF

. If the ratio RFM/Rλ is much
smaller than 1, the spins tend to return to the ferromagnetic
contacts and relax there. For a graphene flake much longer
than the spin relaxation length (L � λs), the spin resistances
for the graphene flake and a ferromagnet contacting it can
be defined as Rλ = Rsqλs/W and RλF

= ρFMλFM/A, where
W is the graphene channel width, and ρFM, λFM, and A

are, respectively the resistivity, spin relaxation length, and
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cross-sectional area of the ferromagnet. Generally the spin
relaxation length in graphene is much longer than for the
ferromagnet, and graphene’s resistivity is usually much higher
than the resistivity of ferromagnetic metals, leading to a ratio
RFM/Rλ � 1, and resulting in a poor spin injection. This
problem can be circumvented by the use of highly resistive
barriers, where the term RFM is then substituted by the contact
interface resistance Rc. The problem of conductivity mismatch
in the context of graphene spintronics has received much
attention in the past several years [7,31–33]. Estimations of
the influence of the contacts in the measured spin relaxation
in graphene show that most of the measurements performed in
a nonlocal four-probe geometry are not limited by contact
induced spin relaxation [31,32]. On the other hand, local
two-probe measurements where the contact resistance is orders
of magnitude higher than for conventional devices estimate a
much higher spin relaxation time in epitaxial graphene on SiC
[33]. However, the influence of localized states in the SiC
substrate [34] and the fact that spin signals were only reported
at 4.2 K hinders the comparison with other experiments.

Here we report spin injection and transport in graphene
nanostructures with dimensions smaller than λs . By Hanle
precession measurements we obtain the spin relaxation time in
these devices τs ≈ 30 ps. Using a model that takes into account
the size of the devices, we show that for graphene nanoislands
where L,W < λs the nonlocal spin signal can be increased
by a factor of ≈100 when compared to standard devices,
where L � λs . Our simulations show that contact induced spin
relaxation effects have a larger influence on measurements in
confined devices than in devices where the length is longer than
λs . Comparing our simulations with the experiments we find
that the experimentally obtained values for τs are limited by
contact induced spin relaxation. An estimation of the intrinsic
values for the spin relaxation times in our graphene nanoislands
results in τs ≈ 200 ps, indicating that the enhancement of
spin-flip processes at the edges is not the main mechanism
for spin relaxation in graphene on SiO2.

Furthermore, we study the spin transport through an open
graphene quantum dot, which consists of a graphene quantum
dot connected by two graphene nanoislands from each side.
We show that the measured spin relaxation is dominated by the
graphene areas that connect the quantum dot in the case where
the tunneling rate to the dot is high. The transition between the
spin relaxation happening mostly in the quantum dot to spin
relaxation happening mostly in the outside areas is explored
as a function of the tunneling rate to the dot using a simple
model.

II. METHODS

Our samples are prepared using mechanically exfoliated
graphene on 500 nm SiO2/si substrates. Single layer graphene
flakes were selected using optical contrast and confirmed by
atomic force microscopy (AFM). In order to increase the
precision for the next fabrication steps we use electron beam
lithography (EBL) to define alignment markers close to the
selected flake. In the same EBL step we pattern bonding
pads and large contact wires and finally evaporate Ti/Au
(5/35 nm) by the use of an electron beam induced evaporator.
To pattern our graphene flakes into the structures used here

we perform another EBL step to define an etching mask using
high molecular weight (950 K) polymethyl methacrylate, and
use a pure oxygen plasma to etch the graphene flakes. After the
etching procedure the structures are once again analyzed by the
use of AFM to select the structures with cleaner surfaces and
ensure a homogeneous contact interface for the electrodes.
The electrodes are patterned by another EBL step followed
by metal evaporation. To avoid the conductivity mismatch
problem we first fabricate a TiO2 layer by evaporating 0.4 nm
of Ti followed by oxidation in a pure oxygen atmosphere at
pressures above 10−1 Torr. This step is repeated once more
and, after the evaporation chamber is pumped to high vacuum,
35 nm of Co are evaporated. All the electrical measurements
here are performed using standard low-frequency (f < 20 Hz)
lock-in techniques with bias current between 10 nA and 2 μA.

III. GRAPHENE NANOISLANDS

A. Experiment

We start discussing the experimental results for graphene
nanoislands in which L,W < λs . We studied a total of three
devices of this type: two of the devices with dimensions 1 ×
0.5 μm2 and one with 1 × 0.25 μm2. All contact resistances
for these three devices are between Rc = 10 and 36 k�. While
for some devices the contact resistances are in the order of tens
of k�, for others they can reach above M�. We attribute this to
undesired contamination resulting from the etching procedure,
as observed before [7]. Unless specified otherwise, all the
results reported here were obtained at room temperature.

It is important to note that the edges of etched flakes
are usually irregular at the atomic scale, not following a
specific crystallographic orientation, due to the rough etching
procedure. However, even though the rough edges do not have
all the characteristics of a crystallographic edge, they can
show localization and enhanced scattering, which can enhance
spin-flip processes [20].

Figure 1 shows a phase contrast AFM image of one of
the devices before contact deposition with the contact pattern
outlined by lighter semitransparent blocks. In order to perform
the spin dependent measurements with minimum contribution
of the charge dependent signal we use the nonlocal technique
[7], Fig. 1(a). When a current I is driven between two
ferromagnetic electrodes, a spin accumulation is generated
underneath the injection electrodes which diffuses away from
the injection point. The voltage Vnl is probed outside the charge
current path, which minimizes the charge contribution to the
signal and, since the voltage probes are also ferromagnetic, the
chemical potential for a specific spin species is preferentially
detected.

For devices like the ones shown here, the spins can
probe the whole flake before relaxing, which causes the spin
accumulation in the device to be, in principle, homogeneous
[11,15]. The presence of a spin accumulation can be tested
by a nonlocal spin valve measurement where a large negative
parallel magnetic field B‖ is applied to the device followed
by a sweep in B‖ while recording the nonlocal resistance,
Rnl = Vnl/I . Since the electrodes have different widths, their
coercive fields vary, which causes their magnetization to switch
direction at different values of magnetic field. The switches in
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FIG. 1. (Color online) (a) Phase contrast atomic force micro-
graph of a typical graphene nanoisland device. The graphene is
outlined by the dashed line and the contacts are represented by
the lighter semitransparent blocks. The measurement scheme for
nonlocal spin transport is shown below. (b) Nonlocal spin signal
as a function of a perpendicular magnetic field. The line in red is a fit
using Eq. (2) to extract the values for Ds and τs . Left inset: Nonlocal
spin signal as a function of a parallel magnetic field. The arrows
indicate the direction of the magnetic field sweep. Right inset: Hanle
precession for RA(B) in black (gray).

magnetization of the electrodes can be seen as abrupt steps in
the nonlocal resistance [left inset of Fig. 1(b)].

In order to extract the spin relaxation time in our devices
we perform Hanle precession measurements where a perpen-
dicular magnetic field B⊥ is applied to the device causing the
injected spins to precess around the field. This results in a
decrease of the spin signal due to incoherent spin precession
and spin relaxation. The resultant signal can then be fitted by
the solution to the Bloch equations for spin diffusion:

Ds

d2 	μs

dx2
− 	μs

τs

+ ω × 	μs = 0, (1)

where Ds is the spin diffusion constant, ω = gμB
	B/� with g

the Landé g factor, μB the Bohr magneton, and 	B = B⊥ẑ the
magnetic field. The spin relaxation length can be calculated
using the relation λs = √

Dsτs .
Considering noninvasive contacts and a one-dimensional

(1D) infinite channel, the solution for Eq. (1) for the spin
signal as a function of B for one spin injector and one spin

detector is [35]

Rs = P 2RsqDs

W

∫ ∞

0
P(t)cos(ωt)exp(−t/τs)dt, (2)

where P(t) = (4πDst)−1/2exp(−�2/4Dst), � is the contact
spacing, and we assumed that the spin polarization P of the
spin injector and detector electrodes are equal.

Fitting the experimental data with Eq. (2) allows us to obtain
τs and Ds independently. For the zero-dimensional (0D) case,
considering uniform spin accumulation, the spin signal has a
Lorentzian form [11]:

Rs = P 2

e2νDOSA

(
τs

1 + (ωτs)2

)
, (3)

where e is the electron charge, νDOS is the density of states,
and A the area of the island.

In order to avoid contribution from background signals
to our analysis [31], we calculate the spin dependent signal
as Rs = (RA − RB)/2, where RA(B) are the values obtained
for Hanle precession measurements at the magnetization
configuration of the electrodes specified as A (B) [36]. For the
case of the measurement shown in Fig. 1(b), we have that A

is the configuration where all electrodes are aligned parallel to
each other and in configuration B the inner injector is aligned
antiparallel to the other three electrodes.

By fitting the results for all three studied graphene nanois-
land devices, we obtain that τs falls in the range 10–30 ps
with little variation between fitting the data with Eq. (2) or
with Eq. (3). The values of τs obtained by the use of Eq. (3)
are systematically lower by a factor ≈2. This difference is in
agreement with previously reported results [15] showing that
Eq. (2), which disregards reflection of the spin accumulation
at the edges, results in an overestimation of τs by a factor ≈2
for very small systems. Ds obtained by the use of Eq. (2) in
our devices varies from 0.01 to 0.001 m2/s. The fact that we
obtain values for Ds which are comparable to the standard
values obtained on devices where L � λs , Ds ≈ 0.02 m2/s,
is an indication that the spin accumulation in our devices is
not truly 0D [15]. As will be clarified below by the use of a
model that includes the effects of the electrodes on the spin
relaxation, since the contact resistance for our devices is small,
the contacts reduce the spin accumulation underneath them due
to contact induced spin relaxation. This results in a gradient on
μs throughout the nanoisland. From now on, when the values
for τs and Ds are discussed we will use the values obtained
using Eq. (2), unless specified otherwise.

The obtained τs for our devices is one order of magnitude
lower than for regular SiO2 based graphene devices where
τs ≈ 200 ps [7] and about two orders of magnitude below
the best graphene spintronics devices where τs ≈ 1 ns [3,5,6].
Although this difference could be explained by enhanced spin-
flip processes at the edges, we will show below that the most
probable cause is a demeaning influence of the contacts on the
spin transport. Since the spins are confined to the graphene
island and the contacts cover more than half the area of the
device, the influence of the contacts in the spin relaxation is
expected to be much larger than for regular devices where the
area covered by the contacts is less than 10% the total device
area. It is important to note that the spin signal obtained in our
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graphene nanoislands is considerably smaller than the values
predicted in the Introduction. As we will demonstrate in the
next section, this also results from the low contact resistance
in our devices. To understand and explain the physics behind
our experiments we model our system as explained below.

B. Simulations

We use the well established diffusive model to describe the
motion and relaxation of spins in our system including contact
induced spin relaxation effects [7,31]. The system has a width
W and length L with four contacts spaced by � = L/3, two
injection contacts, i1 and i2, and two detection contacts, d1
and d2 [inset of Fig. 2(b)]. For the simulations we fix the values
for the spin relaxation time τs = 200 ps and the spin diffusion
constant Ds = 0.02 m2/s for the system. This results in a spin
relaxation length of λs = 2 μm. We solve Eq. (1) with the
boundary conditions that the spin accumulation is continuous
everywhere and that the spin current is continuous inside the
system except at the injection points. Here we include a source
term PiI/W , where Pi is the spin injection efficiency. The spin
current is set to be zero at the boundaries x = 0 and x = L.
The contact induced spin relaxation is included in the same
way as in Refs. [7,31]. It is important to point out that this
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FIG. 2. (Color online) Nonlocal resistance normalized by the
maximum value obtained in an infinite (unbound) system as a function
of the ratio R/λs for systems of length (a) L = λs/10 and (b)
L = λs/2. The values considering one spin injector and one spin
detector aligned in parallel are shown by the solid black lines. The
case of two spin injectors and two spin detectors in parallel and
antiparallel alignment are represented by the dashed blue and solid
red lines, respectively. For comparison, the case of an unbound system
with one spin injector and one detector is represented by the dashed
black line. The schematics of the system showing the dimensions and
the four contacts is shown in the inset of (b).

model is valid for contacts with low spin polarization, as in the
case of our experiments, where P ≈ 0.1.

In order to quantify the influence of the contact resistance
in the spin transport we compare the parameter R = RcW/Rsq

with the spin relaxation length [7,31]. For R/λs � 1 the spins
tend to go back to the contacts and relax due to the shorter
spin lifetime in the ferromagnetic metal. In the case R/λs �
1 the contacts are noninvasive and do not disturb the spin
accumulation underneath. We start by comparing the nonlocal
resistance as a function of the ratio R/λs for a system with total
length L = λs/10 with an unbound system (infinite length),
Fig. 2(a).

The spin polarization of the contacts is taken to be +0.1
(represented by ↑), −0.1 (represented by ↓), or 0 (no spin
polarization). To summarize the polarization of the four
contacts involved we use P = (Pi1,Pi2,Pd1,Pd2). We will
consider three different cases: one spin injector and one spin
detector [P = (0,↑,↓,0)] in an unbound system, one spin
injector and one spin detector in a finite device of length L,
and two spin injectors and two spin detectors [P = (↑,↑,↑,↑)
and P = (↓,↑,↑,↓)] in a finite device with length L. The
first case is shown as a dashed black line in Fig. 2. We see
that our curve agrees with previously reported results [7,31],
with the nonlocal signal reaching approximately 90% of the
maximum signal at R/λs ≈ 10. For the second case, the bound
system with one spin injector and one detector (solid black
line), we observe that the maximum nonlocal signal is about
one order of magnitude higher than for the unbound system.
This increase in the spin accumulation is due to reflection of
the spins at the boundaries and also agrees with previously
reported results [15]. The point where the nonlocal signal is
90% of the maximum signal is at R/λs ≈ 200, more than one
order of magnitude higher than the one for the infinite system.
This can be understood by the fact that since the backflow of
spins into the ferromagnet (across the tunnel barrier) is driven
by the spin accumulation underneath, an increase in μs due to
the confinement results in an increase in the backflow of spins.
This picture can be alternatively viewed as an increase of the
effective spin resistance in graphene due to confinement.

When two spin injectors and two detectors are considered,
we observe that when the contacts are all in a parallel alignment
[P = (↑,↑,↑,↑), dashed blue line] the nonlocal signal is very
small, orders of magnitude lower when compared with the
previous case. This is due to two factors. First, the contacts are
separated by less than λs . While one of the injector contacts
injects spin up, the other extracts spin up at the same rate
given their equal polarization. Furthermore, both detection
contacts probe approximately the same value of chemical
potential. Second, the spin accumulation is approximately
constant throughout the system due to the 0D behavior of
μs [11], which enhances the effects described above for the
injection and detection circuits. It is important to note that these
effects are reduced when the length of the device and spacing
between contacts is increased, as can be seen when comparing
Fig. 2(a), which has L = λs/10 and (b) with L = λs/2.

The highest spin signal in the case of two spin injectors and
two detectors is obtained when both injector and detector pairs
have an antiparallel alignment [P = (↓,↑,↑,↓), solid red line].
In this case, while one injector injects spin up, the other extracts
spin down, which increases the total spin accumulation in the
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device by a factor ≈2 when compared to the case of only one
spin injector. Moreover, one of the detectors is sensitive mostly
to the chemical potential for spin up, while the other detector
senses spin down; this gives another factor of ≈2, resulting in
a total increase of ≈4 to the spin signal when comparing to
the case of one spin injector and one spin detector.

Since the spin accumulation in the case of four contacts with
nonzero spin polarization is higher than when considering just
two contacts, the saturation of the signal (90% of the maximum
signal) only occurs at R/λs ≈ 400, twice the value found for
the case of one injector in a closed system and about 40 times
higher than for an unbound system. This indicates that a high
quality resistive interface is very important when studying the
spin transport in confined geometries. This fact was shown
by Laczkowski et al. [14] with results obtained by a transfer
matrix technique.

In order to compare the results of the simulations to our
devices, we use the dimensions of our samples L = 1 μm
and W = 0.5 μm, and assume a standard value for the spin
relaxation in graphene λs ≈ 2 μm, resulting in 2L = λs ,
Fig. 2(b). The effects of confinement in this case are less
pronounced than for those shown in Fig. 2(a). The increase of
the spin signal due to confinement, even when considering the
contribution of all four contacts is only about a factor of 10.
This results in a smaller, but still noticeable influence of the
contact resistance on the spin relaxation, showing saturation
(90%) of Rnl for values above R/λs ≈ 100 when considering
four contacts with nonzero spin polarization.

However, we are not only interested in explaining changes
in magnitude of the signal but also in understanding how the
Hanle precession measurements are affected by the presence of
the contacts. Therefore, we simulate Hanle precession curves
using the same model described above for known values of
τs . For comparison we also generate the data for the unbound
system as studied by Maassen et al. [31]. As in the experiments,
the Hanle precession curves can be fitted by Eq. (2) or by
Eq. (3) to obtain a value for the spin relaxation time, τfit. In
order to compare the values extracted by the fitting procedures
and the values used in the simulation for the spin relaxation
time, we take the ratio τfit/τs . The Hanle curves simulated for
the unbound (infinite) system are fitted using only Eq. (2), and
the ones generated for the confined system are fitted with both
models, Eqs. (2) and (3), for comparison (Fig. 3).

All systems follow a similar trend of τfit as a function of
the ratio R/λs : τfit increases with increasing R/λs and after
a certain value for this ratio τfit saturates. We find that, as
the experimental results shown in the previous section, the
values for τfit obtained by Eq. (2) are about a factor of 2 higher
than the values obtained when we fit the Hanle precession
curves with a Lorentzian [Eq. (3)]. By comparing Figs. 3(a)
and 3(b) we can see how confinement affects the extraction of
the spin relaxation time as a function of the contact resistance.
For systems where L � λs [Fig. 3(a)], the value for the
spin relaxation time extracted by fitting the Hanle precession
curves only saturates around R/λs ≈ 100. When L = λs/2
[Fig. 3(b)], the saturation of the extracted spin relaxation time
happens around R/λs ≈ 10. It is important to notice that in
both cases, L = λs/10 and L = λs/2, the saturation of τfit/τs

occurs for values larger than those for the unbound case (black
solid line). As in the case of the nonlocal signal (Fig. 2), this
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FIG. 3. The ratio τfit/τs as a function of R/λs for finite systems
(bound systems) of length (a) L = λs/10 and (b) L = λs/2. The
results obtained by fitting the simulated Hanle precession curves
using Eq. (2) are represented by the black circles and the results
obtained by fitting using Eq. (3) are shown by the gray circles. The
solid black line shows the results for the infinite (unbound) system
using Eq. (2).

is due to the enhanced backflow of spins due to the higher μs

for confined systems.
In order to give an estimation of the actual spin relaxation

time in our experiments shown in the previous section, we use
the experimental values L = 1 μm, W ≈ 0.5 μm, and Rc =
10–36 k�. With Rsq ≈ 1 k�, we have that R ≈ 5–18 μm.
Using a standard value for the spin relaxation length of
SiO2 based graphene devices, λs ≈ 2 μm, we have that
R/λs ≈ 2.5–9. In Fig. 3(b) we can see that such a range for
R/λs results in τfit ≈ 0.1τs . This means that, for a standard
value for graphene of τs ≈ 200 ps, the spin relaxation time
obtained from fitting the Hanle precession curves is τfit ≈
20 ps, precisely in the range encountered in our experiments.
Therefore we can conclude that our experimental results are
still dominated by contact induced spin relaxation and further
improvement of the contact interface is necessary to unveil the
full potential of confinement in the spin signal in graphene
nanodevices.

As an extra confirmation of this last result we simulate our
system using the experimental values and, instead of varying
the ratio R/λs we change the value for τs . We observe that
τfit increases monotonically and saturates at τfit ≈20 ps for
values of τs above 100 ps. Therefore we can conclude that the
values for τs for the graphene nanoislands in our experiments
is considerably larger than τs = 20 ps. Although we cannot
rule out completely the effect of edge scattering on the spin
relaxation in our devices, we can state that if edge scattering
does have an effect on the spin relaxation, it is not the dominant
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mechanism for SiO2 based graphene devices since we do
not observe any decrease on τs for our nanoislands with an
increased edge length to area ratio.

IV. GRAPHENE QUANTUM DOTS

A. Experiment

As mentioned in the Introduction, the experimental deter-
mination of the spin relaxation time in QDs is a difficult task
often requiring very complicated techniques. An easier method
to extract τs in QDs would be by the use of Hanle precession
techniques. However, QDs are often measured in a two-probe
configuration with nonspin polarized contacts, which makes it
especially difficult to detect spin precession signals.

Here we investigate the spin relaxation time in graphene
QDs using a nonlocal technique that separates the charge and
spin contribution. We study the spin transport through the
device in the presence of a perpendicular magnetic field in
order to obtain information on the spin dynamics, e.g., the
spin relaxation time. A phase contrast AFM image of one
of our devices is shown in Fig. 4(a). The graphene structure
consists of two graphene islands with dimensions 1 × 1 μm2
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FIG. 4. (Color online) (a) Phase contrast atomic force micro-
graph of a graphene quantum dot device. The graphene is outlined
by the solid line and the contacts are represented by the lighter
semitransparent blocks. The electrodes are numbered 1–6. (b) Four-
terminal resistance as a function of Vbg with Vpg = Vsg = 0 V for
293 K (red) and 4.2 K (blue). For this measurement a current was
driven between electrodes 1 and 5, and the voltage detected between
electrodes 3 and 4.

connected by a QD defined as two narrow (≈80 × 100 nm2)
constrictions with a broader region (≈150 nm) in the center.
Two additional graphene structures disconnected from the rest
serve as side-gate (sg) and plunger-gate (pg) electrodes to
locally tune the chemical potential in the constrictions and
QD, respectively.

In order to characterize the charge properties of the device
we perform a four-terminal measurement where the current is
driven between two outer electrodes (1 and 5) and the voltage
detected between the electrodes close to the QD (3 and 4).
Figure 4(b) shows the four-terminal resistance of the quantum
dot at room temperature and 4.2 K as a function of Vbg for the
plunger-gate and side-gate voltages set to Vpg = Vsg = 0 V.
Although we could not reach the Coulomb blockade regime,
the low temperature resistance curve shows peaks and dips
which are indications of confinement in the structure [26].

The spin transport experiments were carried out using
the nonlocal geometry where the current is driven between
electrodes 3 and 1 and the voltage is detected outside
the current path, between electrodes 4 and 5 [Fig. 4(a)].
The contact resistances for this sample are in the range
100–700 k�, considerably larger than the previous ones. Using
a standard value for the spin relaxation length on SiO2 based
devices of λs = 2 μm and the values for the square resistance
of the graphene islands connecting the dot Rsq ≈ 2 k� [37], we
have R/λs ≈ 100–700. As discussed in the previous section,
for these values of R/λs contact induced spin relaxation effects
do not play a major role in the measurements. In this case, Rnl

and τfit are above 90% of the intrinsic values even for confined
geometries. Since the contacts do not induce extra relaxation,
we expect the spin accumulation in the graphene islands to be
constant.

To check if we can get spin transport through the QD
we performed spin valve measurements. The measurements
shown here were performed at 4.2 K. In Fig. 5(a) we show that
three nonlocal resistance steps, corresponding to the switch
of magnetization of three contacts, are visible. Since contacts
2 and 6 were electrically disconnected from the device, we
cannot specify exactly the magnetic configuration of the
electrodes for each step. We have to point out that we only
observe a nonlocal spin signal with clear switches when we
set Vbg to large negative values. When Vbg > 15 V, within
the high resistance region of Fig. 4, the nonlocal spin signal
reduces significantly and the switches get indistinguishable
from our measurement noise.

In order to obtain a value for the spin relaxation time in our
devices we performed Hanle precession experiments for two
different alignments of magnetization of the contacts [levels
A and B in Fig. 5(a)] and obtain the curves RA

nl and RB
nl [inset

of Fig. 5(b)]. To eliminate background contributions we take
the total spin signal as Rs = (RB

nl − RA
nl)/2. Rs is then fitted

using Eq. (2). Within the range of Vbg = −30 to −20 V we
do not see a significant difference in the values obtained, with
τs ≈ 150 ps and Ds ≈ 0.003 m2/s. As in the case of the spin
valve measurements, we could only obtain a Hanle precession
signal above the background noise in our device for large
negative values of Vbg.

The value obtained for the spin diffusion coefficient of Ds ≈
0.003 m2/s indicates the low diffusivity of the QD. The value
for τs ≈ 150 ps is within the range for the values expected for
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FIG. 5. (Color online) (a) Nonlocal spin valve measurement in a
graphene quantum dot with Vbg = −20 V and Vpg = Vsg = 0 V at
4.2 K. (b) Nonlocal Hanle precession with the same gate voltages
as in (a). The fit using Eq. (2) is shown by the red line. Inset: Data
for the nonlocal resistance as a function of a perpendicular magnetic
field for the two levels A and B shown in (a).

a standard SiO2 based device τs ≈ 200 ps. This is no surprise
since, as explained in Ref. [38], in the case where two outer
regions are connected by a central region, the obtained spin
relaxation values by Hanle precession can be strongly affected
by the outer regions. This will be elaborated in the section
below.

B. Simulations

In order to quantify our results and give a prospect on
how to measure the spin relaxation in a QD using Hanle
precession measurements, we apply the model developed in
Ref. [38] to our systems. In this model we map our devices
in a system composed of two identical semi-infinite outer
regions connected by one inner region of length � [see inset
of Fig. 6(a)]. The square resistance, spin relaxation time, and
spin diffusion coefficient can be set for each region separately.
Here we set the diffusion coefficient and the spin relaxation
time for the outer regions as the average values for SiO2

based graphene spin valves, Do
s = 0.02 m2/s and τ o

s = 200 ps,
respectively. The spins are injected at the left boundary of the
QD and detected at the right boundary. We then simulate Hanle
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FIG. 6. (Color online) (a) τfit versus τQD
s for different values of τd .

The dotted line shows τfit = τQD
s . Inset: Schematics of the system used

for the simulations. Two semi-infinite regions with spin relaxation
time τ o

s are connected by a central region representing the QD with
spin relaxation time τQD

s . The diffusion time between spin injection
and detection τd is represented by the dotted line. (b) τfit versus τd for
different values of τQD

s . The corresponding tunneling rate 
 = 2/τd

is shown in the upper axis. The horizontal lines show the values used
for τQD

s .

precession curves by solving Eq. (1) with the appropriate
boundary conditions and the data is fitted in the same way
we do for our experiments, with Eq. (2). From this fitting
procedure we extract an effective spin relaxation time for the
whole system, τfit.

The square resistances for the outer regions were set to
Ro = 1 k� and for the QD RQD = 690 k�, and the widths are
taken to be the same, W = 100 nm, for simplicity. Here we
use a high value for RQD, which would be the case where the
QD is in the Coulomb blockade regime. However, other sets
of calculations with different combinations where Ro = 1 k�
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and RQD = 100 k�, and RQD = Ro show that our conclusions
do not depend strongly on the values for RQD and Ro, if RQD

is not several orders of magnitude higher than Ro. This fact
will be clarified below.

The amount of time the spins spend inside the quantum dot
is determined by the tunneling rate (
) of the tunnel barriers
between the dot and the graphene leads, created by the narrow
graphene ribbons in our experiment. In our model, we take
the two tunnel barriers and the quantum dot as being a single
system, and relate the dwell time of the spins in the dot with
the spin diffusion time through the barrier/QD/barrier system:
τd = 2/
. The factor of 2 arises from the fact that the spins
have to tunnel through two tunnel barriers before reaching the
detection circuit.

We start by studying the dependence of τfit as a function
of the spin relaxation time inside the QD (τQD

s ) for different
values of τd . As depicted in Fig. 6(a), when τd is small, the
obtained value for τfit is independent on τQD

s , and has a value
close to τ o

s . This results from the fact that the spins do not
spend sufficient time to experience spin relaxation inside the
QD, therefore the obtained value for τfit is mostly given by
the outside regions. When the spins spend a longer time inside
the dot (larger values of τd ), we observe that τfit ≈ τQD

s until
τQD
s ≈ τd . This can be understood by the fact that, when the

spins spend sufficient time inside the dot to relax, the value
obtained by fitting the Hanle precession curves represent the
spin relaxation inside the QD.

The dependence of τfit with τd can be understood by
realizing that we have a type of conductivity mismatch between
the QD and the graphene islands connecting it, similar to the
case of a graphene/ferromagnet interface. We can quantify
the mismatch between the QD and the outer regions by the
ratio of the spin resistances between both systems. The spin
resistance for the outer regions is given by Ro

λ = Roλo/W ,
where λo = √

Doτo is the spin relaxation length in the outer

regions. Using λQD
s =

√
τ

QD
s (2�2/τd ), the spin resistance for

the dot can be written as a function of the length between
the two tunnel barriers �, the diffusion time, and the spin

relaxation in the dot as R
QD
λ = (�RQD/W

√
2) ×

√
τ

QD
s /τd .

Therefore, the ratio between the spin resistances is Ro
λ/R

QD
λ =

(Ro/RQD)(λo/�)
√

2τd/τ
QD
s . In the case of small values of τd

and/or large values of τQD
s , the ratio Ro

λ/R
QD
λ is small and there

is a high mismatch between the regions. Therefore the obtained
spin relaxation time, τfit, is given by the outer regions. For the
case of long spin diffusion times, the mismatch is smaller
and the values obtained for the spin relaxation time are more
representative of the relaxation in the QD. This is a type of
impedance mismatch in which an important parameter is the
spins’ time of flight through the QD compared to their spin
relaxation inside the dot.

In order to understand what would be necessary to detect the
spin relaxation in graphene quantum dots with the theoretically
predicted τQD

s ≈ 10 μs [28], we study the behavior of τfit with
τd . Our analysis is summarized in Fig. 6(b). It can be seen that
the spin relaxation in the QD starts to have an influence on
the obtained τfit when τd ≈ τ o

s . For low values of τQD
s , soon

after τd ≈ τ o
s , τfit decreases sharply and saturates at τQD

s . For
long spin relaxation times in the QD when compared to the

outside regions, τfit increases slowly with the increase of τd

and saturates at τfit = τQD
s for τd > 10τQD

s .
Translating the diffusion time of the spins through our

structure to a tunneling rate in/out the QD, it can be seen
that, in order to measure the spin relaxation times predicted
for graphene QDs using Hanle precession, we require highly
decoupled QDs, with 
 < 105 s−1. Although these values
for the tunneling rate are very low, values of 
 ≈ 105 s−1

were experimentally demonstrated in graphene QDs [39].
The value of 
 can be easily tuned in graphene QDs by
a local Vsg [25]. Therefore, we expect that by studying the
values of spin relaxation time obtained using Hanle precession
measurements as a function of 
 would reveal the intrinsic spin
relaxation time in graphene QDs.

It is important to point out, however, that when the diffusion
time is very long the spin signal is very low. For our simulations
with τd > 5 ns the total amplitude of the simulated spin signal
was too small to be fitted. This happens due to two effects.
First, the spins have time to relax in the dot, which reduces
the total signal. And second, as explained above, the spin
resistance in the direction across the dot is much higher than
in the direction away from the dot. Consequently, the spins tend
to diffuse away in the opposite direction and very few spins
travel across the dot and are detected. Therefore, for the type of
studies presented here, it is necessary to increase the nonlocal
spin signal by, for example, increasing the spin polarization of
the contacts [10,32] and at the same time increase the time the
spins spend inside the QD by decreasing the tunneling rate.

In our experiments τd = �2/2Ds ≈ 75 ps, with � =
0.63 μm, and the obtained spin relaxation time is ≈ 150 ps.
When we compare this value with Fig. 6(b), we see that
the value for the spin relaxation extracted using Hanle
precession is invariant with respect to τQD

s . This means that
our measurements are dominated by the spin relaxation in the
outer regions. As stated above, in order to obtain a value closer
to the value for the spin relaxation time in the QD we have
to combine contacts with high spin polarization with a QD
weakly coupled to the graphene islands (outer regions).

V. CONCLUSIONS

In conclusion we showed spin accumulation and transport
in graphene nanostructures. We demonstrated the effect of
confinement in graphene nanoislands with dimensions smaller
than the spin relaxation length. By Hanle precession mea-
surements we could extract the spin relaxation time in these
systems. Using a theoretical model, we showed that for these
0D systems the effect of contact induced spin relaxation is
much higher than for the standard devices where spins can
diffuse away. When the contact resistance is sufficiently high
to not induce spin relaxation, the maximum value for the
nonlocal spin signals in confined systems is more than one
order of magnitude higher than for unbound systems, where
the total length is much longer than the spin relaxation length.
Comparing simulations and experiments we see that the low
experimentally obtained values for τs seem to be due to
contact induced spin relaxation. Furthermore, by using the
experimental values in our simulations, we see that τs in our
graphene nanoislands has to be considerably higher than 20 ps
in order to match the values obtained by our experiments.
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Therefore the spin relaxation in the graphene nanoislands do
not seem to be reduced by the higher edge length to area ratio
in our samples, which indicates a low influence of enhanced
spin-flip mechanisms at the graphene edges.

We also studied the nonlocal spin transport in a graphene
quantum dot connected by two graphene nanoislands. In
this case, the contact resistances were high enough in order
to reduce significantly the effect of contact induced spin
relaxation. A value for τs ≈ 150 ps was obtained by Hanle
precession measurements. By simulating our devices we
showed that this value for the spin relaxation time seems to
be due to spin relaxation in the outer graphene islands and
not by the quantum dot due to the short time the spins spend
inside the quantum dot. We explain this effect by estimating the
spin resistance mismatch between the outer graphene islands
and the graphene QD. Our simulations indicate that, in order to
obtain a more representative value for τs in quantum dots using
nonlocal Hanle precession measurements, one should increase
the time the spins spend inside the quantum dot, which can
be achieved by reducing the tunneling rate through the tunnel
barriers that connect the QD. However, the nonlocal spin signal

reduces significantly since the spins tend to diffuse away from
the QD and very few make it through and are detected on the
other side of the dot. Therefore, the use contacts with high spin
polarization in combination with a highly decoupled quantum
dot should allow for the extraction of the spin relaxation time
inside the QD using nonlocal Hanle precession measurements.
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[17] M. H. D. Guimarães, P. J. Zomer, I. J. Vera-Marun, and B. J.
van Wees, Nano Lett. 14, 2952 (2014).

[18] C. Feuillet-Palma, T. Delattre, P. Morfin, J.-M. Berroir, G. Fève,
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