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Time reversal symmetry broken fractional topological phases at zero magnetic field

Tobias Meng1 and Eran Sela2

1Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
2Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978, Israel
(Received 10 October 2014; revised manuscript received 27 November 2014; published 15 December 2014)

We extend the coupled-wire construction of quantum Hall phases, and search for fractional topological
insulating states in models of weakly coupled wires at zero external magnetic field. Focusing on systems beyond
double copies of fractional quantum Hall states at opposite fields, we find that spin-spin interactions can stabilize
a large family of fractional topological phases with broken time reversal invariance. The latter is manifested
by spontaneous spin polarization, by a finite Hall conductivity, or by both. This suggests the possibility that
fractional topological insulators may be unstable to spontaneous symmetry breaking.
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I. INTRODUCTION

Symmetry protected topological phases have sprung to
the forefront of condensed matter physics. The impetus for
such an explosion of interest began with the theoretical
prediction [1–4] and observation of two-dimensional topolog-
ical insulators [5] in HgTe/CdTe [6] and InAs/GaSb [7,8]
heterostructures. From there, the field has now spread to
encompass interaction induced topological phases, including,
in particular, fractional topological insulators [9].

Topological insulators can be understood as a time reversal
symmetric generalization of a quantum Hall state to a bilayer
system in which the two layers, physically corresponding to
spin-up and spin-down electrons, act as if they were subject
to opposite magnetic fields BSOẑsz. This kind of physics
can originate from spin-orbit coupling [1–4]. A topological
insulator has helical edge modes (two modes related by time
reversal symmetry), instead of the chiral edge mode of a
quantum Hall state (a single mode whose direction of motion
is dictated by the time reversal symmetry breaking magnetic
field).

In the presence of electron-electron interactions, fraction-
alized versions of topological insulating states have been pre-
dicted [9]. A simple way to generalize the above construction
is to imagine that the two spin species each form a fractional
quantum Hall (FQH) state. This situation can be realized in
a toy model similar to the one described above. The only
new element is a short-range two-body interaction between
electrons of the same spin, while electrons of different spin do
not interact at all. This toy model can then be mapped to two
decoupled FQH systems of the same filling factor, and subject
to opposite magnetic fields [9,10].

More exotic fractional topological insulating phases may
occur due to interactions between the two spin species. So far,
a number of time reversal symmetric phases arising due to
complex interspin interactions have been predicted [2,9,11–
13]. However, it should be kept in mind that, much like the
Stoner instability of a metal to a spin polarized state, which is
driven by exchange interactions, strong interactions between
the two spin species in a topological insulator may result in a
time reversal symmetry broken phase.

To address such phases, we study a model of weakly
coupled interacting spinful wires. Similar constructions based
on arrays of one-dimensional subsystems have proven a

powerful approach for the description of integer, fractional,
and more exotic quantum Hall states [14–21], for the analysis
of fractional topological insulators effectively consisting of
two decoupled quantum Hall layers [22,23], as well as for
an alternative general classification of topological states [24].
Experimentally, arrays of coupled quantum wires could,
for instance, be engineered in epitaxially grown multilayer
systems using the cleaved edge overgrowth method [25].
In addition, quantum Hall physics have been identified in
Bechgaard salts [14,15], which consist of effectively two-
dimensional arrays of coupled one-dimensional subsystems.

Different from the coupled wire construction of a fractional
quantum Hall state, there is no external magnetic field in the
main part of our analysis. Instead, we consider a model with
Rashba-type spin-orbit coupling which increases linearly from
wire to wire, mimicking the spin-dependent magnetic field
BSOẑsz. Without interactions between the two spin species,
this model trivially reproduces the pair of decoupled FQH
systems at opposite magnetic fields [9,10].

As a warmup for the construction of topological states with
strong interactions between the two spin species, however,
we first reconsider double layer quantum Hall states at finite
magnetic field Bẑ. These are described by generalizations of
Laughlin’s wave functions suggested by Halperin [26,27],
and intimately related to the Haldane-Halperin hierarchy
states [28,29]. The wave functions are characterized by
integers (m↑m↓n), with m↑ and m↓ odd, and read

�m↑m↓n(z1, . . . ,zN0↑ ,w1, . . . ,wN0↓ )

=
∏
i<j

(zi − zj )m↑
∏
p<q

(wp − wq)m↓
∏
r,s

(zr − ws)
n

× e− ∑
i (|zi |2+|wi |2)/4l2

b . (1)

Here, the magnetic length is lb = √
�/(eB), the two layers

are labeled by the (pseudo-)spin σ =↑ , ↓, and the complex
numbers zk = xk↑ + iyk↑ and wk = xk↓ + iyk↓ are defined by
the x and y coordinates of the electrons in the two layers. The
latter have fillings νσ discussed in Eq. (3) below, and contain
N0σ electrons. The factor

∏
(zr − ws)n = ∏

([xr↑ − xs↓] +
i[yr↑ − ys↓])n encodes the interlayer correlations. The wire
construction for these Halperin states is formulated in Sec. II,
reproducing all of their topological properties, including filling
factors, quasiparticle charges, and edge structure.
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We then move in Sec. III to the main problem of interest at
zero total magnetic field B = 0, but with spin-orbit coupling,
in which case the two layers, now corresponding to the two spin
species, have effectively opposite magnetic fields BSOsz �= 0.
Repeating the wire construction in this case leads to states that
show different properties than the Halperin states. They can,
however, still be labeled by three integers (m↑m↓n) with odd
m↑ and m↓. These integers relate to the filling fractions as

ν↑ = ρ↑h

eBSO
= m↓ − n

m↑m↓ + n2
,

(2)

ν↓ = ρ↓h

eBSO
= m↑ + n

m↑m↓ + n2
.

Note that in our notation both ν↑ and ν↓ are positive, as they
are proportional to the respective electron densities ρ↑ and
ρ↓. The integers (m↑m↓n) should be chosen accordingly. An
important implication of Eq. (2) is that when the two spins (or
layers) are sufficiently strongly coupled to result in n �= 0, the
two filling factors can be different from each other, ν↑ �= ν↓,
which translates to a finite magnetization. After deriving these
states, we discuss their physical properties, including the edge
structure, bulk quasiparticle excitations, and the associated
Hall conductivity. The latter vanishes by symmetry in a time
reversal invariant system. The general states considered in this
work, however, have σxy = e2

h

2n+m↓−m↑
m↑m↓+n2 . For a finite n, we

thus find that the system is either spin polarized, or has a finite
Hall conductivity, or both. This indicates that time reversal
symmetry is spontaneously broken in these states.

Similar to the time reversal symmetric case, the edge
structure of these states consists of two counterpropagating
modes. If one assumes spin conservation (conservation of sz),
these counterpropagating edge modes are conserved. In the
case of broken time reversal symmetry, and more generally
when sz is not conserved due to spin-orbit coupling, it is,
however, possible to gap out the counterpropagating edge
modes by perturbations such as impurities.

Consider as an example states with m↑ = m↓ ≡ m. For n =
0, the two spins are decoupled. In this case, ν↑ = ν↓ = 1/m

correspond to Laughlin states for both spins, but at opposite
magnetic fields. For n �= 0 the filling factors are different
from each other, and do not correspond to decoupled FQH
states for the two spins. In a (331) state, for example, the
total filling of ν = ν↑ + ν↓ = 3

5 decomposes spontaneously as
3
5 = 1

5 + 2
5 between the spins. The choice of the sign of n,

which does not change the total filling factor, represents the
spontaneous symmetry breaking in this state. Besides the finite
magnetization, the symmetry breaking also leads to a nonzero
Hall conductivity σxy = e2

h
2n

m2+n2 . As for the magnetization,
the sign of σxy is given by the sign of n.

As a second example, consider states with m↑ = m − n and
m↓ = m + n, where the parity of m must be opposite to that of
n to guarantee that mσ are odd. For any n, the individual filling
factors are given by νσ = 1/m. Let us focus on ν↑ = ν↓ = 1/3
for concreteness. For these filling factors, the system could, for
instance, be in a (330) state or a (152) state [the latter is related
by time reversal to the (5 1 − 2) state]. Which of these states is
the most stable one depends on the microscopic interactions in
the system. While now, the symmetry breaking is not reflected

in a finite spin polarization ν↑ − ν↓ anymore, it still gives rise
to a Hall conductivity σxy = e2

h
4n
m2 , which equals ± e2

h
8
9 for the

(152) or (5 1 − 2) states, respectively.
Notice that one can also find states with vanishing Hall

conductivity, but with a finite spin polarization. Those are
the (m + n,m − n,n) states (with n �= 0). Thus, in the general
time reversal symmetry broken phases considered here, the
Hall conductivity or the spin polarization can vanish—but not
both of them.

In Sec. IV, we finally conclude with a comparison to other
approaches for fractional topological insulators [9,11–13].
Our results are consistent with works based on K-matrix
Chern-Simons theories, which find that only substantially
more delicate states may still preserve time reversal symmetry
and at the same time have strong correlations between the
two spin species. The significance of our analysis is thus
that time reversal broken states are natural competing phases
which should be considered in the search for spin-correlated
fractional topological insulators.

II. COUPLED WIRE CONSTRUCTION OF AN
(m↑m↓n)-TYPE HALPERIN STATE IN A BILAYER SYSTEM

In this section, we provide a wire construction for double
layer systems. We obtain an alternative formulation for the well
known (m↑m↓n) Halperin states given by the wave function
in Eq. (1), and describing two quantum Hall liquids on two
layers with filling factors(

ν↑
ν↓

)
= 1

m↑m↓ − n2

(
m↓ − n

m↑ − n

)
. (3)

Note that stability of this state against phase separation requires
m↑m↓ − n2 � 0 (the case m↑m↓ = n2 corresponds to a fully
symmetric spin wave function with ill-defined individual
spin occupations) [30]. Equation (3) encodes that the filling
decreases when the interlayer correlations are enhanced: an
interlayer repulsion pushes all electrons further apart.

A. Wire construction

For the wire construction of Halperin states, we consider the
setup depicted in Fig. 1, namely, a large array of quantum wires
arranged in two layers. Each layer consists of N wires. The
latter contain spinless electrons, and are subject to a magnetic
field �B = Bẑ perpendicular to the plane of the layers. We label
the wires by k = 1, . . . ,N , the wire number within each layer,

FIG. 1. (Color online) The considered setup: two stacked arrays
of quantum wires containing spinless electrons. The layers are labeled
by an index k within each plane, and a (pseudo-) spin σ =↑ , ↓
distinguishing the two planes. The entire system is subject to a
homogenous magnetic field �B perpendicular to the plane of the arrays.
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FIG. 2. The dispersions E(p) as a function of the momentum p

in the x̂ direction of the bilayer system (in a representation based on
the Landau gauge). The wires are labeled as in Fig. 1. The chemical
potential in layer σ =↑ , ↓, denoted by μσ , translates into a filling
factor νσ . As discussed in the main text, the momentum shift between
neighboring wires is �p = eBa = 2pFσ /νσ .

and σ =↑ , ↓, the pseudospin distinguishing the two layers.
Since we consider spinless electrons, the magnetic field affects
the system by its orbital effect. It is convenient to work in the
Landau gauge, in which �B = �∇ × �A with �A = (−By,0,0)T .
In this gauge, the momenta along the x̂ direction, denoted by
p, are effectively shifted by �p = eBa for neighboring wires,
where a is the distance between the wires (taken to be identical
in both layers). This leads to the dispersion relation shown in
Fig. 2. Using the fact that the two-dimensional density of each
layer satisfies anσ = pFσ /(π�), and that νσ ≡ nσh/(eB), the
momentum shift can be expressed as �p = 2pFσ /νσ , where
pFσ is the Fermi momentum of a given wire in layer σ

measured with respect to the minimum of its dispersion.
The difference between the right and left Fermi points in
neighboring wires is thus 2pFσ /νσ − 2pFσ = (1 − νσ ) �p,
as indicated in Fig. 2.

The electrons are annihilated by operators ψkσ (x),
which satisfy the usual anticommutation relation
{ψkσ (x),ψk′σ ′(x ′)} = δkk′δσσ ′δ(x − x ′). In the remainder,
however, we will not use these fermionic operators, but
treat the array of wires in the Luttinger liquid formalism.
To this end, we first restrict the theory to low energy
excitations close to the Fermi points, which gives rise to
right (R) and left (L) moving modes [31]. Measuring the
momentum in each wire with respect to the minimum of
its dispersion, and working from now on in units of � = 1,
the right and left movers relate to the initial electronic
operators as ψkσ (x) ≈ e−ipFσ xLkσ (x) + eipFσ xRkσ (x). These
are bosonized as rkσ (x) = (Urkσ /

√
2πα)e−i�rkσ (x), where

r = R,L ≡ +1, − 1, while α−1 is a large momentum
cutoff, and with Urkσ being a Klein factor (which
we drop as usual in the remainder since they are not
important for our discussion). The chiral bosonic fields
satisfy the commutation relation [�rkσ (x),�r ′k′σ ′(x ′)] =

δrr ′δkk′δσσ ′ iπr sgn(x ′ − x). It is helpful to also define
the fields φkσ (x) = [�Rkσ (x) − �Lkσ (x)]/2 and θkσ (x) =
[−�Rkσ (x) − �Lkσ (x)]/2, which have the commutation
relation [φkσ (x),θkσ (x ′)] = δkk′δσσ ′ (iπ/2)sgn(x ′ − x). The
field φkσ relates to the integrated density of electrons in wire k

of layer σ , while θkσ is proportional to their integrated current.
These definitions allow one to express the Hamiltonian of the
decoupled wires in a bosonized language as

H0 =
∑
k,σ

∫
dx

2π

[
ukσ

Kkσ

(∂xφkσ )2 + ukσKkσ (∂xθkσ )2

]
, (4)

where ukσ is the effective velocity in wire kσ , while Kkσ is its
Luttinger liquid parameter. The use of ukσ and Kkσ allows one
to take electron-electron interactions of density-density type
into account [31]. In Eq. (4), we have neglected density-density
interactions between different wires, which could be included
by a straightforward generalization of H0.

B. Allowed couplings and the Halperin states

In the following, we analyze the kinds of interwire cou-
plings that stabilize a Halperin state. For hierarchical fractional
quantum Hall states related to the Halperin states of (mmn)
type, a coupled wire construction has been discussed by Teo
and Kane [18]. This construction is now generalized to the
Halperin bilayer states of (m↑m↓n) type.

We start from two general, local couplings involving four
neighboring wires in the two layers as shown in Fig. 3. The
process denoted gk+1/2 ↑ describes a correlated tunneling of y

electrons with spin up between wires k and k + 1. Similarly,
gk+1/2 ↓ transfers y ′ spin-down electrons between those wires.
Because of momentum conservation, not all integer values
of xi , x ′

i , y, and y ′ are allowed for given filling factors νσ .
Alternatively, a given set of xi , x ′

i , y, and y ′ determines
the filling factors νσ at which the corresponding processes
conserve momentum. To illustrate this statement, we consider

FIG. 3. (Color online) General form of the interwire scatterings
gk+1/2 σ considered in the main text. The arrows in the dispersions
(labeled as in Fig. 2) indicate the scattering of electrons from one
Fermi point to another. The integers y, xi , y ′, and x ′

i indicate how
many electrons are being scattered along the corresponding arrow.
Taking the Hermitian conjugate of these processes corresponds to
flipping all arrows.
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the process gk+1/2↑ written in terms of chiral fermionic fields.
Using the definitions of Fig. 2, we obtain

gk+1/2↑ ∼
∫

dx[eix(1−ν↑)�pR
†
k↑(x)Lk+1↑(x)]y

× [e−ixν↑�pR
†
k↑(x)Lk↑(x)]x1

× [e−ixν↑�pR
†
k+1↑(x)Lk+1↑(x)]x2

× [e−ixν↓�pR
†
k↓(x)Lk↓(x)]x3

× [e−ixν↓�pR
†
k+1↓(x)Lk+1↓(x)]x4 + H.c. (5)

This scattering is suppressed by the oscillating exponential fac-
tors unless y(1 − ν↑)�p − x1ν↑�p − x2ν↑�p − x3ν↓�p −
x4ν↓�p = 0. Repeating this discussion for gk+1/2↓, we con-
clude that momentum conservation implies the condition(

x1 + x2 + y x3 + x4

x ′
3 + x ′

4 x ′
1 + x ′

2 + y ′

)(
ν↑
ν↓

)
=

(
y

y ′

)
. (6)

If Eq. (6) is satisfied, the exponential factors cancel out. The
scattering gk+1/2↑, for example, then becomes

gk+1/2↑ ∼
∫

dx R
†
k↑(x)x1+yLk↑(x)x1

×R
†
k+1↑(x)x2 Lk+1↑(x)x2+y

× [R†
k↓(x)Lk↓(x)]x3

× [R†
k+1↓(x)Lk+1↓(x)]x4 + H.c. (7)

Now applying the bosonization prescription of Sec. II A, we
find that the processes depicted in Fig. 3 give rise to sine-
Gordon terms of the form

gk+1/2 ↑ ∼ cos[(x1 + y)�Rk↑ − (x2 + y)�Lk+1↑ − x1�Lk↑
+ x2�Rk+1↑ + x3(�Rk↓ − �Lk↓)

+ x4(�Rk+1↓ − �Lk+1↓)], (8a)

gk+1/2 ↓ ∼ cos[(x ′
1 + y ′)�Rk↓ − (x ′

2 + y ′)�Lk+1↓ − x ′
1�Lk↓

+ x ′
2�Rk+1↓ + x ′

3(�Rk↑ − �Lk↑)

+ x ′
4(�Rk+1↑ − �Lk+1↑)] (8b)

if they preserve momentum. In the following, we search for
fully gapped phases. In such a phase, all cosine perturbations
gk+1/2 σ pin the associated bosonic fields to fixed values for
all x. This, however, requires that the arguments of the sine-
Gordon terms commute, both with themselves (at different
positions) and amongst each other. For the sine-Gordon
terms in Eq. (8), we find that their arguments commute with
themselves (at different positions) for

x1 = x2, (9)

x ′
1 = x ′

2, (10)

and for any value of x3, x4, x ′
3, x ′

4, y, and y ′. Furthermore, we
find that the arguments of the couplings gk+1/2 ↑ and gk+1/2 ↓
commute if the condition

y(x ′
3 − x ′

4) + y ′(x3 − x4) = 0 (11)

is satisfied (we assume y,y ′ �= 0). The arguments of gk+1/2 ↑
and g(k±1)+1/2 ↓ commute if

y ′x4 − yx ′
3 = 0, (12)

y ′x3 − yx ′
4 = 0. (13)

Note that the combination of Eqs. (12) and (13) yields
Eq. (11). Finally, the arguments of the couplings gk+1/2 ↑
and g(k±1)+1/2 ↑, and of gk+1/2 ↓ and g(k±1)+1/2 ↓, commute
if x1 = x2 and x ′

1 = x ′
2, thus reproducing the condition of

Eqs. (9) and (10). To study the nature of the gapless edge states
associated with these couplings, it is convenient to perform the
basis transformation

�̃Rk↑ = (x1 + y)�Rk↑ − x1�Lk↑ + x3(�Rk↓ − �Lk↓), (14a)

�̃Lk↑ = (x2 + y)�Lk↑ − x2�Rk↑ − x4(�Rk↓ − �Lk↓), (14b)

�̃Rk↓ = (x ′
1 + y ′)�Rk↓ − x ′

1�Lk↓ + x ′
3(�Rk↑ − �Lk↑), (14c)

�̃Lk↓ = (x ′
2 + y ′)�Lk↓ − x ′

2�Rk↓ − x ′
4(�Rk↑ − �Lk↑). (14d)

Using the conditions of Eqs. (9)–(13), we find that these fields
obey the commutation relation

[�̃rkσ (x),�̃r ′k′σ ′(x ′)] = δrr ′δkk′Kσσ ′ iπr sgn(x ′ − x), (15)

where the K- matrix reads

K =
(

y(2x1 + y) y ′(x3 + x4)
y ′(x3 + x4) y ′(2x ′

1 + y ′)

)
. (16)

Here, we recall that y ′(x3 + x4) = y(x ′
3 + x ′

4) according to
Eqs. (12) and (13). In terms of these new fields, the sine-
Gordon terms read

gk+1/2 ↑ ∼ cos(�̃Rk↑ − �̃Lk+1↑), (17a)

gk+1/2 ↓ ∼ cos(�̃Rk↓ − �̃Lk+1↓). (17b)

When all of these sine-Gordon terms have sufficiently
large prefactors to pin their arguments to the minima of the
cosines [31], the entire system is gapped—up to the modes
�̃L1σ and �̃RNσ , which simply do not have a partner field to
pair up with. We have thus constructed a generalized bilayer
quantum Hall state, whose gapless edge modes �̃L1σ and
�̃RNσ have the K matrix given in Eq. (16). For this state to be
a Halperin state of (m↑m↓n) type, both the K matrix given in
Eq. (16), and the matrix on the left-hand side of Eq. (6) need
to be equal to [26]

Km↑m↓n =
(

m↑ n

n m↓

)
. (18)

This implies y = y ′ = 1, m↑ = 2x1 + 1, m↓ = 2x ′
1 + 1, and

n = x3 + x4. From Eqs. (12) and (13), we furthermore find
that x3 = x ′

4 and x4 = x ′
3 in this case.

The choice of a specific K matrix, and thus of a specific
Halperin state, only determines the sum of x3 and x4 (and of
x ′

3 and x ′
4). The individual values of x3 and x4, related to the

sine-Gordon terms gapping out the system, are determined by
which of these sine-Gordon terms is most relevant according to
renormalization group considerations [31]. For a Hamiltonian
of the form of Eq. (4), it is most favorable to subdivide n

as equally as possible between x3 and x4. For even n, the
most relevant term has x3 = x4 = n/2. For odd n, the system
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can spontaneously choose to order with either x3 = (n +
1)/2,x4 = (n − 1)/2, or x3 = (n − 1)/2,x4 = (n + 1)/2.

Similar to Refs. [17,18], we have assumed that the cosine
perturbations are relevant operators. It is always possible [17]
to find an appropriate Hamiltonian, incorporating local inter-
actions between the various chiral models and generalizing
Eq. (4) to reach this situation.

C. Charges of a quasiparticle excitation

To find additional evidence for the constructed state to be a
Halperin state, we now analyze the charge of a quasiparticle ex-
citation above the gapped bulk ground state. These excitations
correspond to kinks in one of the sine-Gordon terms in the bulk,
�̃Rkσ − �̃Lk+1σ → �̃Rkσ − �̃Lk+1σ ± 2π . In order to define
the charge of these excitations, we recall that the charge density
of the wire kσ is given by ρkσ (x) = −∂x(�Rkσ − �Lkσ )/(2π ).
The total charge in layer σ is thus

Qσ = e

2π

N∑
k=1

∫
dx ∂x (�Rkσ − �Lkσ ) . (19)

On the other hand, Eqs. (9)–(14) yield(
�̃Rk↑ − �̃Lk↑
�̃Rk↓ − �̃Lk↓

)
=

(
2x1 + y x3 + x4

x ′
3 + x ′

4 2x ′
1 + y ′

)(
�Rk↑ − �Lk↑
�Rk↓ − �Lk↓

)
.

(20)

This means that(
Q↑
Q↓

)
= e

(
2x1 + y x3 + x4

x ′
3 + x ′

4 2x ′
1 + y ′

)−1

�χ, (21)

�χ = 1

2π

∫
dx

(
∂x

∑
k(�̃Rk↑ − �̃Lk↑)

∂x

∑
k(�̃Rk↓ − �̃Lk↓)

)
. (22)

If we are interested in the charge associated with a kink in
one of the bulk cosines, we can use

∑
k(�̃Rkσ − �̃Lkσ ) =∑

k∈bulk(�̃Rkσ − �̃Lk+1σ ) + edge terms, and therefore find
that a kink in gk+1/2↑ is associated with �χ = (1,0)T , while
a kink in gk+1/2↓ is associated with �χ = (0,1)T .

For the Halperin states, the two types of quasiparticle
excitations have the associated charges in the two layers(

q
(g↑)
↑

q
(g↑)
↓

)
= eK−1

m↑m↓n

(
1
0

)
,

(
q

(g↓)
↑

q
(g↓)
↓

)
= eK−1

m↑m↓n

(
0
1

)
, (23)

where Km↑m↓n is the K matrix given in Eq. (18). These
charges agree with the expected values for a Halperin state
of (m↑m↓n) type [30,32]. For example, in the (331) Halperin
state, the filling factors are ν↑ = ν↓ = 1

4 , and quasiparticles
carry charges ( 3e

8 ,−e
8 ) in the two layers, giving the total charge

of e/4.
The combination of the obtained commutation relations for

the gapless edge states, the filling factors, the complete bulk
gap, and the charges of quasiparticle excitations above the
bulk gap finally allows one to conclude that we have indeed
constructed a Halperin state via an array of coupled wires.

FIG. 4. Dispersions for the spin-orbit-coupled case. The spin-
orbit interaction results in an effective magnetic field that is opposite
for the two layers (spin species). Consequently, the dispersions are
shifted in opposite directions for the two spins. All labels are like in
Fig. 2.

III. GENERALIZED (m↑m↓n)-TYPE STATES IN A BILAYER
SYSTEM WITH OPPOSITE MAGNETIC FIELDS AND

LOCAL INTERACTIONS

In the following main part of our work, we address the
coupled wire construction of topological states at zero net
magnetic field for the cases where the two spin species (layers)
feel an effectively opposite magnetic field. This can be realized
by a spatially increasing (pseudo-) spin-orbit coupling of the
form α(y)px σz with α(y) = α0 y. For N spinful wires (or a
double layer with N wires in each layer), this coupling gives
rise to the dispersions depicted in Fig. 4.

The analog of an (m↑m↓n)-type Halperin state in the spin-
orbit-coupled system depicted in Fig. 4 is analyzed under the
important requirement of local interactions (i.e., considering
couplings g′

k+1/2σ that, for any k, involve only combinations
of �rk↑, �rk+1↑, �rk↓, and �rk+1↓). Like in Sec. II, we start
from a general interaction process (see Fig. 5). Momentum
conservation yields the same condition as given in Eq. (6),
which we write for clarity,

(
x1 + x2 + y x3 + x4

x ′
3 + x ′

4 x ′
1 + x ′

2 + y ′

)(
ν↑
ν↓

)
=

(
y

y ′

)
. (24)

If the latter equation is satisfied, bosonization yields

g′
k+1/2 ↑ ∼ cos[(x1 + y)�Rk↑ − (x2 + y)�Lk+1↑ − x1�Lk↑

+ x2�Rk+1↑ + x3(�Rk↓ − �Lk↓)

+ x4(�Rk+1↓ − �Lk+1↓)], (25a)

g′
k+1/2 ↓ ∼ cos[(x ′

2 + y ′)�Rk+1↓ − (x ′
1 + y ′)�Lk↓ + x ′

1�Rk↓

− x ′
2�Lk+1↓ + x ′

3(�Rk↑ − �Lk↑)

+ x ′
4(�Rk+1↑ − �Lk+1↑)]. (25b)
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FIG. 5. (Color online) General form of the interwire scatterings
g′

k+1/2 σ for a spin-orbit-coupled system. All labels are as in Fig. 3.

Under time reversal (TR), the wire indices transform as
k → k, and σ → −σ . Therefore, if time reversal symmetry is
satisfied, one obtains

y = y ′, xj = x ′
j (j = 1,2,3,4) (if TR holds). (26)

We will return to this condition below. The sine-Gordon terms
given in Eq. (25) differ from those in Eq. (8). This difference
stems from the fact that in order for the interaction to be
local (involving only wires kσ and k + 1σ ), the couplings are
nonlocal in momentum space. Pictorially, drawing the process
of g′

k+1/2+M ↑ in Fig. 5 requires shifting the arrows x1,x2,y to
the right by M wires and shifting the arrows x3,x4 to the left
by M wires.

Similar to the discussion of Sec. II B, the sine-Gordon terms
of Eq. (25) cannot order simultaneously for arbitrary integers
xi , x ′

i , y, and y ′. We find that their arguments commute with
themselves at different points x if

x1 = x2, (27)

x ′
1 = x ′

2. (28)

The arguments of the couplings g′
k+1/2 ↑ and g′

k+1/2 ↓, on the
other hand, commute if

y(x ′
3 − x ′

4) + y ′(x4 − x3) = 0. (29)

In addition, we find that the arguments of gk+1/2 ↑ and
g(k±1)+1/2 ↓ commute if

y ′x4 + yx ′
3 = 0, (30)

y ′x3 + yx ′
4 = 0. (31)

Again, the combination of Eq. (30) and Eq. (31) yields Eq. (29).
Finally, the arguments of g′

k+1/2 ↑ and g′
(k±1)+1/2 ↑, and of

g′
k+1/2 ↓ and g′

(k±1)+1/2 ↓, commute if x1 = x2, and x ′
1 = x ′

2.
Note that we have again assumed y,y ′ �= 0. Importantly,
we thus find that not only the sine-Gordon terms, but also
the conditions following from the commutation relations are
different from those obtained in Sec. II.

To study the edge modes of this state, it is again helpful to
define new fields

�̃′
Rk↑ = (x1 + y)�Rk↑ − x1�Lk↑ + x3(�Rk↓ − �Lk↓), (32a)

�̃′
Lk↑ = (x2 + y)�Lk↑ − x2�Rk↑ − x4(�Rk↓ − �Lk↓), (32b)

�̃′
Rk↓ = (x ′

1 + y ′)�Lk↓ − x ′
1�Rk↓ − x ′

3(�Rk↑ − �Lk↑), (32c)

�̃′
Lk↓ = (x ′

2 + y ′)�Rk↓ − x ′
2�Lk↓ + x ′

4(�Rk↑ − �Lk↑), (32d)

which satisfy

[�̃′
rkσ (x),�̃′

r ′k′σ ′(x ′)] = δrr ′δkk′K ′
σσ ′ iπr sgn(x ′ − x), (33)

where the K matrix reads

K ′ =
(

y(2x1 + y) −y(x ′
3 + x ′

4)
y ′(x3 + x4) −y ′(2x ′

1 + y ′)

)
, (34)

with y ′(x3 + x4) = −y(x ′
3 + x ′

4) according to Eqs. (30)
and (31). Expressed in these new fields, the sine-Gordon terms
read

g′
k+1/2 ↑ ∼ cos(�̃′

Rk↑ − �̃′
Lk+1↑), (35a)

g′
k+1/2 ↓ ∼ cos(�̃′

Rk↓ − �̃′
Lk+1↓). (35b)

The bilayer thus has the fields �̃′
L1σ and �̃′

RNσ as gapless
edge modes characterized by the nontrivial K matrix given in
Eq. (34).

The commutation relation given in Eq. (33) indicates that
the fields �̃′

Rk↓ actually represent left moving modes, while
�̃′

Lk↓ correspond to right movers. At the left edge (near the
k = 1 wire), this implies the existence of one gapless left
moving mode �̃′

L1↑, and one gapless right moving mode �̃′
L1↓.

Similarly, the left and right moving modes propagating in the
right edge, namely, near the k = N wire, are �̃′

RN↓ and �̃′
RN↑,

respectively. Thus, the L/R indices in Eq. (32) actually do not
mark the chirality of edge states, but rather the edge at which
they live.

To define the analog of an (m↑m↓n) state, we set y = y ′ =
1. With this choice, Eqs. (30) and (31) yield x3 = −x ′

4 and x4 =
−x ′

3. Using m↑ = 2x1 + 1, m↓ = 2x ′
1 + 1, and n = x3 + x4,

we obtain the K matrix

K ′
m↑m↓n =

(
m↑ n

n −m↓

)
. (36)

One may observe that in the presence of TR, when Eq. (26)
holds, the solutions to Eqs. (30) and (31) yield x3 = −x4. TR
states thus necessarily have n = 0.

We finally note that similar to the discussion in Sec. II B,
we can always find a Luttinger liquid Hamiltonian such that
the cosine perturbations are relevant.

A. Charges of quasiparticle excitations

As in Sec. II C, a quasiparticle excitation above the bulk
gap corresponds to a kink in one of the bulk cosines, �̃′

Rkσ −
�̃′

Lk+1σ → �̃′
Rkσ − �̃′

Lk+1σ ± 2π . Their charges are defined
by Eq. (19). Using Eqs. (27)–(32), we obtain(

�̃′
Rk↑ − �̃′

Lk↑
�̃′

Rk↓ − �̃′
Lk↓

)
= M̂

(
�Rk↑ − �Lk↑
�Rk↓ − �Lk↓

)
, (37)
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where

M̂ =
(

2x1 + y x3 + x4

−(x ′
3 + x ′

4) −(2x ′
1 + y ′)

)
. (38)

This implies that the charge components in the two layers of
bulk quasiparticles associated with a kink in gk+1/2↑ are given
by ⎛⎝q

(g′
↑)

↑

q
(g′

↑)
↓

⎞⎠ = M̂−1

(
1

0

)
, (39)

while an (anti-)kink in gk+1/2↓ is associated with charges⎛⎝q
(g′

↓)
↑

q
(g↓′ )
↓

⎞⎠ = eM̂−1

(
0

−1

)
. (40)

As an example, the state generated by y = y ′ = 1, x3 = −x ′
4,

x4 = −x ′
3 has quasiparticles with charges⎛⎝q

(g′
↑)

↑

q
(g′

↑)
↓

⎞⎠ = e

m↑m↓ + n2

(
m↓
n

)
, (41)

and ⎛⎝q
(g′

↓)
↑

q
(g′

↓)
↓

⎞⎠ = e

m↑m↓ + n2

(−n

m↑

)
. (42)

Note that for n �= 0, the two types of quasiparticles in general
have different total charge. For example, in the (331) state one
quasiparticle has charge 2

5e, and the other one has charge 1
5e.

B. Quantum Hall conductivity

To compute the Hall conductivity, we put the system in
a Corbino geometry. Following the Laughlin argument, the
adiabatic insertion of a flux quantum leads to a charge Q being
pumped between the inner and outer edges, which is related
to the Hall conductivity by σxy = e

h
Q. This can be directly

computed from the K matrix [26], but we give the derivation
here for completeness.

We write the Hamiltonian of the k = 1 edge including the
coupling to the electromagnetic field using the expressions in
Eqs. (19) and (37) for the density,

H = ∂x
�φV̂ ∂x

�φ + 1

2π
[(1,1) · M̂−1 �φ]εμν∂μAν, (43)

with �φi = (�̃′
L1↑,�̃′

L1↓), and where V̂ is a generic term
containing information on the velocity of the two counter-
propagating modes as well as the interaction between them.
We now consider a time dependent flux �(t) inserted through
the hole in the Corbino geometry, giving rise to an electric
field εμν∂μAν = E = ∂t�

L
, where L is the circumference.

We can write the Heisenberg equations of motion using the
commutation relations of Eq. (33),

∂t∂x
�φ = ∂t�

L
[K ′T (M̂−1)T · (1,1)T ] − 4π

[
K ′T V T ∂2

x
�φ]

.

(44)

An integration over space, and the use of Eqs. (19) and (37)
yields the charge pumped into the k = 1 edge, which must

come from the K = N edge,

∂tQ = e[(1,1) · M̂−1K ′T (M̂−1)T (1,1)T ]
∂t�

2π
. (45)

Notice that the V̂ term gives a full derivative and can be
neglected assuming that ∂x

�φ is a constant in the ground state.
Concentrating on an (m↑m↓n) state, we find that the adiabatic
insertion of a 2π flux results in a total pumped charge of
2n+m↓−m↑
m↑m↓+n2 , corresponding to the Hall conductivity

σxy = e2

h

2n + m↓ − m↑
m↑m↓ + n2

. (46)

As required, the Hall response vanishes in the time reversal
symmetric case, m↑ = m↓, n = 0. It is, however, generically
finite for the class of (m↑m↓n) states under consideration.
Specifically, σxy depends on the sign of n. In the special case
m↑ = m↓, the sign of σxy is determined by that of n. We thus
find that like a finite spin polarization, a finite Hall conductivity
is a clear indicator of a TR broken topological insulating phase.

For a system with conserved sz, one may discuss the Hall
conductivity of each spin separately. We find that the pumped
charges are

∂tQ↑ = e[(1,0) · M̂−1K ′T (M̂−1)T (1,1)T ]
�̇

2π
,

(47)

∂tQ↓ = e[(0,1) · M̂−1K ′T (M̂−1)T (1,1)T ]
�̇

2π
.

From this, the spin Hall conductivity is found to be

σsH = e

4π
[(1, − 1) · M̂−1K ′T (M̂−1)T (1,1)T ]

= e

4π

m↑ + m↓
m↑m↓ + n2

. (48)

We note that the charges Qσ obtained via the equations of
motion technique [see Eqs. (47)] equal the total charges for
a combined kink in both types of bulk cosines, which are
given in Eqs. (41) and (42). The quantum Hall and spin
Hall conductivities can thus be understood as describing the
transport of both types of quasiparticles across the sample.

C. Stability of the edge

The present situation with counterpropagating edge modes
raises the question on their stability against impurity scattering.
In the presence of an impurity, for instance near the left edge,
one may write a term of the form

Himp ∼ gimp cos(�̃′
L1↑ − �̃′

L1↓). (49)

This type of perturbation does not conserve spin. We do not,
however, expect to have such a conservation in a generic
system with spin-orbit coupling, and even less so in the
presence of broken time reversal symmetry. Our specific model
has an additional issue: The momentum difference between
the states described by �̃′

L1↑ and �̃′
L1↓ grows with the width

of the system. We believe that this is just a property of the
specific model. In Sec. III D, we consider an alternative model
in which the issue of large momentum difference between
edge modes is absent. Similarly, this issue is absent in the
model presented in Ref. [22]. We hence conclude that the

235425-7



TOBIAS MENG AND ERAN SELA PHYSICAL REVIEW B 90, 235425 (2014)

FIG. 6. Dispersions for the double layer with negative mass in
the lower layer, and in the presence of a magnetic field. The filling ν↑
corresponds to the filling of electrons in the upper layer, while ν↓ is
the filling of holes in the lower layer. All other labels are as in Fig. 2.

edge modes are generically unstable. Yet, the bulk gap and
its underlying topological properties, including Hall response
and quasiparticles, are unaffected by this edge physics.

D. Negative masses in second layer

Instead of using two layers of quantum wires with an
effectively opposite magnetic field, local interactions can also
stabilize a (fractional) topological insulator state in a double
layer of wires subject to a homogenous magnetic field if the
masses in the two layers are opposite [22,23]. This gives rise to
the dispersions depicted in Fig. 6. When analyzing the general
interaction processes g′′

k+1/2σ shown in Fig. 7, we obtain the
same conditions as for the spin-orbit-coupled system with
identical masses, namely, Eqs. (24) and (27)–(31). This implies
that also for layers with opposite masses, a Halperin-type state
with sufficiently strong interlayer correlations can form a time

FIG. 7. (Color online) General form of the interwire scatterings
g′′

k+1/2 σ for a double layer system with opposite masses. All labels
are as in Fig. 3.

reversal broken state. As advertised in the last section, a process
of the form of Eq. (49) now preserves momentum, and is thus
susceptible to gap the edge states. To see this, we remark that
for negative masses in the second layer, the modes R1↑,L1↑
live at the same momenta as the modes R1↓,L1↓ (see Fig. 6).
This was not the case in the setup discussed before, whose
dispersions are shown in Fig. 4.

IV. CONCLUSIONS AND OUTLOOK

In this work, we have identified and analyzed a generalized
class of quantum Hall states at zero magnetic field, which can
be understood as analogs of fractional topological insulator
states with strong correlations between time reversal partners.
Importantly, we find that these states have broken time reversal
symmetry, which in general can lead to spin magnetization
or to a nonzero Hall conductance, or to both. This suggests
the possibility that fractional topological insulators may be
unstable towards the formation of a time reversal symmetry
broken state in the presence of sufficiently strong electron-
electron interactions.

To close our discussion, let us briefly comment on the
consistency of our findings with other approaches for fractional
topological insulators. References [9,11–13] have analyzed
Chern-Simons theories of time reversal symmetric fractional
topological insulators, and inferred that the K matrices of these
theories should satisfy a number of properties. For a (2 × 2) K

matrix, the only possibility is to have vanishing off-diagonal
elements, which corresponds to two decoupled copies of a
fractional quantum Hall state. A time reversal symmetric
state with off-diagonal elements in the K matrix, encoding
correlations between the time reversal partners, requires the K

matrix to be larger than (2 × 2).
This is consistent with the family of states that we have

found. These states are characterized by the (2 × 2) K matrix
given in Eq. (36), in which nonvanishing off-diagonal elements
imply broken time reversal symmetry. Being characterized
by a relatively simple K matrix, and not a larger one as
discussed for time reversal symmetric states with interspin
correlations [9,11–13], the states analyzed in this work form
alternative candidate time reversal symmetry broken states
that should be considered in the ongoing search for fractional
topological insulators in different models.

One may also ask how our findings fit into the general
classification scheme of Ref. [24]. While the states with
time reversal symmetry discussed here [the n = 0 or (m,m,0)
states] are simply those analyzed in Ref. [24] within symmetry
class AII , our spin-up–spin-down interacting states with
n �= 0 belong to symmetry class A. However, they were, not
discussed in Ref. [24], which was in this class restricted
to the simplest states with single component (1 × 1) K

matrices.
The model presented here is strongly anisotropic. Yet, we

believe that the resulting phases are ground states of isotropic
systems, similar to the wire construction of the fractional
quantum Hall effect which gives the same physical state
described by the Laughlin circular symmetric wave function.

Few interesting questions and directions remain to be
explored. Whereas here we have mainly elaborated on the clas-
sification of a family of TR broken states, a microscopic study
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of a specific model, as well as proposed realizations which can
show the emergence of such symmetry broken phases, have
not been included in this paper and are left for a future study.
Also the theory of the phase transition is an interesting issue
which was not analyzed here. Indeed one may consider the spin
polarization, or the Hall conductivity, both of which vanish
in the symmetric phase, and construct an appropriate order
parameter. However, a conventional Ginzburg-Landau theory
for spontaneous symmetry breaking cannot be sufficient by
itself, since an order parameter expressed in terms of the spin
polarization, or the Hall conductivity, becomes quantized in
the ordered phase. Thus, symmetry breaking and topology

conspire to yield a fractionally quantized order parameter.
Understanding the nature of the phase transition is left for
a future study.
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