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High-fidelity quantum memory utilizing inhomogeneous nuclear polarization in a quantum dot
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We numerically investigate the encoding and retrieval processes for quantum memory realized in a
semiconductor quantum dot by focusing on the effect of inhomogeneously polarized nuclear spins whose
polarization depends on the local hyperfine coupling strength. We find that the performance of quantum memory
is significantly improved by inhomogeneous nuclear polarization, as compared with homogeneous nuclear
polarization. Moreover, the narrower the nuclear polarization distribution is, the better is the performance of the
quantum memory. We ascribe the improvement in performance to the full harnessing of the highly polarized and
strongly coupled nuclear spins by carefully studying the entropy change of individual nuclear spins during the
encoding process. Our results shed light on the implementation of quantum memory in a quantum dot.
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I. INTRODUCTION

A key ingredient of quantum computation and quantum
communication is quantum memory, which may be im-
plemented in many physical systems, such as cold atomic
gases [1,2], nuclear spin systems [3], semiconductor quantum
dots (QDs) [4–8], and so on. Among these systems, QD-based
quantum memory, which uses both electron spin and nuclear
spins, exhibits potential advantages, including long storage
time, fast encoding, and retrieval of the stored quantum state,
and it can be scaled up with current semiconductor fabrication
techniques [3,4,9–11].

The quantum memory protocol proposed for a QD utilizes
the easy controllability of the electron spin and the long coher-
ence time of the nuclear spins [4,12,13]. For perfectly polarized
nuclear spins, the fidelity of a quantum state after encoding,
storage, and retrieval approaches 100%. For partially polarized
nuclear spins, the fidelity reduces linearly with the decrease
of the average nuclear polarization [11,14,15]. To achieve
reasonable fidelity, for example 80%, the average nuclear
polarization is required to be above 80%, which is beyond
the availability of current QD experiments, whose record is
68% with optical pumping methods [16–20].

One way to alleviate the high nuclear polarization re-
quirement while maintaining reasonable fidelity is to employ
inhomogeneous nuclear polarization, which could be prepared
through dynamic nuclear polarization [21–26]. On the one
hand, nuclear polarization after dynamic nuclear polarization
is proportional to the square of the local hyperfine coupling
constant at short times and is saturated at long times, so the
polarizations of the strongly coupled nuclear spins are much
higher than those of the weakly coupled ones. On the other
hand, the strongly coupled nuclear spins play a more important
role in encoding and retrieval process than the weakly coupled
nuclear spins. The effective polarization for quantum memory
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must be weighted by the local hyperfine coupling constants in a
certain way. In contrast to a QD with homogeneously polarized
nuclear spins, the effective polarization is higher for a QD with
inhomogeneously polarized nuclear spins. Thus, the fidelity
of quantum memory with inhomogeneous polarization may
be higher than that of quantum memory with homogeneous
polarization.

In this paper, we investigate systematically using a numer-
ical method the performance of QD-based quantum memory
with homogeneous or inhomogeneous polarization. The min-
imal fidelity of an arbitrary quantum state after the encoding
and retrieval process is compared quantitatively for homoge-
neous and inhomogeneous polarizations. To understand the
superiority of the inhomogeneously polarized QD, we further
numerically investigate the von Neumann entropy change of
each nuclear spin from the viewpoint of quantum information
theory [27].

The paper is organized as follows. In Sec. II, we briefly
review the quantum memory protocol for a QD. Detailed
comparisons of numerical results for homogeneous and
inhomogeneous polarizations are presented in Sec. III. In
Sec. IV, we discuss the entropy change of nuclear spins
during the encoding stage in order to understand the superior
performance of a QD with inhomogeneous polarization.
Finally, the conclusion is drawn in Sec. V.

II. QUANTUM MEMORY PROTOCOL FOR A QD

The goal of quantum memory is first to encode a quantum
state into a well-isolated system whose coherence time is
long [1,28,29], for instance cold atomic gases [2] or nuclear
spins [4]. After a desired storage time, the state is then retrieved
with high fidelity. For a QD, the combination of the highly
controllable electron spin and the long coherence-time nuclear
spins makes it an ideal candidate for quantum memory.

In a QD, a complete quantum memory cycle consists of
three steps, as shown in Fig. 1. The first step is to encode
the information carried by the electron spin, i.e., an arbitrary
initial state α|↑〉 + β|↓〉, into a collective state of nuclear spins
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FIG. 1. (Color online) Three stages of a quantum memory proto-
col for an inhomogeneously polarized QD. (i) Encoding: mapping a
quantum state of the electron spin onto a collective state of nuclear
spins. (ii) Storage: ejecting the electron from the QD, and preserving
the nuclear spin state for a required period. (iii) Retrieval: injecting
another electron spin in the |↓〉 state and mapping back the initial
quantum state. The external magnetic field is tuned on resonance
with the Overhauser field during the encoding and retrieval stages.
Strongly coupled nuclear spins play more important roles in this
quantum memory protocol.

in the QD. The dynamics of the electron and N nuclear spins
during the encoding (and the retrieval) stage is governed by
the following Hamiltonian:

H = g∗
e μBB0S

z +
N∑

k=1

AkIk · S, (1)

where the first term corresponds to the Zeeman energy of
the electron spin S in an external magnetic field B0 along
the z axis, with g∗

e being the g-factor of the electron and
μB the Bohr magneton. The second term corresponds to the
Fermi contact hyperfine interaction, where Ak = Av0|ψ(rk)|2
(k = 1,2, . . . ,N ) is the coupling strength between the electron
spin and the kth nuclear spin, with A being the one-electron
hyperfine interaction constant, v0 the volume of a unit cell, and
|ψ(rk)|2 the electron density profile at site rk , which usually
varies in a Gaussian form in a QD under typical experimental
conditions [30–32].

To efficiently encode the electron spin state into the nuclear
spins, the magnetic field B0 is tuned on resonance with the
Overhauser field Bover = ∑

k Ak〈I z
k 〉. As shown for perfectly

polarized nuclear spins [4], the effective Hamiltonian becomes

H =
N∑

k=1

(Ak/2)(I+
k S− + I−

k S+), (2)

which dominates spin exchange between the electron and
nuclear spins. The raising and lowering operators are de-
fined as S± = Sx±iSy and I±

k = I x
k ±iI

y

k . After half a pe-
riod of Rabi oscillations between two basis states |↑〉e ⊗
|0〉n and |↓〉e ⊗ |1〉n, where |0〉n ≡ |↓↓ · · · ↓〉n and |1〉n ≡
(1/�)

∑N
k=1 Ak|↓ · · · ↑k · · · ↓〉n with � = (

∑N
k=1 |Ak|2)1/2

being the Rabi angular frequency, the state becomes |↓〉e ⊗
(α|1〉n + iβ|0〉n) and the initial electron spin state is mapped
onto the final collective nuclear spin state.

Once the electron spin state is mapped onto the nuclear
spins, the electron is ejected from the QD. The collective
nuclear spin state is preserved for a desired period [4,11]. The
following retrieval process is in fact an inverse of the encoding
process, i.e., another electron spin in the |↓〉 state is injected
into the QD, and the whole system evolves under the same

Hamiltonian Eq. (1) for half a period of the Rabi oscillations.
The initial electron spin state is then restored after the complete
quantum memory protocol.

In a real QD, the required perfect nuclear polarization
is impossible to realize. To estimate the effect of imperfect
nuclear polarization, studies have been done both analyt-
ically, with an assumption of uniform hyperfine coupling,
and numerically, with nonuniform hyperfine coupling [4,11].
These results indicate that the minimal fidelity of the quantum
memory protocol in the worst case decays linearly with the
decrease of the polarization. Noticeably, the minimal fidelity
drops below 80% even at a high nuclear polarization of 80%.
To maintain minimal fidelity but reduce nuclear polarization
to an experimentally accessible value (68%), further efforts
are needed.

We notice that the hyperfine coupling is nonuniform in a QD
and the nuclear polarization is not necessarily uniform after
dynamic nuclear polarization (the strongly coupled nuclear
spins actually acquire higher polarization) [24–26,33,34]. To
fully utilize the dynamically polarized nuclear spins, we next
investigate the performance of the quantum memory protocol
with an inhomogeneous polarization, hopefully to reduce the
average polarization while maintaining the same minimal
fidelity.

III. EFFECT OF INHOMOGENEOUS POLARIZATIONS

For an inhomogeneously polarized QD with nonuniform
hyperfine couplings, it is challenging to obtain an analytical
solution to the encoding and retrieval dynamics [35–38]. We
thus employ a numerical method to simulate the encoding and
retrieval stages of the quantum memory protocol.

The initial nuclear spins are prepared in an inhomo-
geneously polarized state with the kth spin’s polarization
as pk = tanh(βA2

k), where β is an adjustable parameter.
Theoretical predictions show that such an initial state may
be experimentally realized by employing the dynamic nuclear
polarization method under the condition of a short enough
period [25,26]. We numerically obtain this state by using the
operator exp(β

∑
k A2

kI
z
k ) to act on an initial random state

|r〉 of the nuclear spins [11], where |r〉 = ∑2N

i=1 ci |i〉 is a
linear combination of basis states of all nuclear spins and
ci are independent identically distributed random complex
numbers obeying

∑2N

i=1 |ci |2 = 1. Such a superposition is an
exponentially accurate representation of the maximally mixed
state, and in our simulations it creates errors of about 0.1%. To
find the minimal fidelity Fmin = minψ0 [〈ψ0|ρ(tr )|ψ0〉], with
|ψ0〉 being the initial electron state and ρ(tr ) the final mixed
electron state, two states initially along the z and x axes,
respectively, are simulated.

At the beginning of the encoding stage, the external
magnetic field is tuned numerically to reach the largest value
of Fmin for a given nuclear polarization (more details are
presented in the Appendix). This magnetic field is fixed during
the later encoding and retrieval stages. The value of this
optimized magnetic field is close to the Overhauser field Bover.
For the small system size that we consider here, N = 20, the
external magnetic field is slightly larger than Bover and depends
weakly on the nuclear polarization, due to the finite-size effect.
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FIG. 2. Typical evolutions of (a) sz, (b) s0, and (c) sT for �P =
0.2 and N = 20. The solid and dashed lines denote the results for the
inhomogeneous and homogeneous polarization cases, respectively.
The vertical dotted and dash-dotted lines denote, respectively, the
ejection time te and the retrieval time tr . After the whole process,
the retrieved state is closer to the initial electron spin state in the
inhomogeneous case.

To clearly illustrate the advantages of the inhomogeneous
polarization, we adopt the same Ak’s as in Ref. [11], where
N = 4 × 5 nuclear spins are placed in a rectangular lattice
with the lattice constants ax and ay . The constant Ak is in a
two-dimensional Gaussian form with the widths wx and wy and
a shifted center, Ak ∝ exp[−(x − x0)2/w2

x − (y − y0)2/w2
y],

with x0 = 0.1ax and y0 = 0.2ay . Two widths of the Gaussian
form are employed. For a normal width, wx/ax = 3/2 and
wy/ay = 2 along the x and y axes, respectively, with the largest
constant Ak being 0.96. For a narrow width, wx/ax = 3/(2

√
2)

and wy/ay = √
2, with the largest Ak being 0.92.

We employ the method of the Chebyshev polynomial
expansion of the evolution operator to evolve the coupled
many-spin system [39]. With this method, we may simulate
the dynamics of up to 30 spins. As discussed in Ref. [11], the
results for 20 nuclear spins are almost identical to the results
for 104 nuclear spins within a Rabi oscillation, so N = 20
is reliable to simulate the realistic QD cases. Therefore, we
also consider N = 20 nuclear spins in this paper. To extract
the minimal fidelity, we need to monitor the following three
observables: sx,y,z = tr{Ŝx,y,zρ(t)}, where ρ(t) is the density
matrix of the coupled system at time t . We also define the
transverse and longitudinal components of the electron spin
sT =

√
s2
x + s2

y and s0 = sz for the specific initial electron state
along the x direction.

The typical evolution of the electron spin in the encoding
and retrieval stages is illustrated in Fig. 2. The ejection time te
corresponds to the minimal sz during the encoding stage. The
nonunitary ejection of the electron is calculated numerically
as a von Neumann projection, and the left nuclear spin state
is ρn(te) = tre[ρ(te)] = 〈↑| ρ |↑〉 + 〈↓| ρ |↓〉, which traces out
the electron’s degree of freedom. Right after the injection
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FIG. 3. Minimal fidelity as a function of �P for four cases:
(i) inhomogeneous polarization with a narrow width of Ak (solid line
with circles); (ii) inhomogeneous polarization with a normal width of
Ak (solid line); (iii) homogeneous polarization with a normal width of
Ak (dashed line); (iv) homogeneous polarization with a narrow width
of Ak (dashed line with circles). Obviously, a quantum memory with
inhomogeneous polarization exhibits a better performance.

of the second electron in the |↓〉 state at the beginning of
the retrieval stage, the density matrix of the coupled system
becomes |↓〉〈↓| ⊗ ρn(te). The final retrieval time tr is located
at the largest value of Fmin. By employing the idea of
quantum process tomography and using the decomposition
of an arbitrary 2 × 2 matrix into the Pauli matrices and the
identity matrix, as proved in Ref. [11], the minimal fidelity
Fmin is straightforwardly calculated by finding the minimum
value of the following three quantities:

f1 = 1 + sz

2
,

f2 = 1 + sz − 2s0

2
,

f3 = 1

2

[
1 + sT − s2

0

4(sz − s0 − sT )

]
.

Figure 2(a) shows the longitudinal component of the
electron spin sz for �P = 0.2 with inhomogeneous and ho-
mogeneous polarizations, where �P = 1 − (1/N)

∑N
k=1 pk is

the deviation from the perfect polarization. The initial electron
spin state is along the z axis. Comparing the value of sz at
time tr to the initial value for the two cases, we find that the
inhomogeneous one is closer. Similarly, for an initial state
along the x axis, as shown in Figs. 2(b) and 2(c), s0 and
sT both show closer values at time tr to their initial value
in the inhomogeneous case. We also note that the oscillation
amplitude in the inhomogeneous case is larger than that in the
homogeneous one, indicating that more information is encoded
into the nuclear spins in the inhomogeneous case.

The minimal fidelity Fmin calculated with sz, s0, and
sT at time tr is presented in Fig. 3 for various �P ’s in
homogeneous and inhomogeneous cases. The dashed lines in
Fig. 3 corresponding to the homogeneous cases are essentially
the reproduction of the main results in Ref. [11]. As a
comparison to our results for inhomogeneous polarizations

235421-3



WENKUI DING, ANQI SHI, J. Q. YOU, AND WENXIAN ZHANG PHYSICAL REVIEW B 90, 235421 (2014)

in this paper (solid lines in Fig. 3), we observe the following:
(i) Fmin’s in the inhomogeneous cases are larger than in the
homogeneous cases; (ii) for the inhomogeneous cases with
different widths, the narrow width situation exhibits larger
Fmin’s than the normal width, while for the homogeneous
cases Fmin is almost independent of the width. Noticeably,
in the case of inhomogeneous polarization with a narrow
width of Ak’s, the value of Fmin is still above 80% even at
�P = 0.5, which corresponds to nuclear polarization well
below the experimentally accessible value 68%.

To explain the superior performance in the inhomogeneous
case, we notice that the errors, 1 − Fmin, are mainly caused by
the strongly coupled nuclear spins in the case of homogeneous
polarization [11], while in the inhomogeneous case, these
strongly coupled nuclear spins have higher polarization than
average, so the main contribution to the errors is significantly
suppressed and the minimal fidelity becomes larger. Similarly,
the narrower the distribution of the inhomogeneous polariza-
tion is, the higher is the minimal fidelity.

IV. ENTROPY CHANGE OF NUCLEAR SPINS DURING
THE ENCODING STAGE

During the encoding stage in the case of inhomogeneous
polarization, as shown in Fig. 2, the larger amplitude of
the Rabi oscillation of the electron spin indicates that more
information is written into the nuclear spins, which inspires
us to further quantify the information acquired by the nuclear
spins.

To measure the information acquired by each nuclear spin,
we employ the change of the von Neumann entropy,

�Hk = Hk(te) − Hk(0), (3)

where Hk(t) = −tr[ρk(t) ln ρk(t)], with ρk(t) being the re-
duced density matrix of the kth nuclear spin at time t . To
compare the �Hk’s behaviors for different polarizations,
we normalize them to their largest value, i.e., �H̃k =
�Hk/ max(�Hk) for each nuclear polarization �P .

We plot in Fig. 4 the normalized change of the von Neumann
entropy �H̃k for each nuclear spin as a function of the coupling
strength Ak for various inhomogeneous nuclear polarizations
with the initial electron spin along the z axis. As shown clearly
in the figure, strongly coupled (also highly polarized) nuclear
spins change their state more drastically, i.e., with larger �H̃k .
It reveals that these nuclear spins acquire more information
from the electron during the encoding stage. This results hold
for all polarizations and are more prominent for larger �P ’s.
For example, the difference of �H̃k at larger Ak’s and at
smaller Ak’s for �P = 0.4 is larger than that for �P = 0.0
or 0.2. By comparing �Hk of the homogeneous and inho-
mogeneous polarizations for �P = 0.4 in the inset of Fig. 4,
we observe that the strongly coupled nuclear spins acquire
much more information in the inhomogeneous case. This may
explain why the quantum memory performance is better in the
inhomogeneous polarization. As a rule of thumb, we note here
that the overall �Hk becomes smaller for larger �P ’s.

For the perfectly polarized nuclear spins, we may investi-
gate the entropy change during the encoding stage for many
more nuclear spins by utilizing the conservation of the z

component of the total spins Sz + ∑N
k=1 I z

k . We increase the
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FIG. 4. Dependence of �H̃k on Ak for various polarizations at
optimal magnetic fields during the encoding stage. Ak is in a Gaussian
form with a normal width. Inset: Comparison of original �Hk for
�P = 0.4 with homogeneous (crosses) and inhomogeneous (circles)
polarizations. Strongly coupled and highly polarized nuclear spins
acquire more information during the encoding stage.

number of nuclear spins by shrinking the lattice constant to
1/4 and 1/10 of their original values, but we keep the profile
of the electron density fixed. For a consistent comparison, we
normalize not only �Hk by the maximum max(�Hk) but also
Ak by the maximum max(Ak).

The results for the perfect polarization are presented in
Fig. 5 for three QD sizes. These curves are remarkably close
to each other, manifesting that the conclusions drawn from
N = 20 nuclear spins may also be applicable to larger QD
sizes. For N → ∞, we are actually able to obtain an analytical
solution.

As N → ∞, the resonance condition is in fact always
satisfied, so the Hamiltonian is further simplified to Eq. (2). For
an initial state |↑〉e ⊗ |0〉n, the state becomes |↓〉e ⊗ |1〉n after
a time of π/�. The reduced density matrix of each nuclear
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FIG. 5. (Color online) Dependence of �H̃k on Ak for the perfect
polarization. Ak’s are normalized to their largest value. The solid line,
which is indistinguishable from the dash-dotted line for N = 31 × 41,
stands for the analytical limiting solution at N → ∞.
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spin is expressed as

ρk = 1

2

(
1 + pk 0

0 1 − pk

)
, (4)

where pk = 2〈I z
k 〉 = 1 − 2a2

k (with ak = Ak/�) is the polar-
ization of the kth nuclear spin. Finally, we obtain the entropy
change of each nuclear spin,

�Hk = −(
1 − a2

k

)
ln

(
1 − a2

k

) − a2
k ln

(
a2

k

)
. (5)

The solid line in Fig. 5 shows this analytical result. As shown
in the figure, this analytical curve looks indistinguishable from
the one for N = 31 × 41.

V. CONCLUSION

To conclude, we have investigated the effect of inhomo-
geneous nuclear polarization on the performance of QD-
based quantum memory. Compared with the homogeneous
nuclear polarization, QD-based quantum memory has a much
higher minimal fidelity with the inhomogeneous polarization.
Remarkably, the minimal fidelity can reach above 80% even
at a nuclear polarization as low as 50%. We ascribe the
superior performance in inhomogeneous polarization to the
suppression of the errors mainly caused by the strongly
coupled nuclear spins, whose polarizations are higher than
the average polarization. We further carry out the calculations
of the entropy change during the encoding stage, and the
results show that the strongly coupled nuclear spins indeed
dominate at this stage for QD sizes varying from 20 to
above 2000 nuclear spins. Our results indicate a practical way
to experimentally realize QD-based quantum memory with
inhomogeneous nuclear polarizations.
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APPENDIX: OPTIMAL MAGNETIC FIELD

During the evolution of the quantum memory protocol,
the external magnetic field is applied to compensate the
Overhauser field to fulfill the resonance condition. However,
the Overhauser field is time-dependent and fluctuating. Al-
though the best external field should also be time-dependent
in principle, a practical external magnetic field is constant

0 0.1 0.2 0.3 0.4 0.5

1.05

1.1

1.15

1.2

ΔP

B
op

t / 
B

ov
er

 

 

Inhomo & Narrow
Inhomo & Normal
Homo & Normal
Homo & Narrow

FIG. 6. Numerically optimized magnetic field, normalized by
the Overhauser fields, as a function of �P for four cases:
(i) inhomogeneous polarization with a narrow width of Ak (solid line
with circles); (ii) inhomogeneous polarization with a normal width of
Ak (solid line); (iii) homogeneous polarization with a normal width
of Ak (dashed line); (iv) homogeneous polarization with a narrow
width of Ak (dashed line with circles).

both in our calculations and in experiments. To best meet
the requirement of the resonance condition, we numerically
optimize B0 by searching for the largest Fmin for both
homogeneous and inhomogeneous nuclear polarizations. For
a homogeneous polarization, it is analytically shown that the
optimal magnetic field is [11]

B0 = −Bover − M3/(2M2g
∗
e μB), (A1)

where M3 = ∑N
k=1 A3

k and M2 = ∑N
k=1 A2

k . We numerically
simulate the evolution and calculate Fmin for 10 magnetic
fields around B0 with an interval of 0.1. We then fit the
10 pairs of {B,Fmin} with a quadratic function and locate the
optimal magnetic field Bopt, which corresponds to the largest
Fmin. Using the optimal field Bopt, we finally simulate the
evolution again and obtain the results of Fmin shown in Fig. 3.
For the homogeneous cases, our numerically obtained optimal
magnetic fields are actually the same as analytical results (A1),
but for the inhomogeneous cases, we find the numerical
optimal value deviates away from the analytical results when
�P increases. We note that this deviation would become small
as the number of nuclear spins increases, i.e., Bopt → −Bover

if N → ∞.
We present in Fig. 6 the optimal magnetic fields normalized

by the Overhauser field Bover = ∑
k pkAk for various nuclear

polarizations with N = 20. These normalized optimal mag-
netic fields are almost constant between 1 and 1.2.
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