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Renormalization of nanoparticle polarizability in the vicinity of a graphene-covered interface
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We study the electromagnetic properties of a metamaterial consisting of polarizable (nano)particles and a
single graphene sheet placed at the interface between two dielectrics. We show that the particle’s polarizability is
renormalized because of the electromagnetic coupling to surface plasmons supported by graphene, which results
in a dispersive behavior, different for the polarizability components corresponding to the induced dipole moment,
parallel and perpendicular to the graphene sheet. In particular, this effect is predicted to take place for a metallic
particle whose bare polarizability in the terahertz (THz) region is practically equal to the cube of its radius (times
4πε0). This opens the possibility to excite surface plasmons in graphene and enhance its absorption in the THz
range by simply using a monolayer of metallic particles randomly deposited on top of it, as we show by explicit
calculations.
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I. INTRODUCTION

Electromagnetic (EM) metamaterials are artificial struc-
tures designed in such a way that their optical properties
differ from those existing in natural materials [1,2]. They
offer new functionalities, such as radiation guiding [3],
enhanced absorption and EM energy concentration in sub-
wavelength regions [4,5], extraordinary transmission [6],
color filtering [7] and tailoring [8], surface-enhanced Raman
scattering (SERS) [9], etc. Many of these unusual properties
are related to surface plasmons, collective oscillations of
free electrons, which either propagate along a conductor’s
surface or a nanowire, or are localized in a metallic nanopar-
ticle (NP) [10,11]. Graphene, a two-dimensional conductor,
possesses unusual electronic properties [12], and graphene
plasmonics [13] has become a field of intense research, both
theoretical and experimental; see Refs. [14,15] for reviews.
It offers the possibility of expansion of metamaterials to the
far-infrared (FIR) and THz spectral range and allows for their
tunability, most directly achieved by adjusting the Fermi level
in graphene through an external gate voltage [16], but also in a
number of different ways, which can be implemented by using
periodic structures of graphene ribbons [17,18], two- [19–21]
or three-dimensional [22,23] arrays of graphene disks, or a
two-dimensional array of antidots [24].

A potentially interesting direction of research is combining
graphene with quasi-zero-dimensional emitters or absorbers,
such as organic molecules [25–27] or semiconductor quantum
dots (QDs) [28,29]. Such study explores the possibilities of
electromagnetic coupling between localized excitations (for
instance, molecular or QD excitons) and propagating graphene
plasmons in order to probe the de-excitation dynamics [25] or
dispersion relation of plasmon-polaritons in graphene [27],
enhance the Förster transfer between an emitter and an
absorber [26], control the coupling between two emitters
(superradiance effect) [30], or enhance the EM radiation
absorption in graphene [31]. Another possibility that has
been recently demonstrated experimentally [32,33] is that of
electromagnetic coupling between the said graphene plasmons
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and an illuminated atomic force microscope tip, which allows
for the study of the plasmon dispersion relation as a function
of the gating applied to graphene.

Qualitatively similar effects have been predicted and ob-
served, in the visible range, for hybrid systems with metal plas-
mons; for instance, generation of single optical plasmons in
metallic nanowires coupled to QDs [34], metal-enhanced [35]
or quenched [36,37] fluorescence of colloidal semiconductor
nanocrystals, or resonant absorption by exciton-plasmon po-
laritons [38,39]. However, the case of graphene is special not
only because it involves a different spectral region, but also
because graphene is a semimetal and its plasma oscillations
are mediated by both intraband and interband transitions,
with a characteristic frequency-dependent conductivity [12].
Moreover, since it is a monolayer-thick material, it should be
considered as a two-dimensional (2D) object rather than a very
thin 3D film [14]. As a result, graphene, for instance, supports
both p- and s-polarized surface waves [40]. In such a case,
the EM coupling to nonplasmonic excitations may also have
features that are not known for metal surface plasmons.

The aim of the present paper is to provide both a qualitative
and quantitative account of the electromagnetic properties of
a metamaterial consisting of polarizable (nano)particles and
a single graphene sheet placed at the interface betwen two
dielectrics, one of which incorporates the particles. Using
the electrostatic approximation, we calculate the field created
by polarization charges induced on the graphene sheet by
the particle excited by an external EM field, as well as the
said surface charge density on graphene, and describe the
resulting effect in terms of its renormalized polarizability.
The calculation of the frequency-dependent renormalized
polarizability is the main result of this article. We show that
it is a second-rank tensor with two unequal principal values,
which can have a pronounced dependence upon the excitation
frequency even if particle’s polarizability is nondispersive in
the considered THz spectral range. In particular, this effect
is shown to take place for a spherical gold particle lying on
the graphene sheet. Once the renormalized polarizability of a
single particle is computed, the EM properties (i.e., reflection,
transmission and absorption spectra) of the metamaterial
consisting of a graphene layer sandwiched between two
dielectrics, one of which is doped with polarizable particles,
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can be calculated. We explicitly compute the THz optical
properties of a monolayer of nonabsorbing nanoparticles
randomly deposited on top of a graphene sheet and show that
the absorption in graphene is enhanced due to the excitation
of surface plasmons.

This article is organized as follows. In Sec. II, we define our
model system and derive the electrostatic boundary conditions
on graphene. The electric fields are obtained using the method
of images in Sec. III. In Sec. IV, the renormalized polarizability
is introduced and a few examples, involving nanoparticles
constituted of different materials, are also discussed. The
following two sections present the calculated results for the
polarization charge density induced on graphene and the THz
optical spectra of the system composed of a monolayer of
polarizable particles randomly deposited on the graphene
sheet. We conclude in Sec. VII.

II. MODEL SYSTEM AND ASSOCIATED
BOUNDARY CONDITIONS

We first consider the problem of a single polarizable
(nano)particle, placed in the vicinity of the interface between
two dielectrics, with relative permittivities that can depend on
the frequency ω of the electric field in the media, given by
ε1(ω) (in medium 1, the upper medium) and ε2(ω) (in medium
2, the lower medium). The particle is located in medium 1 at a
distance h along the normal to the interface, the interface being
identified with the plane z = 0 in our system of coordinates
[the position of the particle is given by r0 = (0,0,h); see
Fig. 1]. The interface is constituted by a graphene sheet, which
is homogeneous in a macroscopic scale and is described at this
scale by its (frequency-dependent) conductivity σ (ω). We will
treat the problem in the electrostatic approximation where one
can neglect both the retardation effects and the magnetic field
associated with the electric field present in the media. Thus,
in both media, the electric field is given by E = −∇φ(r,ω),
where φ(r,ω) is the electric scalar potential. Since the location
of the dipole along the xy plane can be chosen arbitrarily, it
is appropriate to perform a partial Fourier transform from real
space to the reciprocal space of the wave vector q = (qx,qy),
keeping however the dependency of φ on the z coordinate [41].

FIG. 1. (Color online) Schematics of the system consisting of a
dipole (polarized NP) located at a point (0,0,h) in the vicinity of a
graphene-covered interface between two dielectrics. An image dipole
located at (0,0,−h) is also shown.

In medium 1, the electric potential obeys Poisson’s equation
with a source term that describes the presence of the polariz-
able nanoparticle, modeled as an electric dipole of magnitude
μ, which we will later set to be proportional to the applied field.
In medium 2, the electric potential obeys Laplace’s equation.
One relates the field in the two media through the boundary
condition that determines the discontinuity in the normal
component of the electric displacement vector, D = ε0 ε E,
across the interface. Such a boundary condition reads, after
Fourier transformation,

ε1(ω)
∂φ(z,q,ω)

∂z

∣∣∣∣
z=0+

− ε2(ω)
∂φ(z,q,ω)

∂z

∣∣∣∣
z=0−

= −δρ(q,ω)

ε0
, (1)

where ε0 is the vacuum permittivity and δρ(q,ω) is the surface
density of charge induced in the graphene sheet. It is related
to the current density, j (q,ω), in the graphene sheet by the
continuity equation

ω δρ(q,ω) = q · j (q,ω). (2)

In order to close the system of equations necessary for the
solution of the problem, we need the equation that relates the
surface density of current to the local electric field present in
the graphene sheet. Within the realm of a diffusion-drift model
that describes the graphene sheet, one has:

j (q,ω) = −iσ (ω)q
(

φ(z = 0,q,ω) + 1

e2

∂EF

∂n

δρ(q,ω)

1 − iωτF

)
,

(3)

where the derivative ∂EF

∂n
, with EF being the Fermi energy

of graphene and n the density of carriers, is computed at
thermal equilibrium and is given, at zero temperature, by
∂EF

∂n
= ρ−1(EF ); i.e., this quantity is just the inverse density of

states of graphene at the Fermi level. Finally, τF denotes the
quasiparticles’ relaxation time that enters the Drude formula
of the conductivity (see below). This formula also shows that
it is possible to neglect the diffusion term with respect to the
drift one in the limit of ωτF � 1.

Substituting (3) in (2) and introducing the diffusion constant
of carriers in graphene through

D(ω) = σ (ω)

e2(1 − iωτF )

∂EF

∂n
= v2

F τF

2(1 − iωτF )2
, (4)

where we have used the Drude form for the conductiv-
ity of graphene [14], σ (ω) = σ0/(1 − iωτF ), with σ0 =
1
2e2v2

F τF ρ(EF ), with vF being graphene’s Fermi’s velocity,
we obtain

δρ(q,ω) = − σ (ω) q2

−iω + D(ω) q2
φ(z = 0,q,ω), (5)

which relates the local density of charge in the graphene sheet
with the local value of the electric potential. Substituting this
equation in (1), we obtain the relation

ε1(ω)
∂φ(z,q,ω)

∂z

∣∣∣∣
z=0+

− ε2(ω)
∂φ(z,q,ω)

∂z

∣∣∣∣
z=0−

= σ (ω) q2

ε0(−iω + D(ω) q2)
φ(z = 0,q,ω), (6)
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which is in a form that involves the electric potential alone.
One needs to add to (6) the condition of continuity of the
potential at the graphene sheet,

φ(z = 0−,q,ω) = φ(z = 0+,q,ω), (7)

equivalent to the condition of continuity of the transverse
components of the electric field and necessary for (6) to
be properly defined. The solution of Poisson’s equation in
medium 1, with a source term representing the electric dipole,
and of Laplace’s equation in medium 2, with both solutions
satisfying the boundary conditions (6) and (7), constitutes the
mathematical solution of our physical problem, to which we
turn to in the next section.

III. SOLUTION BY METHOD OF IMAGES
IN RECIPROCAL SPACE

In the absence of the graphene sheet, the problem described
above is solvable through the method of images [42]. In
medium 1, the electric potential is given by the superposition
of the potential created by the original dipole and that of an
image dipole of appropriate strength, μ′ = A[2(μ · ẑ)ẑ − μ],
located at −r0 = (0,0, − h), where ẑ is the unit vector in
the direction perpendicular to the interface. In medium 2, the
potential is that of a dipole placed at r0 in medium 1, but with a
strength that is different in magnitude from that of the original
dipole, μ′′ = Bμ. In the mixed real-space/reciprocal-space
representation used above, the solution of the problem in
the absence of the graphene sheet is given, in regions 1 and
2, by

φ1(z,q,ω) = 1

2ε0ε1
[A[(μ · ẑ) + iμ · q̂ ] e−q(z+h)

+ [(μ · ẑ)sgn(z − h) − iμ · q̂ ] e−q|z−h|], (8)

φ2(z,q,ω) = − B

2ε0ε2
[(μ · ẑ) + iμ · q̂ ] eq(z−h), (9)

where q̂ is the unit vector along q.
In order to generalize this solution to the case where

the graphene sheet is present at the interface, all one has
to do is to consider the coefficients A and B as functions
of q. Substituting the solutions (8) and (9) in the boundary
conditions (6) and (7) yields

A(q,ω) = ε2 − ε1 + f (q,ω)

ε1 + ε2 + f (q,ω)
, (10)

B(q,ω) = 2 ε2

ε1 + ε2 + f (q,ω)
, (11)

where

f (q,ω) = qσ (ω)

ε0[−iω + D(ω) q2]
. (12)

Equations (8) and (9), with A(q,ω) and B(q,ω) given,
respectively, by (10) and (11), constitute the general solution
of the considered problem within the realm of the electrostatic
approximation.

IV. RENORMALIZED POLARIZABILITY

A. General expressions

We now consider that a homogeneous electric field E0(ω)
is applied to the system. In the absence of the graphene sheet
and for ε2 = ε1, the particle would respond to such a field by
developing an electric dipole moment μ = ε1α0(ω) E0, where
α0(ω) is the particle’s polarizability [10], which depends on
the material nature and geometry of the particle as well as on
ε1. We shall consider it as a scalar function of frequency. In
the situation depicted in Fig. 1, we have

μ = ε1α0(ω) El , (13)

where El = E0 − ∇φpol and φpol is the potential created by
the polarization charges at the interface, i.e., excluding the
self-field created by the nanoparticle, which is represented by
the first term of Eq. (8). Expressing the dipole moment (13) in
terms of E0, we define the renormalized polarizability [43]

μ = ε1α
∗(ω) · E0, (14)

where the quantity α∗(ω) is a second-rank tensor. The electric
potential φpol is given, in real space and in medium 1, by

φpol(r,ω) = 1

2ε0ε1

∫
d2q

(2π )2
eiq·ρ

×A(q,ω) [ (μ · ẑ) + iμ · q̂ ] e−q(z+h), (15)

where ρ = (x,y) and A(q,ω) is given by (10).
Applying the gradient operator under the integration sign

and substituting (13), we obtain for the local field acting on
the particle

El(ω) = E0(ω) + α0(ω)

2ε0

∫
d2q

(2π )2
q e−2qh A(q,ω)

× ( El
zẑ + (El · q̂) q̂ ). (16)

Since A(q,ω) only depends on the modulus of q, one can easily
perform the angular integrals in (16), which yields

El(ω) = E0(ω) + α0(ω)

8πε0
a(h,ω)

(
2El

zẑ + El
x x̂ + El

y ŷ
)
,

(17)

where x̂ and ŷ are the unit vectors in the directions of the
interface and

a(h,ω) =
∫ ∞

0
dq q2e−2qhA(q,ω) . (18)

Using the components of this equation to express El in terms
of E0, substituting in (13) and comparing with (14), we obtain
the following expressions for the principal components of the
tensor α∗:

α∗
xx(ω) = α∗

yy(ω) = α0(ω)

1 − α0(ω)
8πε0

a(h,ω)
, (19)

α∗
zz(ω) = α0(ω)

1 − α0(ω)
4πε0

a(h,ω)
. (20)

At sufficiently high frequencies, we can neglect the diffusion
term [i.e., we can set D(ω) = 0] in the expressions above,
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reducing a(h,ω) to the following form:

a(h,ω) = 1

4h3

(
1 + β1

1 + ε2/ε1
+ β2

1

1 + ε2/ε1

+ β3
1

1 + ε2/ε1
e−β1 [−Ei(β1) + iπ ]

)
, (21)

where β1 = i 2ωε0 h( ε1+ε2 )
σ (ω) and Ei(β1) = −P

∫ ∞
−β1

dx e−x

x
is the

exponential integral function [44].
We would like to point out the connection between the

expression obtained for the renormalized polarizability and the
existence of surface plasmon polaritons (SPPs) in graphene.
The integral appearing in the definition of the function a(h,ω),
Eq. (18) has the form [45]

I =
∫ ∞

0

ε2 − ε1 + f (q,ω)

ε1 + ε2 + f (q,ω)
e−2qhq2dq. (22)

Neglecting the diffusion term, the poles of the integrand are
given by the equation

ε2 + ε1

q
= σ (ω)

iωε0
, (23)

which is the SPP dispersion relation in the electrostatic
approximation [14]. The SPP wavevector for a given ω,
q1, determines the dependence of a(h,ω) upon the distance
between the particle and the graphene sheet, h, since β1 =
2q1h in Eq. (21).

B. Examples

For a spherical particle of a radius R, made of a dispersive
material with a dielectric function ε3(ω), we have [42]

α0(ω) = 4πε0
ε3(ω) − ε1

ε3(ω) + 2ε1
R3. (24)

This formula can describe a simple dielectric inclusion, a
metallic particle [11], if ε3(ω) = ε∞ + iσ3D(ω)/(ε0ω) with
ε∞ denoting the background dielectric permittivity and σ3D

the optical conductivity of a bulk metal and also, with some
modification, a semiconductor QD [39]. For a particle made
of a typical metal, such as gold, with the plasma frequency
lying in the UV spectral region, we have ε3(ω) � 1 and
α0 ≈ 4πε0R

3 in the THz range, i.e., the bare polarizability
is nearly real and dispersionless.

Note that for a spherical particle, one obtains, by setting
σ (ω) = 0 in (10) and substituting the result in (18) (i.e., in the
absence of graphene), the formula

a(h,ω) = 1

4h3

ε2 − ε1

ε2 + ε1
(25)

and the expressions for the components of α∗, (19) and (20),
coincide with those obtained in Ref. [43].

Considering the Drude form of the optical conductivity of
graphene, introduced in Eq. (4) above, we have that, in the limit
of high frequencies, the real part of the conductivity is small
with respect to the imaginary part. Assuming also that ε1 and ε2

are real constants, the dispersion relation (23) yields ω ∝ √
q.

The renormalized polarizability of a gold particle of several
microns in size is shown in Fig. 2. It shows a Lorentzian-type
dispersion induced by the polarization of graphene, larger for
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FIG. 2. (Color online) Frequency dependence of the real part of
the renormalized polarizability components (divided by the bare one,
α0) for a spherical Au particle of radius R = 10 μm located at a
distance h = 10 μm from a suspended graphene sheet (ε2 = ε1 = 1),
for two values of the Fermi level as indicated. The inset shows the
peak frequency dependence on the inverse of the particle’s distance
from the graphene sheet. Gold parameters are taken from Ref. [8].

the “normal” (zz) component. The position of the peak depends
on the distance and the dependence on h−1 resembles the SPP
dispersion as can be seen in the inset of Fig. 2. We can say that
the renormalized polarizability presents a resonance due to the
excitation of SPPs in graphene, with the wave vector q ∼ h−1.
The other components of α∗ show a similar behavior but the
amplitude of the resonance is smaller. The same conclusions
are valid for particles made of a dispersionless dielectric or
even for a spherical cavity in one of the dielectrics surrounding
the graphene sheet; however, the coupling is weaker in these
cases.

An interesting situation arises when the particle’s bare
polarizability has its own resonance; for instance, if it is
made of a polar semiconductor, for example CdSe, with a
characteristic reststrahlen band between the transverse (ωT O)
and longitudinal (ωLO) optical phonon frequencies, with the
dielectric function given by [46]

ε3(ω) = ε∞

(
1 + ω2

LO − ω2
T O

ω2
T O − ω2 − iω
T O

)
, (26)

where ε∞ = const and 
T O is the phonon damping.
The polarizability of such a particle shows a Lorentzian-type
dispersion [see Fig. 3(a)]. In this case, a double resonance can
occur when the SPP frequency (determined by the wave vector
q ∼ h−1) falls within the reststrahlen band (between ωT O and
ωLO) and the denominator in Eq. (20) [or Eq. (19)] is small.
Although such a resonance is strongly damped because of the
large value of Im α0, its presence results in a considerable
enhancement of the imaginary part of the polarizability, which
represents an additional absorption for the particle when
located close to the graphene sheet [see Fig. 3(a)]. We also
note that the peak frequency shifts slightly downwards.

For a fixed frequency, the renormalized polarizability
components show a nontrivial dependence upon the Fermi
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FIG. 3. (Color online) Dependence of the real and imaginary
parts of the renormalized polarizability components on the frequency
(a) and the Fermi level (b), calculated for a spherical CdSe particle of
radius R = 1 μm located at a distance h = 1.1 μm from a suspended
graphene sheet (ε2 = ε1 = 1). The graphene Fermi level is EF = 0.4
eV for (a) and the field frequency is �ω0 = 25.15 meV for (b). Panel
(a) also shows the frequency dependence of the bare polarizability,
α0. Thin horizontal lines in panel (b) indicate the values of the real
and imaginary parts of α0 for �ω0 = 25.15 meV. Phonon parameters
of CdSe were taken from Ref. [47].

level [see Fig. 3(b)], with the absorption enhancement taking
place above a certain value [EF ≈ 0.16 eV in Fig. 3(b)].
In order to understand this behavior, we recall that the
polarizability enhancement factor depends on EF through
Eq. (21) and that

β1 ≈ 2ωε0(ε1 + ε2)

Im σ
h, (27)

with Im σ ≈ 4αF ε0 EF /(�ω) (where αF is the fine structure
constant), i.e., β1 ∝ (�ω/EF ). We would recognize in the
variation of the real part of the renormalized polarizability
seen in Fig. 3(b) the same dispersive behavior seen in Fig. 2,
if we were to represent the functions plotted in this latter

figure in terms of ω−1, rather than ω. The characteristic value
of EF corresponds to the matching of the SPP frequency (at
q ∼ h−1) with the phonon resonance frequency. In principle,
such a pronounced dependence of Im α∗ upon EF opens
the possibility to probe the Fermi level in gated graphene
by measuring the resonant absorption of radiation by such
particles. Note that such a double resonance should occur
whenever α0(ω) shows a strong dispersion. For instance, for a
QD, the real part of the bare polarizability, Re α0(ω), strongly
oscillates in the vicinity of the excitonic transitions, and if the
dot is made of a narrow gap material (e.g., PbTe) a coupling
between a confined QD exciton and surface plasmon waves
can take place [39].

V. POLARIZATION CHARGE ON GRAPHENE

Once the renormalized polarizability components are
known, one can compute the induced surface charge density
δρ(ρ,ω) on the graphene sheet by computing the inverse
Fourier transform of (5), with φ(z = 0,q,ω) given by Eq. (9),
where B(q,ω) is defined by (11). This yields, with D(ω) = 0,

δρ(ρ,ω) = ε1

∫
d2q

(2π )2

q2 eiq·ρ −qh

q − q1

[
α∗

zz(ω)E0
z (ω)

+ i α∗
xx(ω)(q̂ · E0(ω))

]
, (28)

where q1 = β1/(2h). Performing the relevant angular inte-
grals, one obtains

δρ(ρ,ω) = ε1

h3

[
α∗

zz(ω) E0
z (ω) g0(h,ρ,ω)

−α∗
xx(ω) (E0

‖(ω) · ρ̂) g1(h,ρ,ω)
]
, (29)

with dimensionless functions g0 and g1 defined as follows:

gn(h,ρ,ω) = h3

2π

∫ ∞

0
dq

q3e−qh

q − q1
Jn(qρ) , (30)

where Jn(x) is the Bessel function of order n = 0,1, E0
‖(ω)

is the applied electric field along the interface, and ρ̂ is the
unit vector along ρ. The dependence of the functions g0 and
g1 upon the distance within the graphene plane is shown in
Fig. 4. Note that the first term in Eq. (29) corresponds to an
isotropic charge distribution (we can say that it corresponds to
an SPP mode with zero angular momentum, l = 0), while the
second one is proportional to the cosine of the angle between
ρ and E0

‖ (we may call it l = 1 mode). These oscillations of
the charge density are nothing but the surface plasmons with
the wave vector q1. As seen from Fig. 4, the SPP excitation is
more efficient if the external field E0 is normal to the interface,
entailing a larger dipole moment and, consequently, a higher
surface charge density induced on graphene. The functions gn

decrease rapidly with h (see upper panels in Fig. 4) and at
large distances from the interface this decay is approximately
∼ h−3.

VI. OPTICAL SPECTRA OF A NP-GRAPHENE
METAMATERIAL

Finally, let us consider the situation where polarizable
particles are randomly dispersed above a graphene-covered
dielectric substrate. For the sake of simplicity, we shall
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FIG. 4. (Color online) Dependence of the characteristic func-
tions g0 (left column) and g1 (right column) that determine the
polarization charge density [Eq. (29)] upon height above the interface
and the distance from the dipole projection in the graphene plane.
Color code plots show the real [(a) and (d)] and imaginary [(b)
and (e)] parts of g0 and g1 as functions of h and ρ. Plots (c) and
(f) are for h = 10 μm. The parameters are ε2 = ε1 = 1, R = 5 μm,
EF = 0.5 eV, τF = 10−13 s, �ω = 10 meV.

assume that they form a monolayer, i.e., all the particles
are located approximately at the same distance (h) from the
surface. Such monolayers of gold or silver particles can be
prepared by colloidal chemistry methods [48]. If the typical
distances between them are much larger than h, their direct
interaction can be neglected and each of the particles can
still be described by the renormalized polarizability tensor.
If a plane linear-polarized EM wave impinges the system,
at normal incidence (see inset in Fig. 5), the total dipole
moment of the NP layer (per unit area) is simply given by
Px = νε1α

∗
xxEx , where ν is the number of particles in the

monolayer per unit area and Ex is the electric field. In this case,
the surface density of the displacement current produced by
the time-dependent polarization of the NP layer, Jx = −iωPx ,
can be related to the external field through the effective optical
conductivity,

σ ∗
NP (ω) = −iωνε1α

∗
xx(ω). (31)

The polarization current yields a discontinuity of the magnetic
component of the EM field (Hy), similar to what takes place
at a graphene sheet [14],

Hy(z = δ+) − Hy(z = δ−) = σ ∗
NP Ex(z = δ), (32)

while Ex is continuous across the interface [49]. Using
these boundary conditions, it is straightforward to obtain
the amplitudes of the transmitted and reflected waves (see
Appendix B). In the limit ω(R + h)/c � 1 the reflection and
transmission coefficients (defined as the ratios of the magnetic
field amplitudes) are given by

r̂ =
1 − √

ε2 + (σ+σ ∗
NP )

ε0c

1 + √
ε2 − (σ+σ ∗

NP )
ε0c

, t̂ = 2
√

ε2

1 + √
ε2 + (σ+σ ∗

NP )
ε0c

. (33)
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FIG. 5. (Color online) Reflectance, transmittance (a), and ab-
sorbance (b) spectra of a monolayer of Au NPs randomly deposited
on top of a free-standing graphene sheet. The corresponding spectra
of graphene itself are also shown (dashed lines) for comparison.
The inset shows the schematics of the considered system. The
parameters are the following: R = 5 μm, h = 5 μm, EF = 0.5 eV,
ν = 8 × 10−4 μm−2.

The experimentally measured reflectance (R) and transmit-
tance of the EM wave are defined as follows [50]:

R = |r̂|2, T = 1√
ε2

|t̂ |2. (34)

The absorbance is given by A = 1 − T − R.
The quantities R, T , and A are determined directly by

the sum of the optical conductivities of graphene and the
NP monolayer, (σ + σ ∗

NP ), and the latter takes into account
their interaction (the calculated reflectance, transmittance, and
absorbance spectra are shown in Fig. 5). As seen from this
figure, in the vicinity of the SPP resonance (approximately
8 meV in this case) the reflectivity of the structure falls to
nearly zero, while the transmittance is increased, compared to
the case of pure graphene-covered interface. This effect can be
called plasmon-assisted enhanced transmission. Its physical
cause (excitation of surface plasmons) is the same of the
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famous extraordinary optical transmission in metallic films
with subwavelength hole arrays [6,51]. At the same time, the
absorbance is also enhanced in this spectral region and the
enhancement factor is nearly 100% close to the resonance
frequency [A increases from ≈ 0.13 to ≈ 0.23 at ω = 7 meV
in Fig. 5(b)] because SPPs in graphene, excited via NPs, are
damped. Note that, as stated above, the bare polarizability
of a metallic nanoparticle is (nearly) real. Thus, the rather
large imaginary part of its renormalized counterpart is due to
the presence of a(h,ω) in the denominators of equations (19)
and (20), and this function only acquires an imaginary part in
the presence of graphene, whose coupling to the nanoparticle
is responsible for the increased absorbance. This effect can
directly be seen in Eq. (33), from which one can compute
the absorbance of the system: the largest contribution to this
quantity comes from the real part of σ ∗

NP (ω) [proportional to
the imaginary part of α∗

xx(ω)], whereas the effect of graphene
alone [encoded in σ (ω)], is small. As a result, the absorbance
of the whole system is enhanced in the vicinity of ω(q1). As the
frequency increases, the reflectivity grows (and A decreases)
due to the increasing optical conductivity of the NP layer [see
Eq. (31)].

VII. CONCLUSIONS

In summary, we derived the electric field created by a
polarizable particle located in the vicinity of a graphene-
covered interface between two dielectrics. We have shown
that the particle’s polarizability is renormalized because of
its interaction with the polarization charges induced on the
interface and, in particular, due to the particle’s coupling
to surface plasmons supported by graphene. As a result,
the renormalized polarizability is a tensor with two unequal
principal components which depend on the frequency even
if the bare polarizability is dispersionless. Since the SPP
resonance in graphene is tunable by changing the Fermi level in
this material, it is possible to achieve a double resonance with
particles possessing resonant bare polarizability, e.g., due to
polar optical phonons. In this case, the absorption of the EM
radiation by such particles in the vicinity of the resonance
frequency will be enhanced.

In the case of particles whose bare polarizability is
frequency-independent in the considered THz range, several
effects that are potentially interesting for applications can be
achieved, such as (i) launching of SPPs with metal antennas for
nanoscale graphene plasmonic circuits and devices [32,33,52]
[note that a single spherical particle can help launch SPP modes
with angular momenta l = 0 or 1 by choosing an appropriate
polarization of the incident wave; see Eq. (29)]; (ii) scattering
and localization of surface plasmons [53]; (iii) enhanced
absorption of THz radiation in graphene [31,54]; (iv) enhanced
transmission of the EM radiation through doped graphene in
a “transparency window” determined by the surface plasmon
resonance at a frequency corresponding to the SPP wave vector
q ∼ h−1 (h is the particle’s distance from graphene). These
effects can be made broadband if several layers of particles are
used for which the resonance frequencies should be somewhat
different due to the different distances h of such layers to the
graphene sheet. Finally, we would like to emphasize that, even
though we exemplified the predicted effects with micrometer-

sized gold spheres, the localized plasmon resonance in these
particles is irrelevant and their bare polarizability at the THz
frequencies is nearly real and constant, α0 ≈ 4πε0R

3. In
principle, particles made of a dielectric with a sufficiently high
permittivity or even spherical holes in a capping dielectric layer
could be used instead, even though α0 would be smaller in this
case, and one would require higher particle’s concentrations
to obtain considerable effects. On the theoretical side, it
would be necessary to take into consideration particle-particle
interactions [55].
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APPENDIX A: INTEGRAL (22)

If one does not neglect the diffusion term, the integral (22)
is given by

I = A

4h3
+ B

4h2
− C

2h
+ aq+ − b

q+ − q−
e−2q+h

×E1(−2hq+) − aq− − b

q+ − q−
e−2q−hE1(−2hq−), (A1)

where

A = ε2 − ε1

ε2 + ε1
, B = 2ε1σ

ε0D(ε2 + ε1)2
,

C = 2ε1σ
2

ε2
0D

2(ε2 + ε1)3
,

a = 2ε1σ
3

ε3
0D

3(ε2 + ε1)4
, b = 2iωε1σ

2

ε2
0D

3(ε2 + ε1)3
,

and q± are the roots of the polynomial

q2 + σ

ε0D(ε2 + ε1)
q − iω

D
.

APPENDIX B: REFLECTION AND TRANSMISSION
COEFFICIENTS

Considering the system schematically shown in the inset
in Fig. 5, we write down the fields in three regions in the
following way:

(1) z � δ = R + h

H (1)
y = e−ik(z−δ) − r̂eik(z−δ),

(B1)
E(1)

x = −e−ik(z−δ) − r̂eik(z−δ);
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(2) 0 � z < δ

H (2)
y = âe−ik(z−δ) + b̂eik(z−δ) ,

(B2)
E(2)

x = −âe−ik(z−δ) + b̂eik(z−δ) ;

(3) z < 0

H (3)
y = t̂ e−ikz , E(3)

x = − t̂√
ε2

e−ikz . (B3)

By applying the boundary conditions listed in Sec. VI, we
obtain the following system of equations for the coefficients
r̂ , t̂ , â, and b̂:

1 + r̂ = â − b̂ ,

1 − r̂ = â + b̂ + σ ∗
NP

ε0c
(1 + r̂) ,

âe−ikδ − b̂eikδ = t̂√
ε2

, (B4)

âe−ikδ + b̂eikδ = t̂ + σ

ε0c
(âe−ikδ − b̂eikδ) .

In the limit kδ → 0, the system (B4) reduces to

1 + r̂ = t̂√
ε2

,

(B5)

1 − r̂ − t̂ = t̂√
ε2

(σ ∗
NP + σ )

ε0c
.

from which the expressions (33) are obtained.
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