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Optically induced Aharonov-Bohm effect in mesoscopic rings
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We show theoretically that strong electron coupling to circularly polarized photons in non-singly-connected
nanostructures results in the appearance of an artificial gauge field that changes the electron phase. The effect
arises from the breaking of time-reversal symmetry and is analogous to the well-known Aharonov-Bohm phase
effect. It can manifest itself in the oscillations of conductance as a function of the intensity and frequency of the
illumination. The theory of the effect is elaborated for mesoscopic rings in both ballistic and diffusive regimes.
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I. INTRODUCTION

Progress in modern nanotechnology has resulted in rapid
developments in the fabrication of mesoscopic objects, in-
cluding non-singly-connected nanostructures such as quantum
rings. The fundamental interest attracted by these systems
is caused by a wide variety of purely quantum-mechanical
topological effects that can be observed in ringlike mesoscopic
structures. The most notable phenomenon among them is the
Aharonov-Bohm (AB) effect, which arises from the direct
influence of a vector potential on the electron phase [1,2]. In the
ballistic regime, this effect results in magnetic-flux-dependent
oscillations of the conductance in ringlike structures with
a period equal to the fundamental magnetic flux quantum
@y =h/le| [3-6]. In the diffusive regime, a second type
of conductance oscillations with the period ®(/2 can be
observed. They are known as the Altshuler-Aronov-Spivak
(AAS) oscillations and are associated with the weak localiza-
tion of electrons [7-10].

From a fundamental viewpoint, the AB-AAS oscillations
arise from the broken time-reversal symmetry in the electron
system (conducting mesoscopic ring) subjected to a magnetic
flux through the ring. Namely, the flux breaks the equiva-
lence of clockwise and counterclockwise electron rotations
inside the ring, which results in the flux-controlled interference
of electron waves corresponding to these rotations. The
similar broken equivalence of electron motion for mutually
opposite directions caused by a magnetic field can take
place in various nanostructures, including quantum wells [11],
carbon nanotubes [12], and hybrid semiconductor/ferromagnet
nanostructures [13]. However, the time-reversal symmetry
can be broken not only by a magnetic flux but also by a
circularly polarized electromagnetic field. Indeed, the field
breaks the symmetry since time reversal turns clockwise
polarized photons into counterclockwise polarized ones and
vice versa. As a result, the electron coupling to circularly
polarized photons can change the electron energy spectrum of
quantum rings [14]. Therefore, phenomena similar to the AB
effect can take place in ringlike electronic systems interacting
with a circularly polarized electromagnetic field. We will
show below that the conductance of these electron-photon
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systems can exhibit oscillations that are formally equivalent
to the AB-AAS oscillations induced by a magnetic flux. The
phenomenon can be described in terms of an artificial U(1)
gauge field generated by the strong coupling between electron
and circularly polarized photons. The theory of such an
optically induced AB effect, which lies at the border between
condensed-matter physics and quantum optics, is developed in
this paper.

The paper is organized as follows. In Sec. II, we introduce
the Schrodinger problem describing the electron interaction
with circularly polarized photons in mesoscopic rings. Sec-
tion III is devoted to the derivation of an artificial U(1) gauge
field that arises from the strong electron-photon coupling in
the rings. In Sec. IV, AB-AAS oscillations of conductance
caused by the gauge field are analyzed.

II. THE MODEL

Let us consider the conventional model of an electron
interference device (see, e.g., Refs. [15-17]) consisting of
a one-dimensional mesoscopic ring with radius R and two
one-dimensional leads that are connected at the quantum point
contacts [see Fig. 1(a)]. Generally, the phase shift between the
clockwise and counterclockwise traveling electron waves,

Ap =y —¢-, )

can be nonzero: The shift can be caused by the application of an
external magnetic field (AB effect) or it can result from spin-
orbit interaction [18-21]. Experimentally, it can be detected by
measuring the field-dependent oscillations of the conductance
of the device.

To write the phase shift (1) as a function of the field
parameters, we have to consider the electron energy spectrum
of an isolated ring subjected to an electromagnetic field with
the vector potential A. If the field is time-independent, then
the electron energy spectrum can be found from the stationary
Schrodinger equation with the Hamiltonian

1

2m,

3 A 2
Hy = (Pp —eAy), @)
where ¢ is the electron angular coordinate in the ring, p, =
—i(h/R)d/0d¢ is the operator of electron momentum in the
ring, e is the electron charge, and m, is the effective electron
mass in the ring. In particular, in the well-known case of a

©2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.90.235413

H. SIGURDSSON, O. V. KIBIS, AND I. A. SHELYKH

FIG. 1. (Color online) (a) The scheme of the electron interfer-
ence device consisting of a one-dimensional mesoscopic ring that
is connected with two one-dimensional leads at the quantum point
contacts (QPCs). An electron wave, which enters into the device with
the amplitude A = 1, is split between the two different paths with the
transmission amplitudes A and exits the device with the amplitude
C. The phase shift of the electron waves traveling clockwise and
counterclockwise inside the ring, A¢ = ¢, — ¢_, arises from the
coupling to an external electromagnetic field. (b) The scheme of the
electron energy spectrum &(k) in a mesoscopic ring subjected to a
circularly polarized electromagnetic field or a stationary magnetic
field. The spectrum is shifted along the & axis by the wave vector ky,
which depends on the parameters of the field.

stationary magnetic field, B, directed perpendicularly to the
ring plane, the electron energy spectrum of the ring has the
form

"2 P \?

where m = 0,£1,£2,43, ... is the electron angular momen-
tum along the ring axis, and ® = Bx R? is the magnetic flux
through the ring. In the considered case of a mesoscopic ring,
it is convenient to rewrite this spectrum as

h2 o \?
(6= 5 (k + RTDO) , 3)

where k = m/R is the electron wave vector along the ring.
Graphically, the energy spectrum (3) can be pictured as a
parabola shifted along the k axis by the wave vector

ko = —=®/R®y “

[see Fig. 1(b)]. Formally, just the wave vector (4) defines the
nonzero phase shift (1) since A¢ = 27 Rk.

Any electromagnetic field, which results in such a shifted
electron energy spectrum with ko # 0, can generate the oscil-
lations of conductance of the considered electron interference
device. However, in the case of a time-dependent electromag-
netic field with the vector potential A,(?), the Schrodinger
equation with the Hamiltonian (2) is nonstationary and cannot
be used to find the electron energy spectrum. The regular
approach to solve this quantum-mechanical problem should
be based on the conventional methodology of quantum
optics [22,23]. Namely, we have to consider the system
“electrons in the ring + electromagnetic field” as a whole
and to write the Hamiltonian of this electron-photon system.
If the field frequency lies far from the resonant frequencies
of the electron subsystem (i.e., the field is purely “dressing”),
then the energy spectrum of the electron-photon system can
be written as a sum of field energy and the energy of the
electrons strongly coupled to the field (dressed electrons). This
energy spectrum of dressed electrons will be responsible for
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all electron characteristics of the ring subjected to the strong
high-frequency electromagnetic field.

The Hamiltonian (2) is written as a function on the vector
potential A,(t), which depends on the gauge. To rewrite the
Hamiltonian in gauge invariant form, let us apply the unitary
transformation [22]

ieR
U=exp (T/Aw(t)d<ﬂ> ,

where the indefinite integral over the angle ¢ should be treated
as an antiderivative of the integrand. Then the transformed
electron Hamiltonian (2),

N N LoU

H,=U'AU — ihUrE,

takes the form

72
o D
H|(E,) = 2ni — eR/Ewd(p, (5)
where E, = —3A,(t)/0dt is the angular component of the elec-

tric field, which does not depend on the field gauge. Although
the interaction of electrons in ringlike structures with an elec-
tric field was considered previously (see, e.g., Refs. [24,25]),
phase-shift phenomena caused by a high-frequency field have
so far escaped attention. Considering the problem within the
conventional quantum-field approach [22,23,26], the classical
electric field in the Hamiltonian (5), E, should be replaced
with the field operator, E. Then the complete electron-photon
Hamiltonian reads

A =" hogalaq + Hy(E,), (6)
q

where the first term describes the field energy, q is the photon
wave vector, wq is the photon frequency, &3 and 44 are the
photon operators of creation and annihilation, respectively,
and the summation is assumed to be performed over all photon
modes of the electromagnetic field. If the ring is subjected to
a monochromatic circularly polarized electromagnetic wave
propagating perpendicularly to the ring, the Hamiltonian (6)
takes the form

ﬁZ
H = howata + —2 —ieR
@ 2m, 4oV

hw

(€%a —e%ah, (1)

where o is the field frequency. Considering the last term
in the Hamiltonian (7) as a perturbation, we can apply
the approach developed in Ref. [14] to solve the electron-
photon Schrodinger equation with this Hamiltonian. From an
experimental viewpoint, the most relevant case corresponds
to the ring exposed to a classically strong laser-generated
electromagnetic field. Just such a strong electromagnetic field
will be under consideration in the following. In contrast to
the case of a ring interacting with a weak photon mode inside
a cavity [27,28], an amplitude of the strong field does not
depend on the electron-photon interaction. As a result, the
energy spectrum of dressed electrons in the ring can be found
as an expansion in terms of the dressing field amplitude Ej.
Assuming the inequality |e|Eq/m,Rw* < 1 is satisfied, and
accounting for terms squared in the field amplitude only, the
energy spectrum of dressed electrons in the ring can be written
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as
K heED

k) = 20y
#®) 2m, 2m2Rw?

®)

It should be noted that the Hamiltonian (7) describes electrons
in an isolated ring, where the electron lifetime is T — oo.
In the interference device pictured in Fig. 1(a), this lifetime
is the traveling time of an electron from one QPC to the
other one, i.e., T ~ 7 R/vp, where vr is the Fermi velocity
of an electron in the ring. Therefore, the developed theory is
consistent if the field frequency, w, is large enough to satisfy
the condition 27 /wt < 1, which allows one to consider the
incident electromagnetic field as a dressing field.

The energy spectrum (8) has the form plotted in Fig. 1(b)
with

ezEé

2m,ARw>
It follows from the comparison of Egs. (4) and (9) that the
high-frequency electromagnetic field results in the same phase
shift (1) as an effective magnetic flux

|e|71E§
q)eff =

ko = ®

(10)

mew?

Let us show that the effective magnetic flux (10) can be
described in terms of an artificial U(1) gauge field with the
vector potential

eff _ Desr _ le| E§
¢  27R  2Rm,w?’

which is produced by the strong electron-photon coupling.

Y

III. THE ARTIFICIAL GAUGE FIELD

To describe the electron-photon coupling in the considered
system, let us use the joined electron-photon space |m,N) =
Y (@)) ® |N). This corresponds to the electromagnetic field
being in the state with the photon occupation number N =
1,2,3, ... and the electron being in the state with the wave
function

V(@) = /1/2me™?, 12)

where m = 0, £1, £2, ... is the electron angular momentum
along the ring axis. The electron-photon states |m, N) are true
eigenstates of the Hamiltonian of the noninteracting electron-
photon system,

52

HO = hoata + 22| (13)
2m,
and their energy spectrum is
h?m?
0
= Nhw . 14
Em.N + 2m,R? (14)

Considering the last term in the Hamiltonian (7) as a
perturbation with the matrix elements

N h
(m' N[0 |m,N) = —ieR | ———[v/Np 18 n741
460V ’

— VN + 1 mw418n,n-1] 5)
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and performing trivial calculations within the first order
of the perturbation theory, we can write eigenstates of the
Hamiltonian (7) as

(m+1,N —1|U|m,N)
) (]
Em,N — Emr1,N-1
(m —1,N + 1\U|m,N)

0) 0)
Em,N - Emfl,NJrl

W N) = lm+1,N —1)

Im—1,N + 1)+ |m,N).

(16)

Substituting Egs. (14) and (15) into Eq. (16) and assuming the
electromagnetic field to be strong (N > 1), we arrive at the
expression

ieREo[ |m+1,N —1)
|V n) = |m,N) — [

2 how — ep(1 4+ 2m)
lm—1,N+1)
ho + er(1 —2m) |’
where Eg = «/Nhw/eyV is the classical amplitude of electric
field, and eg = h?/2m, R? is the characteristic electron energy
in the ring. Taking into account Eq. (12), we can rewrite the

basis electron-photon states as [m &= 1,N) = e*'¢|m,N). Then
the eigenstates (17) take the form

a7

ieREy[ €¢lm,N —1)
(W n) = m,N) —
2 haw — eg(1 4+ 2m)
~\m,N + 1
e ¥m N +1) ) (18)
how + ep(l —2m)
On the basis of the three electron-photon states,
lm,N + 1)
Im,N) |, (19)
|m7N - 1)
the eigenstate (18) can be written formally as a vector,
_ ieREo/Z —i(p
hw+eg(1—2m)
Ix) = 1 . (20)
__ieRE)2__ig

ho—eg(142m)

It should be noted that each of the basis states (19) corresponds
to the same electron angular momentum m. Therefore, the
influence of the electromagnetic field on the electron results
only in the phase incursion described by the exponential factors
e*'¢ in the state vector (20). Following the conventional theory
of artificial gauge fields (see, e.g., Ref. [29]), we can introduce
the U(1) field with the vector potential, A®T = (ii/e)(x|V|x),
which corresponds to this phase incursion. In the case of the
ring, this vector potential has the form A® = (0,0, A;’ff), where

AT = %m%m. (3]
Substituting Eq. (20) into Eq. (21), we arrive at the expression
A heRE} [ 1
¢ 4 [ho + er(1 — 2m)]?
— ! ] (22)
[Aw — er(1 + 2m)]?
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FIG. 2. (Color online) Conductance of a mesoscopic ring, G,
under a circularly polarized electromagnetic wave as a function of
wave intensity /, and wave frequency w. Plots (a)—(c) correspond to
different transmission amplitudes A between the current leads and
the ring. Frames in the left column are fixed at the wave frequency
o = 100 GHz. In all plots, the ring parameters are assumed to be
R =10 um, e = 10 meV, and m, = 0.1m,o, where m,q is the mass
of a free electron.

Under the condition Aw >> e, the artificial vector poten-
tial (22) takes the form (11).

IV. DISCUSSION AND CONCLUSIONS

Replacing the magnetic flux ® with the pseudoflux (10)
in known expressions that describe the oscillations of the
conductance of the considered interference device, we can
calculate them as follows.

First of all, let us consider the ballistic regime. In this
case, the conductance is described by the Landauer formula
G = (2¢?/h)|C|?, where the transmission amplitude of the
interference device, C, depends on the coupling between the
leads and the ring. Generally, this coupling can be described
by lead-to-ring and ring-to-lead transmission amplitudes,
A [15-17]. If the reflection from one lead to itself is absent
(i.e., there is no electron backscattering from QPCs), the
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FIG. 3. (Color online) Weak-localization correction to the con-
ductance of a mesoscopic ring, AG, under a circularly polarized
electromagnetic field: (a) the correction is plotted as a function of
field intensity I, for different values of L, with @ = 100 GHz and
R = 10 pum; (b) the correction is plotted as a function of field intensity
Iy and of field frequency w for L, = 3R and R = 10 pum.

transmission amplitude is A = £1/+/2. This corresponds to
the incoming electron wave being divided equally in the ring
along the clockwise (¢4) and counterclockwise (¢_ ) paths [see
Fig. 1(a)]. In this simplest case, the replacement ® — P.¢ in
the expression describing the AB oscillations [17] yields

2¢? 2
o=5[- |

h

where kr is the Fermi electron wave vector in the ring. For
other amplitudes A, the conductance G can be calculated
numerically by using the same theory [15-17]. Results of the
calculations for different amplitudes X are presented in Fig. 2.

For absolutely transparent QPCs (A = 0.707), the regular
AB-like oscillations take place [Fig. 2(a)]. Decreasing the
transparency (decreasing A) changes the shape of the oscil-
lation pattern [Figs. 2(b)] and 2(c)]. In the Fourier spectrum of
the conductance, the role of the higher harmonics increases,
and eventually these harmonics with a half-period become
dominant [see Fig. 2(c)]. Physically, reduction of the period
arises from an increased confinement of electrons inside the
ring, caused by the decrease of transparency of the QPCs. This
leads to an increase of the role of round trips of an electron

sin?(@esr/2Py)
1 — exp(i27 Rkr) cos2(Desr/2Pp)

(23)
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inside the ring, which results in the increment of the effective
electron path and, as a consequence, a decrease of the period
of the oscillations.

In the diffusive regime, the conductivity of a disordered
ring-shaped conductor with the dephasing length L, can be
described by the expression

ezL(p sinh2m R/L,)
72h cosh(2m R/L,) + cos(47 e/ Do)’

which is derived from the conventional theory of AAS
oscillations [7] by the replacement ® — .

The weak-localization correction to the conductance,
AG = Ao /nR, is plotted in Fig. 3 for different values
of the dephasing length L,. As expected, the correction
oscillates with a period that is less than the period of AB-
like oscillations [Fig. 2(a)] by a factor of 2. As for the
amplitude of the oscillations, it decays exponentially when
the dephasing length L, is much smaller than the distance
between the QPCs, m R. Physically, this decay is caused by
the electron waves losing their coherence quickly. It should
be noted that an electromagnetic field can cause additional
decoherence of electrons in conducting systems [30-32] and,
therefore, influences the dephasing length L,. However, the
condition of applicability of the dressing field model, wt > 1,
corresponds physically to the absence of energy exchange
between conduction electrons and a dressing field, where
is the characteristic electron relaxation time. Therefore, there

Ao = (24)
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is no heating of electrons by the field under this condition. As a
consequence, the photon-induced breaking of phase coherence
is negligibly small for a dressing field. Plotting the correction
to the conductance, AG, in Fig. 3, we assumed the field to be
sufficiently high frequency to neglect the phase decoherence
that arose from the field.

In summary, we have shown that the interference of electron
waves traveling through a mesoscopic ring exposed to a
circularly polarized electromagnetic field is formally the same
as in a ring subjected to a magnetic flux. As a consequence,
the optically induced Aharonov-Bohm effect appears. This
effect manifests itself in the oscillating dependence of the ring
conductance on the field intensity and field frequency. The
periods of the optically induced oscillations in the ballistic
regime and the diffusive regime differ from each other by a
factor of 2 in the same manner as periods of the oscillations
induced by a magnetic flux. Therefore, the effect can be
described formally in terms of the artificial U(1) gauge field
that arises from the strong electron-photon coupling.
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