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Local electrical tuning of the nonlocal signals in a Cooper pair splitter
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A Cooper pair splitter consists of a central superconducting contact, S, from which electrons are injected into
two parallel, spatially separated quantum dots (QDs). This geometry as well as electron interactions can lead
to correlated electrical currents due to the spatial separation of spin-singlet Cooper pairs from S. We present
experiments on such a device with a series of bottom gates, which allows for spatially resolved tuning of the
tunnel couplings between the QDs and the electrical contacts and between the two QDs. Our main findings
are gate-induced transitions between positive conductance correlation in the QDs due to Cooper pair splitting
and negative correlations due to QD dynamics. Using a semiclassical rate equation model we show that the
experimental findings are consistent with in situ electrical tuning of the local and nonlocal quantum transport
processes. In particular, we illustrate how the competition between Cooper pair splitting and local processes can
be optimized in such hybrid nanostructures.
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I. INTRODUCTION

Complex top-down electronic nanostructures with a large
number of local gates have become of great interest, e.g., for
experiments in gate defined quantum rings [1], in double-
quantum dots with charge detectors [2], to study possible
Majorana fermions in semiconducting nanowires [3], or to
form and shape quantum dots (QDs) on suspended carbon
nanotubes, giving control over the coupling between the
electrical and the mechanical degrees of freedom [4].

Local control of the device parameters is also essential in
a device designed for Cooper pair splitting (CPS). A CPS
device is shown in Figs. 1(a) and 1(b) and consists of two
quantum dots (QD1 and QD2) connected in parallel to a central
superconducting contact, S, and to two individual normal
metal contacts, N1 and N2. The electrons in a superconductor
form spin-singlet Cooper pairs which can be separated (split)
coherently into N1 and N2 by the interactions on the QDs,
resulting in a stream of spatially separated entangled electron
pairs [5–7]. Experimental evidence for correlated currents have
been reported recently for devices based on InAs nanowires
(NWs) [8–10] and carbon nanotubes [11–13] with efficiencies
up to 90% [12]. The CPS efficiency and the relevant physical
processes depend strongly on the tunnel couplings, which were
determined in previous devices by poorly controlled details
in the fabrication process. A maximum CPS efficiency is
expected for a reasonably strong tunnel coupling of the QDs
to the normal contacts and a weaker coupling to S, and for a
large, sharp energy gap in the superconductor [5].
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Here we present experiments on an InAs NW CPS device
fabricated on top of an array of narrow bottom gates. These
gates allow us to form QDs at different positions and to tune
individually and in situ the QD-lead tunnel couplings, the
chemical potentials of the QDs and the interdot coupling [14].
The superconducting contact is made of Nb, which has
a bulk energy gap ∼15 times larger than that of Al, the
superconductor used in most previous experiments. In the
presented transport experiments we find that the correlation
between the conductances of the two QDs depends strongly
on the gate configurations. In particular, we tune the barriers
on the normal and the superconductor side of the QDs, as
well as the inter dot coupling between the two dots, each
inducing a transition from positive to negative correlations.
We qualitatively reproduce the experimental findings in a
semiclassical rate equation model and attribute the observed
transitions in the conductance correlations to the competition
between the different transport processes on QDs with a finite
average population.

Our results shed light on the electron dynamics in such
systems and are fundamental for controlling and maximizing
the CPS efficiency, as required to detect electron entanglement
by violating Bell’s inequality [15–19], by an entanglement
witness [20], or by using microwave photons [21,22].

II. SAMPLE FABRICATION AND CHARACTERIZATION

An artificially colored scanning electron microscope (SEM)
image of a sample is shown in Fig. 1(a). First, using
electron-beam lithography, an array of 12 local gates was
fabricated on a highly doped silicon substrate that serves as a
global backgate, insulated by ∼400 nm SiO2. The local gates
(4/18 nm Ti/Pt) are ∼40 nm wide, with an edge-to-edge
separation of ∼60 nm. These gates are overgrown by ∼25 nm
SiNx for electrical insulation using plasma-enhanced chemical
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FIG. 1. (Color online) (a) SEM image of a representative CPS
device. The InAs nanowire on the SiNx layer (green) is contacted by
a central Nb (S, blue) and two Ti/Au leads (N1 and N2, purple). The
local gates below the SiNx are colored yellow. (b) Schematic of the
device and the measurement setup. Gates 1–3 are used to form QD1
and gates 8–10 for QD2. Gates 6 and 7 are below S. Two more gates
between g5 and g6 below S were not connected (nc) and left floating
in the experiments. [(c) and (d)] Differential conductance of QD1 and
QD2 as a function of the bias, Vsd, and the respective local tuning
gates, Vg2 and Vg9.

vapor deposition. The SiNx was removed at the edges of the
gate array by a reactive ion etch (RIE) with CHF3/O2 [23]
to fabricate electrical contacts to the local gates. In the
experiments only 10 gates were used for technical reasons,
so two of the four gates below S were not connected (nc)
and left floating. In the next step we deposit a single InAs
NW (diameter ∼70 nm) perpendicular to the gates using
micromanipulators. The NWs were grown by solid-source
molecular beam epitaxy [24], implementing a two-step growth
process to suppress stacking faults [25]. The 330-nm wide and
40-nm-thick superconducting Nb contact and the two normal
metal drain electrodes (7/95 nm Ti/Au) were fabricated in
consecutive lithography steps, with prior ammonium sulfide
passivation [26] to remove the native oxide on the NW.

The experiments were carried out in a dilution refrigerator
with a base temperature of T ≈ 50 mK. As illustrated in
Fig. 1(b), we applied a sinusoidal voltage Vac ≈ 10μV to the
superconductor S and simultaneously recorded the resulting
variations of the currents in the contacts N1 and N2, I

(ac)
1

and I
(ac)
2 , using current-voltage (IV) converters and lock-in

amplifiers. We define the differential conductances through
QD i as Gi = I

(ac)
i /Vac. The lever arms of the different

gates were found by bias spectroscopy experiments, applying
a dc voltage to S. If not stated otherwise, all presented
experiments were done at zero dc bias, which was achieved by
compensating offsets in the IV converters by external voltage
sources [not shown in Fig. 1(b)].

The local gates gi are numbered consecutively, as illustrated
in Fig. 1(b). The tunnel barriers for the QDs are formed for

the conduction band electrons in the InAs NW by applying
strongly negative voltages to the local gates. For QD1, g1 and
g3 are used to induce the barriers (barrier gates) and g2 to
tune the dot’s chemical potential (tuning gate). QD2 is formed
similarly with the gates g8 and g10, using g9 to tune the QD
resonances. The other gates are kept on ground. The exact gate
voltage settings in the presented experiments can be found
in Table II in the appendix. In all figures we use the colors
blue and red to distinguish the gates near QD1 and QD2,
respectively. Figure 1(c) shows the differential conductance
G1 as a function of the applied dc bias and Vg2, from which
we estimate a charging energy for QD1 of 1 meV. The lever
arms obtained from similar experiments with the other gates
suggest that QD1 is indeed formed between g1 and g3. At low
bias some resonances occur, reminiscent of Andreev bound
states [13,27], which suggests a relatively strong coupling to
S and a weaker coupling to N1. From these states we deduce
an effective superconducting energy gap on or near QD1 on
the order of �∗ ≈ 35 μeV. This gap is considerably smaller
than the bulk value of Nb (∼1.45 meV [28]), possibly due to
the strong suppression of the proximity-induced gap expected
for relatively thick semiconducting NWs [29]. As shown in
Fig. 1(d), QD2 exhibits clear Coulomb blockade diamonds and
a negligibly small energy gap (<5 μeV). QD2 forms between
g8 and g10, as expected, with a charging energy of 1.5 meV.
For both QDs we extract line broadenings of 40–180 μeV,
depending on the involved states.

III. TUNING OF A DRAIN TUNNEL BARRIER

Cooper pair splitting is a nonlocal two-particle process and
leads to a nonlocal signal, i.e., a signal that depends on the
transmissions of both QDs. Experimentally, we investigate
the change of conductance in one QD when the other dot
is brought into resonance [8,12]. Competing processes, e.g.,
the sequential tunneling of Cooper pairs through the same
QD (local pair tunneling), are local in nature and depend
intrinsically only on the settings of one QD. The aim of this
work is to investigate the evolution of the nonlocal signal in
a CPS device when one tunnel barrier of a QD is varied. In
this section we tune the local gate g1 to change the tunnel
coupling of QD1 to lead N1. Due to the close proximity
of g1 to the center of QD1, this also changes the chemical
potential of the dot, which we compensate using the local gate
g2 (tuning gate). This procedure allows us to compare the same
Coulomb blockade (CB) resonance for different tunnel barrier
strengths. The differential conductance G1 as a function of the
two gates g1 and g2 is plotted in Fig. 2(a). The reduction of
the CB resonance widths and amplitudes suggests a variation
of the involved tunnel barrier. Intuitively, g1 tunes �N1, i.e.,
the single-electron tunnel coupling to N1. We expect that �N1

decreases when Vg1 is made more negative, i.e., from Vg1

position I in Fig. 2(a) to position IV. However, on a larger
gate voltage scale the modulation of the resonance amplitude
exhibits more than a single maximum, in contrast to what one
might expect from tuning a simple tunnel barrier in a transport
broadened QD. We attribute this experimental finding to the
fact that the gates also tune other parts of the device, though
with a considerably smaller lever arm.
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FIG. 2. (Color online) (a) G1 as a function of the gate voltages Vg1 and Vg2, which shows the tuning of the tunnel coupling to the normal
lead of QD1. The dashed lines indicate the settings for the following experiments. (b) G1 and G2 as a function of Vg2 and Vg9, measured in
setting I of (a). (c) Conductance maps similar to (b) for the same QD states for setting IV in (a). [(d) and (e)] Evolution of the resonance maxima
in G1 and G2 for the Vg1 settings indicated in (a). The respective resonance crossings are labeled L1 and R1. In (d) curve IV is multiplied by 5
and in (e) all curves are offset vertically for clarity and centered to the L2 resonance.

To investigate the nonlocal signals in the CPS device, we
simultaneously record G1 and G2 as a function of the tuning
gates g2 and g9, as shown in Fig. 2(b). While g2 tunes QD1
trough the two resonances L1 and L2 labeled in Fig. 2(a), g9
tunes QD2 through the three resonances R1, R2, and R3. The
resonances of the two QDs run perpendicular to each other in
these plots, which shows that the capacitive cross talk between
the QDs is very small. Though not shown, we note that the
conductance through QD1 and QD2 in series does not exhibit
anticrossings, which suggests that the interdot tunnel coupling
is considerably smaller than the lifetime broadening of the CB
resonances.

The amplitude of one QD resonance is independent of
the gate voltage applied to the other QD, except where both
QDs become resonant with the Fermi energy in the leads. In
Fig. 2(b) (configuration I) both conductances increase at these
resonance crossings [30] for which we use the term positive
correlation between the conductance variations in the QDs.
This positive correlation is characteristic for CPS [12] as we
discuss in more detail below. Similar gate sweeps over the
same resonances in configuration IV are plotted in Fig. 2(c).
While the QD2 resonances are similar as in setting I, the
(local) conductance of QD1 is decreased by about an order
of magnitude due to the increased barrier strength. Focusing
on the resonance crossings one finds that the amplitudes of the
QD1 resonances are reduced at the resonance crossings, while
the QD2 resonances still exhibit an increased conductance,
which results in a negative conductance correlation between

the two QDs, in contrast to gate configuration I. The nonlocal
signal on QD2 only changes in amplitude but not in sign.
We postpone the discussion of the origin of these dips to
Sec. VI and only point out that (1) the QD1 conductance away
from the QD2 resonances is determined by the local processes
and changes significantly between the gate configurations
I–IV, as expected if the tunnel barrier strength is varied. (2)
Different neighboring QD states of similar amplitudes and
widths can exhibit different conductance correlations (not
shown), excluding electrostatic effects. In addition, resistive
cross talk [8] can be excluded as the origin of the observed
effects because it would lead to a dip in both conductances at
a resonance crossing.

The evolution from a positive to a negative conductance
correlation with the voltage on the local gate g1 can be
followed better in Fig. 2(d), where the amplitude of the
QD1 resonance L1 is plotted as a function of the voltage
applied to QD2-gate g9, Vg9, for the four Vg1 settings
indicated in Fig. 2(a). We observe three peaks where g9
tunes QD2 through the resonances R1–R3 and label each
crossing by the two respective resonances, e.g., L1 and R1,
for the gate configuration where L1 and R1 are both resonant.
The conductance variation on these crossings are similar for
the settings I and II, but decrease significantly for setting III.
For configuration IV, we find a dip instead of a peak at the
resonance crossings. For all four curves the local conductance
background and the nonlocal conductance variations both
decrease with more negative Vg1. We note that no offsets
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are subtracted in Fig. 2(d) and curve IV is multiplied by
5. The evolution of the nonlocal signal on QD1 has to be
compared to the one on QD2: In Fig. 2(e) the amplitude of the
QD2 resonance R1 is plotted for the same Vg1 settings I–IV.
Because the local conductance background is almost identical
for all curves, II–IV are offset for clarity. For all four gate
configurations we find a peak in the conductance as R1 crosses
L1 and L2. With decreasing Vg1, the conductance variation at
the resonance crossings increases in amplitude by almost a
factor of 2 between I and IV.

As a measure for the CPS efficiency we use s = 2GCPS
G1+G2

,
which essentially compares the fraction of currents due to
CPS to the total current in the system [12]. If the conductance
variations are the same in both QDs, one obtains a conservative
estimate for s by setting �GCPS = �G1 = �G2, with �Gi

the conductance variations on the resonance crossings. This
is applicable for the Vg1 setting I, for which we find, for
example, for the resonance crossing (L1,R2), an efficiency
of s ≈ 17%. Clearly, we cannot use this approximation for
the cases II–IV. To describe the transition from a positive to
a negative correlation of the QD conductances one might also
use the visibility of the nonlocal signal in one branch of the
CPS device, which is defined as ηi = �Gi/Gi at a resonance
crossing [12]. For the resonance crossing (L1,R2) we find that
η1 decreases from ∼20% to about −40% when Vg1 is tuned
from configuration I to IV, while η2 increases from ∼8.5% to
∼28.7%. The evolution of the visibilities directly illustrates
the sign change of the conductance correlations between the
two QDs when the tunnel coupling of QD1 to N1 is reduced.

IV. TUNING OF A SOURCE TUNNEL BARRIER

In this section we investigate the evolution of the conduc-
tance correlations in the CPS device when tuning gate g8,
which forms the barrier of QD2 to the superconductor S, see
Fig. 1(b). The exact gate voltages used to form the QDs are
given in the appendix [31]. We show that a transition from
a positive to a negative conductance correlation between the
QDs can be induced by increasing the tunnel coupling of QD2
to S, similarly as in Sec. III for a decreasing coupling of QD1
to N1. For simplicity, we only focus on a single resonance
of QD2, whose differential conductance, G2, is plotted in
Fig. 3(a) as a function of the voltages applied to the QD2
gates g8 (barrier to S) and g9 (tuning gate of QD2). With
a more negative voltage on g8, the resonance amplitude and
width decrease markedly. Similarly as discussed for �N1 in
the previous section, this probably corresponds to a stronger
barrier and a weaker coupling �S2 to S. The two vertical lines
labeled V and VI are the two Vg8 settings for which we now
investigate the nonlocal signals.

The conductances of QD1 and QD2, G1 and G2, are plotted
in Fig. 3(b) as a function of Vg2 (tuning gate of QD1) and
Vg9 (tuning gate of QD2) for Vg8 setting V [see Fig. 3(a)].
While g2 tunes QD1 through two resonances, g9 tunes QD2
through the resonance shown in Fig. 3(a). Also here we do not
find a significant capacitive or tunnel coupling between the
QDs compared to the lifetime broadening. On the resonance
crossings, we observe small peaks in G1 (visibility η1 ≈ 2.8%)
and more pronounced peaks in G2 (η2 ≈ 48%), see Fig. 3(b).
Again we take the positive correlation between the nonlocal
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FIG. 3. (Color online) (a) Differential conductance of QD2, G2

as a function of the two local gates g8 and g9. Two gate configurations,
V and VI, are indicated by dashed lines. (b) G1 and G2 as a function of
the QD1-gate g2 and QD2-gate g9 showing two resonance crossings
in the gate configuration V. (c) Amplitude of the QD2 resonance for
g8 settings V and VI when QD1 is tuned through the two respective
resonances shown in (b). G1 with a scale factor and an offset is plotted
as a reference.

conductance variations as an indication for CPS. However, we
could not tune these resonances to a Vg8 setting for which
�G1 = �G2. The amplitude of the QD2 resonance as a
function of the QD1 gate g2 is plotted in Fig. 3(c) for the gate
configurations V and VI with the scaled QD1 resonances for
orientation. For configuration V with a weaker tunnel coupling
of QD2 to S, we find an increase in G2 at the resonance
crossings, while it is reduced at the crossings in configuration
VI, in which QD2 couples stronger to S. Because the nonlocal
signals on G1 are all positive (not shown), this corresponds to a
transition from a positive to a negative conductance correlation
with increasing coupling to S. A qualitatively similar sign
change of the conductance correlation was found in Sec. III
when decreasing the tunnel coupling of QD1 to the normal
lead N1.

V. TUNING OF THE INTERDOT COUPLING

In a third experiment we defined two QDs closer to the
superconductor using only two gates, namely g4 and g5 for
QD1 and g8 and g9 for QD2. The exact gate voltages are
given in the appendix. We use barrier gate g8 to also tune
the chemical potential of QD2 and, similarly, gate g4 to tune
QD1. The aim is to investigate the effect of the gates g6 and
g7 below the superconducting contact S on the conductance
correlations in the CPS device. Because of the finite size of
the NW and despite the screening by the superconductor, we
expect that the electron density below S is reduced when the
gates are set to more negative potentials, which should lead
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G2 as a function of Vg4, which tunes QD1 though a resonance. The
curves are shifted similarly as the ones in (a).

to a reduction of the single-electron tunneling rate between
the QDs. In Fig. 4(a) the amplitude of a QD1 resonance
(G1) is plotted as a function of Vg8, i.e., the gate defining
QD2, for a series of voltages applied to the gates below S.
In all experiments we set Vg6 = Vg7. For the same voltages
on Vg6 and Vg7 the amplitude of a QD2 resonance (G2) is
plotted in Fig. 4(b) as a function of Vg4, i.e., a gate of QD1.
The respective four curves in Figs. 4(a) and 4(b) have the
same (local) background conductance within experimental
error and are shifted vertically for clarity. This suggests that
the tunnel barriers to the source and drain contacts are not
significantly altered by the gates g6 and g7. In addition, the
curves are shifted horizontally, so that the resonance crossings
are centered at �Vg8 = 0 and �Vg4 = 0, respectively. This is
necessary because these gates affect the resonance position of
both QDs by a small capacitive coupling. For Vg6 = Vg7 = 0
the nonlocal signal on QD1 is positive, but negative on QD2,
so that we find a negative conductance correlation at the
resonance crossing. When we continuously tune both gate
voltages to more negative values, the nonlocal signal on QD2
at the resonance crossing evolves from negative to positive
values, while the signal on QD1 is only slightly reduced. At
Vg6 = Vg7 = −4 V we find a positive correlation and similar
amplitudes for the QD conductance variations. The visibilities
in the two arms evolve with decreasing voltage from η1 = 42%
and η2 = −23% at Vg6 = Vg7 = 0 to η1 = 26% and η2 = 17%
at Vg6 = Vg7 = −4 V.

VI. RATE EQUATION MODEL

In the experiments presented above we find large qualitative
and quantitative differences in conductance variations for
different crossings of resonances of the two QDs. These
“nonlocal” signals are surprisingly simple to tune from a
positive to a negative correlation. In fact, we can induce such
transitions by using any single local barrier gate. In this section
we present a simple toy model (similar to the one in Ref. [12]),
which qualitatively describes the experimental findings and
allows to identify the physical mechanisms that could lead to
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FIG. 5. (Color online) (a) Schematic of the device and transition
probabilities. (b) Schematics of transitions between the allowed
system states.

the observed transitions in the conductance correlations. Fully
quantum mechanical models can be found, for example, in
Refs. [7] and [32–34]. The two basic ideas are that (1) both the
local and nonlocal processes depend on the QD occupations,
which couples the resulting rates, and (2) a finite interdot
coupling can lead to electrons tunneling between the QDs,
i.e., to a local process that depends on the occupation of both
QDs.

We first describe the model in some detail. Because of the
large charging energy, each QD can be only empty or occupied
by a single electron at a time, i.e., the system occupies the states
(0,0), (1,0), (0,1), or (1,1), which correspond to no electrons
in the system, one in QD1 or in QD2, or an electron in both
QDs, respectively. As illustrated in Fig. 5, we consider several
processes that lead to transitions between the system states.
The respective rates are determined by the tunnel couplings of
the QDs to the three contacts and the inter-dot coupling. We
use the classical, intuitive expressions for these rates, as listed
in Table I, where �N1 and �N2 are the couplings to the normal
metal contacts, �S1 and �S2 to S, and �12 is the direct coupling
between the QDs. The steady-state QD occupations of the
states (i,j ), P(i,j ), were calculated from a set of classical rate

TABLE I. (Color online) Single-electron and Cooper pair trans-
port processes taken into account in the model: acronym, diagram of
the process, rate, and transitions between the QD occupancies.

Process diagram rate transitions

SET to N1

QD1 QD2S

N1 N2 ΓN1 (1, 0) → (0, 0)
(1, 1) → (0, 1)

LPT
into lead N1

QD1 QD2S

N1 N2 Γ2
S1ΓN1 (0, 0) → (1, 0)

(0, 1) → (1, 1)

CPS

QD1 QD2S

N1 N2 ΓS1ΓS2 (0, 0) → (1, 1)

SET
between QDs

QD1 QD2S

N1 N2 Γ12 (1, 0) → (0, 1)
(0, 1) → (1, 0)

SCPS
via QD 1

QD1 QD2S

N1 N2 Γ2
S1Γ12 (0, 0) → (1, 1)

SET from S
to QD1

QD1 QD2S

N1 N2 ΓS1 (0, 0) → (1, 0)
(0, 1) → (1, 1)
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equations, using a diagrammatic method [35]. The processes
we consider here are the following: (1) tunneling of an electron
from a filled QD i to the respective normal electrode with
the rates �Ni [denoted by single-electron tunneling (SET)].
This process leads to a current in the respective contact. (2)
Local pair tunneling (LPT), where the electrons of a Cooper
pair (CP) are transmitted sequentially through the same QD
i. This requires the QD to be empty initially and leads to an
electron emitted to lead Ni and to the occupation of QD i

by the second electron. The probability of this process scales
with �2

Si�Ni. (3) Cooper pair splitting, where the electrons of a
Cooper pair tunnel into two initially empty QDs. CPS scales as
�S1�S2 and leads to two full QDs, but not directly to a current
in the normal leads. (4) Here we also investigate in more
detail the effect of a single-electron tunnel coupling between
the QDs (SET between QDs), which scales directly with �12.
We note that the interdot coupling is not necessarily a direct
single-electron process but could also be due to higher-order
processes mediated by the superconductor. (5) Because of a
possibly large interdot coupling, we also consider processes
in which Cooper pair electrons sequentially tunnel to one QD
and the first leaves the dot by tunneling to the other QD. We
call these processes sequential CPS (SCPS), stressing that they
lead to a transition of two empty dots to two filled dots, similar
to direct CPS. Sequential CPS scales as �2

Si�12 and does not
lead directly to a current in the normal leads. (6) As a last
process, we also consider the tunneling of a single electron
from S to one of the QDs, which scales with �Si. This process
should be suppressed for a superconductor with an ideal energy
gap at zero temperature. In addition, we generally assume that
electrons effectively tunnel only in the direction from S to N1
or N2.

Each process should be weighted in addition with individual
prefactors accounting for the density of states, differing effects
of the superconductor’s energy gap (e.g., a “soft gap” due to the
breaking of Cooper pairs at material interfaces, which allows
the injection of single electrons) and the inverse scaling of
the CPS probability with the separation between the emission
positions of the two Cooper pair electrons [5]. Since we only
aim for a qualitative picture we simply set the prefactors for
SET from S and for CPS to k = 0.1 and all other prefactors to
1. We note that these prefactors are crucial for a quantitative
determination of the CPS efficiency, which is beyond the scope
of this simple model, and we use a fixed resonance width,
independent of the tunnel couplings.

We calculate the conductance into N1 (similar for N2) from
the average system state occupation, P(i,j ), and the rates for
local SET and LPT to N1:

GN1/G0 = �N1[P(1,0) + P(1,1)] + �2
S1�N1[P(0,1) + P(0,0)],

with G0 the conductance quantum.
Similar expressions can easily be derived for the other

conductances in the system. In particular, the contribution of
CPS can be found as

GCPS/G0 = k�S1�S2P(0,0).

A first important finding of this model is that the con-
ductance correlations between the two QDs is positive only
if the CPS rate is nonzero. In other words, even with many
other processes involved, CPS can be identified qualitatively
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FIG. 6. (Color online) Results of the model calculation showing
the transition between positive and negative correlations between
the conductance variations on a resonance crossing. If not stated
otherwise in the subfigures, the tunnel couplings are set to �S1 = 0.01,
�N1 = 0.1, �S2 = 0.005, �N2 = 0.05, and �12 = 0.001. [(a) and (b)]
Transition induced by tuning �N1, [(c) and (d)] transition induced by
tuning �S2, and [(e) and (f)] transition induced by tuning �12, for
fixed to �S2 = 0.017.

by a positive correlation of the nonlocal signals. A negative
correlation between the nonlocal signals, however, can have
different origins: (A) with a finite interdot coupling the current
through one QD can be partially diverted to the other QD,
thereby decreasing the current to one normal contact and
increasing the current to the other. In this scenario no nonlocal
processes are required to obtain a negative conductance
correlation. (B) On each QD the local processes and CPS
compete for the dot occupation. For example, switching on
CPS by bringing QD2 into resonance leads to an increase of
the average QD1 occupation, which reduces the frequency of
the local processes. For this mechanism no interdot coupling is
required.

In Fig. 6 the conductances obtained in this model through
QD1 (left column) and QD2 (right column) into the respective
normal metal contacts are plotted for a series of systematic
changes of a single tunnel coupling, with all other parameters
held constant (the values are given in the caption to Fig. 6).
Figure 6(a) and Fig. 6(b) show the evolution from a positive to a
negative conductance correlation when reducing �N1, similarly
to the experiments in Sec. III. In our model we can trace this
transition to an increased population of QD1 when the barrier
to N1 is made more opaque, so the tunnel coupling to QD2
becomes more relevant as a path to emit electrons from QD1.
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It is interesting to note that in our model we were not able
to generate strong negative conductance correlations similar
to the experiments without including quasiparticle tunneling
from S.

Figures 6(c) and 6(d) show the effect of tuning the coupling
of QD2 to the superconductor S. Here the increased coupling to
S results in an increase of the QD2 population (“stronger filling
rate”) and a transition from a positive to a negative conductance
correlation. In particular, a weaker barrier to S has a similar
effect as a stronger barrier to the normal metal contact, in
qualitative agreement with the experiments in Secs. III and IV.

In Figs. 6(e) and Fig. 6(f) the effect of tuning the
interdot coupling is investigated, which should be compared
to the experiments in Sec. V. Here we start with a negative
conductance correlation by setting �S2 = 0.017, i.e., QD2 has
a relatively large average population (all other rates are the
same as above). This leads to electrons traversing from QD2 to
QD1 and therefore to a dip in G2 and an increase in G1. When
the interdot coupling �12 is reduced, the current from QD2 to
QD1 is suppressed and we find a transition from the negative
to the positive conductance correlation and a nonlocal signal
determined mainly by CPS. We note that the relation of the
interdot coupling to the gates g6 and g7 in the experiments in
Sec. IV is quite intuitive, since they probably tune the electron
density below S and thus might pinch off the coupling between
the QDs.

VII. CONCLUSIONS AND OUTLOOK

In summary, we report the tuning of the nonlocal signals by
local bottom gates in a Cooper pair splitter device with a Nb
contact. We find strong systematic transitions between positive
and negative conductance correlations on resonance crossings,
which can be explained qualitatively by the electron dynamics
on the double dot system and Cooper pair splitting. In the
presented simulations it is clear that the CPS part is modulated
strongly by tuning the local gates. However, in the experiments
the different contributions to the conductances are difficult to
disentangle. The recovery of the positive correlations with
all relevant gates strongly suggests that the CPS signal can be
optimized using local gating techniques, which is an important

step towards a reproducibly working source of entangled
electron pairs.
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APPENDIX: GATE VOLTAGES TO FORM THE QUANTUM
DOTS

Table II lists the voltages applied on the local gates to
form the QDs in the experiments presented in Figs. 1–4. The
voltages defining the barriers of QD1 are given in blue and the
ones defining the barriers of QD2 are in red. Gates below S are
colored in green. The backgate was set to zero potential in all
experiments. The QDs in the last experiments were defined by
only two gates near S, while the gates near N1 and N2 were
set to large positive voltages to increase the coupling to the
normal contacts. Gate voltages tuned during the experiments
are labeled “(t).”

TABLE II. (Color online) Gate configurations in the different
experiments.

Vgi (V) Fig. 1 and 2 Fig. 3 Fig. 4

Vg1 −3.5 −3.475 +4
Vg2 −0.8 (t) −1.47 (t) 0
Vg3 −6.5 −6.5 0
Vg4 0 0 −4.13
Vg5 0 0 −4.3
Vg6 0 0 (t)
Vg7 0 0 (t)
Vg8 −4.5 −4.5 −4.33 (t)
Vg9 −0.38 (t) −0.9 (t) −4.53
Vg10 −4.7 4.7 +4
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Cryst. Growth 364, 16 (2013).

[25] H. Shtrikman, R. Popovitz-Biro, A. Kretinin, L. Houben,
M. Heiblum, M. Bukala, M. Galicka, R. Buczko, and P. Kacman,
Nanolett. 9, 1506 (2009).

[26] D. B. Suyatin, C. Thelander, M. T. Bjrk, I. Maximov, and
L. Samuelson, Nanotechnology 18, 105307 (2007).

[27] J.-D. Pillet, C. H. L. Quay, P. Morfin, C. Bena, A. L. Yeyati, and
P. Joyez, Nat. Phys. 6, 965 (2010).

[28] V. Novotny and P. Meincke, J. Low Temp. Phys. 18, 147
(1975).

[29] T. D. Stanescu and S. Das Sarma, Phys. Rev. B 87, 180504
(2013).

[30] For resonance L2 this is difficult to discriminate because of the
conductance scale.

[31] Due to a charge rearrangement we were not able to exactly
identify the same resonances as used in Sec. III.

[32] J. Eldridge, M. G. Pala, M. Governale, and J. König, Phys. Rev.
B 82, 184507 (2010).

[33] D. Chevallier, J. Rech, T. Jonckheere, and T. Martin, Phys. Rev.
B 83, 125421 (2011).

[34] P. Burset, W. J. Herrera, and A. L. Yeyati, Phys. Rev. B 84,
115448 (2011).

[35] J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976).

235412-8

http://dx.doi.org/10.1103/PhysRevLett.91.157002
http://dx.doi.org/10.1103/PhysRevLett.91.157002
http://dx.doi.org/10.1103/PhysRevLett.91.157002
http://dx.doi.org/10.1103/PhysRevLett.91.157002
http://dx.doi.org/10.1103/PhysRevB.83.125304
http://dx.doi.org/10.1103/PhysRevB.83.125304
http://dx.doi.org/10.1103/PhysRevB.83.125304
http://dx.doi.org/10.1103/PhysRevB.83.125304
http://dx.doi.org/10.1103/PhysRevLett.111.136806
http://dx.doi.org/10.1103/PhysRevLett.111.136806
http://dx.doi.org/10.1103/PhysRevLett.111.136806
http://dx.doi.org/10.1103/PhysRevLett.111.136806
http://dx.doi.org/10.1103/PhysRevB.89.125404
http://dx.doi.org/10.1103/PhysRevB.89.125404
http://dx.doi.org/10.1103/PhysRevB.89.125404
http://dx.doi.org/10.1103/PhysRevB.89.125404
http://dx.doi.org/10.1103/PhysRevB.86.075107
http://dx.doi.org/10.1103/PhysRevB.86.075107
http://dx.doi.org/10.1103/PhysRevB.86.075107
http://dx.doi.org/10.1103/PhysRevB.86.075107
http://dx.doi.org/10.1103/PhysRevB.89.205439
http://dx.doi.org/10.1103/PhysRevB.89.205439
http://dx.doi.org/10.1103/PhysRevB.89.205439
http://dx.doi.org/10.1103/PhysRevB.89.205439
http://dx.doi.org/10.1116/1.586073
http://dx.doi.org/10.1116/1.586073
http://dx.doi.org/10.1116/1.586073
http://dx.doi.org/10.1116/1.586073
http://dx.doi.org/10.1016/j.jcrysgro.2012.12.001
http://dx.doi.org/10.1016/j.jcrysgro.2012.12.001
http://dx.doi.org/10.1016/j.jcrysgro.2012.12.001
http://dx.doi.org/10.1016/j.jcrysgro.2012.12.001
http://dx.doi.org/10.1021/nl803524s
http://dx.doi.org/10.1021/nl803524s
http://dx.doi.org/10.1021/nl803524s
http://dx.doi.org/10.1021/nl803524s
http://dx.doi.org/10.1088/0957-4484/18/10/105307
http://dx.doi.org/10.1088/0957-4484/18/10/105307
http://dx.doi.org/10.1088/0957-4484/18/10/105307
http://dx.doi.org/10.1088/0957-4484/18/10/105307
http://dx.doi.org/10.1038/nphys1811
http://dx.doi.org/10.1038/nphys1811
http://dx.doi.org/10.1038/nphys1811
http://dx.doi.org/10.1038/nphys1811
http://dx.doi.org/10.1007/BF00116976
http://dx.doi.org/10.1007/BF00116976
http://dx.doi.org/10.1007/BF00116976
http://dx.doi.org/10.1007/BF00116976
http://dx.doi.org/10.1103/PhysRevB.87.180504
http://dx.doi.org/10.1103/PhysRevB.87.180504
http://dx.doi.org/10.1103/PhysRevB.87.180504
http://dx.doi.org/10.1103/PhysRevB.87.180504
http://dx.doi.org/10.1103/PhysRevB.82.184507
http://dx.doi.org/10.1103/PhysRevB.82.184507
http://dx.doi.org/10.1103/PhysRevB.82.184507
http://dx.doi.org/10.1103/PhysRevB.82.184507
http://dx.doi.org/10.1103/PhysRevB.83.125421
http://dx.doi.org/10.1103/PhysRevB.83.125421
http://dx.doi.org/10.1103/PhysRevB.83.125421
http://dx.doi.org/10.1103/PhysRevB.83.125421
http://dx.doi.org/10.1103/PhysRevB.84.115448
http://dx.doi.org/10.1103/PhysRevB.84.115448
http://dx.doi.org/10.1103/PhysRevB.84.115448
http://dx.doi.org/10.1103/PhysRevB.84.115448
http://dx.doi.org/10.1103/RevModPhys.48.571
http://dx.doi.org/10.1103/RevModPhys.48.571
http://dx.doi.org/10.1103/RevModPhys.48.571
http://dx.doi.org/10.1103/RevModPhys.48.571



