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The linear conductance of a two-terminal Aharonov-Bohm interferometer is an even function of the applied
magnetic flux, as dictated by the Onsager-Casimir symmetry. Away from linear response this symmetry may
be broken when many-body interactions are in effect. Using a numerically exact simulation tool, we study the
dynamics and the steady-state behavior of the out-of-equilibrium double-dot Aharonov-Bohm interferometer,
while considering different types of interactions: Model I includes a closed interferometer with an interdot
electron-electron repulsion energy. In model II the interferometer is interacting with a dissipative environment,
possibly driven away from equilibrium. In both cases we show that depending on the (horizontal, vertical)
mirror symmetries of the setup, nonlinear transport coefficients obey certain magnetosymmetries. We compare
numerically exact simulations to phenomenological approaches and special limits: The behavior of model I is
compared to self-consistent mean-field calculations and master equation results in the Coulomb blockade regime.
Model II, allowing heat dissipation to a thermal bath, is mimicked by an Aharonov-Bohm junction with a voltage
probe. In both cases we find that phenomenological treatments capture the relevant transport symmetries, yet
significant deviations in magnitude may show up.
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I. INTRODUCTION

Microreversibility dictates linear response properties such
as the Onsager-Casimir symmetry relations. Particularly, in
a two-terminal conductor the linear conductance should be
an even function of the magnetic field B [1]. In Aharonov-
Bohm (AB) interferometers, this symmetry is displayed by
the “phase rigidity” of the conductance oscillations with
B [2,3]. Microreversibility is broken beyond linear response;
thus magnetoasymmetries should develop at finite bias, as
demonstrated in several experiments [4–11]. What is then
remarkable is not the failure of the Onsager symmetry away
from equilibrium, rather the development of more general
symmetries between nonlinear transport coefficients and high-
order cumulants [12–15].

Several studies explored magnetotransport in AB interfer-
ometers beyond the noninteracting limit, coupling electrons to
either internal or external degrees of freedom [16–21]. For
example, the problem has been explored by implementing
mean-field arguments within scattering theories, focusing on
effective quantities such as the screening potential developing
in the interferometer in response to an external bias [13,16].
At this level, one can show that magnetoasymmetries develop
since internal potentials (the result of many-body interactions)
are asymmetric in the magnetic field away from equi-
librium [13,16]. In the complementary (phenomenological)
Büttiker probes approach [22] elastic and inelastic scattering
effects are introduced via probes whose parameters reflect the
response of the conductor to the applied magnetic field and
the voltage bias [23]. Beyond phenomenological treatments,
magnetotransport characteristics were investigated using mi-
croscopic models in the Coulomb blockade limit [19,21] and
in the Kondo regime [19].

In this work we study characteristics of nonlinear transport
in AB interferometers by means of an exact numerical
technique [24]. Our setup includes an AB interferometer with
two quantum dots, one at each arm, and we introduce different
types of many-body effects within the system: Model I includes
an interdot Coulombic repulsion term; see Fig. 1. In model II

a secondary fermionic environment interacts capacitively with
one of the quantum dots. This environment can serve as a
“charge sensor” or a “quantum point contact”; see Fig. 2.
We simulate the dynamics and the steady-state properties of
these (many-body out-of-equilibrium) setups by adapting an
iterative influence functional path integral technique (INFPI),
developed in Ref. [24] to treat the dynamics of the single-
impurity Anderson dot model.

Our work includes the following contributions: (i) We study
symmetries of magnetotransport far from equilibrium in the
transient domain and in the steady-state limit including gen-
uine many-body interactions, rather than using phenomenolog-
ical (screening, probe) models [13,16]. (ii) Magnetotransport
characteristics were explored in the literature within different
models, e.g., considering an interferometer made with one
or two quantum dots, with or without thermal dissipation
effects. Here, we study transport symmetries in different
models using the same computational tool, allowing for a
direct comparison. (iii) We compare exact simulations to
phenomenological treatments and limit cases (e.g., Coulomb
blockade results), for clarifying the validity and accuracy of
approximate techniques in magnetotransport calculations, and
the relevance of special-extreme limit situations. Particularly,
in model II our simulations reveal functionalities beyond the
mean-field level: diode (dc-rectification) effect at zero flux
under spatial asymmetry and a finite Coulomb drag current,
driven by the fermionic environment.

The paper is organized as follows. In Sec. II we introduce
two models of an interacting double-dot interferometer, and the
principles of the numerical techniques adopted in this work.
Results are presented in Sec. III. Section IV concludes. For
simplicity, we set e = 1, � = 1, and kB = 1.

II. MODELS AND TECHNIQUES

A. Double-dot AB interferometer

We begin with the noninteracting Hamiltonian, common
to the two models. It includes a two-terminal (ν = L,R) AB
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FIG. 1. (Color online) Scheme of model I, a two-terminal
double-dot Aharonov-Bohm interferometer with spinless electrons
in two quantum dots, 1 and 2, with an interdot repulsion of
strength U .

interferometer with two dots, n = 1,2, one at each arm. For
simplicity, we ignore the spin degree of freedom, and take into
account only one electronic level in each dot. The Hamiltonian
includes the following terms:

HAB =
∑
n=1,2

εna
†
nan +

∑
l∈L

εla
†
l al +

∑
r∈R

εra
†
r ar

+
∑
n=1,2

∑
l∈L

vn,la
†
nale

iφL
n +

∑
n=1,2

∑
r∈R

vn,ra
†
r ane

iφR
n

+ H.c. (1)

Here a
†
k (ak) are fermionic creation (annihilation) operators

of electrons with momentum k and energy εk in the k ∈ ν

metal, a
†
n and an are the respective operators for electrons on

the dots, and εn denotes the energy of spin-degenerate levels.
The parameter vn,l stands for the coupling strength of dot
n to the l state of the L metal. A similar definition holds for
vn,r . These coupling terms are absorbed into the definition of
the hybridization energy

γν,n(ε) = 2π
∑
j∈ν

|vn,j |2δ(ε − εj ). (2)

In our simulations we set γν,n, use a constant density of states
for the metals, up to a sharp cutoff ±D, then construct the
real-valued tunneling elements vn,j by using Eq. (2). The AB
phase factors φL

n and φR
n are acquired by electrons in a magnetic

FIG. 2. (Color online) Scheme of model II, a two-terminal
double-dot Aharonov-Bohm interferometer coupled to a fermionic
environment. This environment consists of a quantum dot (labeled p)
itself hybridized with either (a) an equilibrium sea of noninteracting
electrons, or (b) two metals (±), possibly biased away from
equilibrium. In both cases dot 1 of the interferometer is coupled
capacitively (strength U ) to dot p in the fermionic environment.

field perpendicular to the device plane. These phases are
constrained to satisfy

φL
1 − φL

2 + φR
1 − φR

2 = φ = 2π�/�0, (3)

and we adopt the gauge

φL
1 − φL

2 = φR
1 − φR

2 = φ/2. (4)

Here � is the magnetic flux threading through the AB ring,
φ = 2π�/�0 the magnetic phase, and �0 = h/e the magnetic
flux quantum. We voltage-bias the AB interferometer, 	μ ≡
μL − μR , with μL,R as the chemical potential of the metals; we
use the convention of a positive current flowing left-to-right.
We bias the system in a symmetric manner, μL = −μR , but
this choice does not limit the generality of our discussion since
the dots may be gated away from the so called “symmetric
point” at which μL − εn = εn − μR .

The Hamiltonian (1) does not include interactions and one
can readily obtain the exact form of the (steady-state) charge
current flowing between the terminals, an even function of
the magnetic flux [23]. Assuming for simplicity that the two
quantum dots are evenly coupled to the ν terminal, γν ≡ γν,n,
we find that [25]

I (φ) = 1

2π

∫ ∞

−∞
dε

4γLγR

[
(ε − εd )2 cos2 φ

2 + (
	ε
2 sin φ

2

)2]
[fL(ε) − fR(ε)][

(ε − εd )2 − 	ε2

4 − γLγR sin2 φ

2

]2 + (γL + γR)2(ε − εd )2
, (5)

with εd = (ε1 + ε2)/2 and 	ε = ε1 − ε2. Here fν(ε) =
[eβ(ε−μν ) + 1]−1 with β = 1/T as the inverse temperature.
The current is an even function in the magnetic flux at
finite bias, irrespective of spatial asymmetries (γL �= γR and
	ε �= 0). Using the probe technique, a phenomenological tool
for implementing scattering effects, we had recently proved
that this “phase locking” behavior is preserved under elastic de-
phasing [23]. In contrast, inelastic scattering processes, taken
into account with a voltage probe or a voltage-temperature
probe, break the even symmetry in φ in the nonlinear transport
regime. We now augment the Hamiltonian (1) with genuine
many-body interactions: In model I we add an interdot

repulsion interaction between electrons, overall conserving
energy and charge in the interferometer. In model II energy
exchange with an additional environment is allowed.

1. Model I: Interdot Coulomb repulsion

We complement the Hamiltonian (1) with a Coulomb
repulsion term, nonzero when both quantum dots are occupied.
The resulting interdot Coulomb (C) model reads

HC = HAB + Un1n2. (6)
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FIG. 3. (Color online) Schemes of the different setups considered
in this work. (a) Model I with a horizontal (H) mirror symmetry. The
bold (light) arrows represent strong (weak) hybridization energies of
the quantum dots to the metals. Simulations are included in Fig. 4.
(b) Model I with a vertical (V) mirror symmetry. The nondegenerate
dots are represented by different colors. Figure 5 displays the
transients; Fig. 8 shows steady-state values. (c) Model I missing the H
and V mirror symmetries; see data in Figs. 7 and 8. (d) Model II with
a V mirror symmetry. Results are displayed in Figs. 11 and 13. (e)
Model II missing both the H and V mirror symmetries. Steady-state
data are included in Fig. 13.

For a schematic representation see Fig. 1. Here n1 = a
†
1a1

and n2 = a
†
2a2 are the number operators for the dots. The

behavior of the current and the occupation of the dots in this
“interacting two-level quantum dot model” were investigated
in different works: The case without the threading magnetic
field was studied, e.g., in Refs. [26–29]. The role of an external
magnetic field was examined in different limits, particularly
in the Coulomb blockade regime [30]. Recent studies further
investigated transient effects, either analytically, disregarding
interactions [31], or numerically, considering relatively weak
interactions [32].

In our simulations below we consider three geometries
for model I (see Fig. 3): (i) a setup with a mirror symmetry
with respect to the horizontal axis, (ii) the case with a mirror
symmetry along the vertical axis, and (iii) the model missing
(horizontal and vertical) symmetries.

2. Model II: Coupling to a fermionic environment

Dissipation effects can be included by capacitively coupling
the interferometer to a fermionic environment (FE), set in
equilibrium or out of equilibrium. For simplicity, we do
not consider electron-electron interactions within the inter-
ferometer or within the FE. This dissipative (D) Hamiltonian
includes the interferometer [Eq. (1)], an additional FE, and the
interaction energy between the units,

HD = HAB + HF + VD. (7)

The FE is realized here by a tunneling junction

HF = εpc†pcp +
∑
s∈α

εsc
†
s cs +

∑
s∈α

gsc
†
s cp + H.c. (8)

It includes a quantum dot of energy εp coupled to two reser-
voirs (α = ±). The FE may be set at equilibrium when μ+ =
μ− (with the Fermi energy set at zero), or biased away from
equilibrium, 	μF ≡ μ+ − μ− �= 0. We distinguish between
the AB interferometer and the FE by adopting the operators c†

and c to denote creation and annihilation operators of electrons
in the FE. We define the dot-reservoir hybridization energies
in the FE by

γα(ε) = 2π
∑
s∈α

|gs |2δ(ε − εs). (9)

Electrons in the AB interferometer and the FE are interacting
(strength U ) according to the form

VD = Unpn1. (10)

Here np = c
†
pcp, n1 = a

†
1a1 are number operators. Note that

there is no leakage of electrons from the AB junction into
the FE. However, this additional environment provides a
mechanism for inducing elastic and inelastic scattering events
of electrons on dot 1.

Model II has been examined in the literature in the context
of charge sensing, and as a “which-path” detector; see for
example Refs. [33–35]. The dephasing in an AB interferometer
with a capacitively coupled charge sensor has been analyzed
in Ref. [33], using a second-order perturbation theory in U , yet
limited to the linear conductance case. Here, using a numerical
tool, we analyze the system away from equilibrium with the
vertical mirror symmetry either preserved or violated; see
Fig. 3.

B. Observables

The principal observable of interest in our work is the charge
current in the interferometer. It is calculated from the current
operator,

ÎL = −dNL

dt
= −i[H,NL]

=
∑
l∈L

[−iv1,le
iφL

1 a
†
1al + ivl,1e

−iφL
1 a

†
l a1

]
, (11)

with NL = ∑
l∈L a

†
l al as the number operator of the L metal.

The current at the R contact, ÎR , can be defined in a analogous
way. We identify the averaged current by Î ≡ 1

2 (ÎL − ÎR); we
could simulate separately the currents at the L and R terminals,
but we chose to directly compute the expectation value

I (t,φ) = tr[ρ(0)eiHt Î e−iH t ], (12)

from a dot-metal-FE factorized initial state ρ(0). Here H

denotes the total Hamiltonian of interest. Formally, the two-
terminal current I (t,φ) can be expanded in powers of the
applied voltage bias 	μ,

I (t,φ) =
∑

k=1,2,..

Gk(t,φ)(	μ)k. (13)
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We refer to Gk>1 as nonlinear conductance coefficients. The
current can be separated into its odd and even terms in
powers of the bias. Even terms represent the dc-rectification
contribution,

R(t,φ) ≡ 1
2 [I (t,φ) + Ī (t,φ)]

= G2(t,φ)(	μ)2 + G4(t,φ)(	μ)4 + · · · . (14)

Here Ī is the current obtained when interchanging the
chemical potentials of the two terminals (assuming identical
temperatures). The complementary odd terms are grouped into

D(t,φ) ≡ 1
2 [I (t,φ) − Ī (t,φ)]

= G1(t,φ)	μ + G3(t,φ)(	μ)3 + · · · . (15)

Below we relax the time variable when addressing long-time
quasi-steady-state values. Other quantities of interest are the
occupation of the dots in the interferometer and the behavior
of the coherences, off-diagonal terms of the reduced density
matrix, obtained from σn,n′ (t) ≡ tre[e−iH tρ(0)eiHt ]n,n′ ; the
trace is performed over degrees of freedom in the electronic
reservoirs. We could also simulate the dynamics within the FE
(model II), exploring its operation as a quantum point contact
and a magnetic field sensor.

It should be noted that, by definition, a nonzero value for
R reveals deviations from linear response. In contrast, as we
show below in our simulations, within the range of parameters
adopted here D is still dominated by the linear response term,
satisfying the Onsager symmetry. Practically, we obtain R
(D) by simulating the current in the forward and reversed
bias configurations, then adding (subtracting) the resulting
currents.

Focusing on the current in the AB unit, we consider
different setups for models I and II; see Fig. 3. From symmetry
considerations, under a mirror symmetry with respect to the
horizontal (H) axis, phase locking should take place, with
I (φ) = I (−φ) [30]. On the other hand, if the system acquires
only a mirror symmetry with respect to the vertical (V) axis, the
resulting symmetry relation is I (φ) = −Ī (−φ) [30], leading
to

R(φ) = −R(−φ), D(φ) = D(−φ). (16)

Below, our numerical results confirm these relations in the
transient domain as well, under a symmetrized definition of
the current operator, with a symmetric application of bias
(μL = −μR). We quantify the importance of R relative to
D, study deviations from the above relations when the vertical
and horizontal symmetries are broken, and test predictions of
approximate techniques against exact simulations.

C. Numerically exact treatment: INFPI

We simulate the dynamics of electrons in models I and
II using a numerically exact influence function path integral
technique, referred to as INFPI. The principles of this method
have been detailed in several recent publications [24,26,36];
therefore we only highlight here the aspects of relevance to the
present work.

Equations (6) and (7) can be each organized into the generic
form H = H0 + H1, with H0 comprising the exactly solvable
(noninteracting) terms. Many-body interactions are collected

into H1, written in the form

H1 = U
[
n1na − 1

2 (n1 + na)
]
. (17)

In model I, na = n2; in model II it corresponds to the number
operator of the impurity level p within the FE, na = np =
c
†
pcp [see Eq. (10)]. The two-body term 1

2U (n1 + na) is
absorbed into the definition of H0. This structure allows for
the elimination of H1 via the Hubbard-Stratonovich (HS)
transformation and the propagation of quadratic expectation
values with an influence functional path integral technique.
We now briefly review the principles of INFPI, to explain
why this method is fitting for the study of magnetotransport
in far-from-equilibrium situations. We discuss the numerical
errors associated with INFPI simulations, and point out that
these errors do not interfere with the resolution of transport
symmetries.

The starting point in our approach is the formal expres-
sion (12). As an initial condition we use a factorized initial
state. For example, in model II we use ρ(0) = ρF (0) ⊗ ρAB(0)
with ρAB as the state of the interferometer. We further assume
that ρAB(0) = σ (0) ⊗ ρL ⊗ ρR , with σ (0) as the reduced den-
sity matrix of the isolated dots in the interferometer. The FE is
similarly prepared in a factorized state with ρF (0) = ρp(0) ⊗
ρ+ ⊗ ρ−. The four reservoirs ξ = L,R,± are separately
prepared in grand canonical states at a given chemical po-
tential and temperature, ρξ = e−β(Hξ −μξ Nξ )/tr[e−β(Hξ −μξ Nξ )];
we prepare all reservoirs at the same temperature 1/β.

Using this initial state in Eq. (12), we apply the Trotter
decomposition and the HS transformation; the latter elimi-
nates the many-body term H1 by introducing auxiliary Ising
variables [37]. The result is a formally exact path integral
expression; the integrand is refereed to as the “influence
functional” (IF) involving nonlocal dynamical correlations,
generally missing an analytical form.

The fundamental principle behind INFPI is the observation
that at finite temperature and/or nonzero chemical potential
difference bath correlations exponentially decay in time; thus
the IF can be truncated beyond a memory time τc [38,39]. This
allows us to define an auxiliary operator on the time window τc,
which can be time-evolved iteratively from the initial condition
to time t . The truncated IF can be evaluated numerically by
discretizing the fermionic reservoirs and tracing out the baths’
degrees of freedom using trace identities [24].

The INFPI method involves three numerical errors:
(i) The finite discretization of the reservoirs, each comprising
Ls single-electron states. (ii) The time step adopted in the
Trotter breakup, δt . In our simulations the trotter error grows
as (δtU )2. (iii) The error associated with the truncation of the
IF, to include only a finite memory time τc. The exact limit is
reached when Ls → ∞, Uδt → 0, and τc → t . Convergence
is tested by studying the sensitivity of simulations to the energy
discretization of the reservoirs, the time step, and the memory
time τc = Nsδt , with Ns as an integer.

INFPI excellently fits for the simulation of magneto-
transport in far-from-equilibrium situations: First, analytic
considerations and numerical simulations suggest that the
memory time characterizing the bath decorrelation process
scales as τc ∼ 1/	μ [24,38,39]. Thus, the method should
quickly converge to the exact limit at a large bias. Since
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we are specifically interested here in beyond-linear-response
situations, INFPI is perfectly suited for the problem. Second,
this is a deterministic time propagation scheme. Thus, it is
an advantageous tool for testing magnetic field symmetries
in nonlinear transport: Even if convergence is incomplete,
I (t,φ) and I (t,−φ) deviate from the exact limit in the same
(deterministic) form, conserving transport symmetries. In
contrast, methods that rely on stochastic sampling of diagrams
may accumulate distinct errors in the evaluation of the current
at opposite phases, I (t,±φ); thus one may need to approach
the exact limit for validating transport symmetries. As we
show below, at finite interactions the evolution of the current
with time strongly depends on the magnetic phase, showing
distinct relaxation times for ±φ. Thus, it is important to adopt
here techniques which accumulate identical errors for ±φ.
Finally, INFPI is a flexible tool and it can be easily adapted for
the study of several related models, as long as the interacting
contribution H1 follows Eq. (17). This allows us to analyze
and compare the behavior of different many-body situations,
e.g., with or without a dissipative bath.

D. Phenomenological approaches

Nonlinear transport characteristics in models I and II
can be explored based on perturbation theory expansions in
U ; see for example Ref. [33]. Alternatively, in mean-field
(MF) approaches many-body effects are embedded in the
(noninteracting) scattering formalism. For example, one can
write the scattering matrix as a functional of an electrostatic
screening potential which depends on the applied bias [16,18].
Another phenomenological scheme has been explored in
Ref. [23]: Buttiker’s probes were used to apply different
processes (elastic, inelastic, dissipative) into the otherwise
coherent dynamics.

In Sec. III we compare results from INFPI to phenomeno-
logical methods. Model I is analyzed in the steady-state limit
using the self-consistent Hartree approximation as described
in Refs. [27,40,41]. This scheme accounts for the interdot
Coulomb interaction by replacing the bare levels with Hartree
energies, e.g., ε1 → ε1 + Uσ2,2. We then use standard Green’s
function expressions [25], iterated to reach self-consistency. To
understand the behavior of high-order conductance terms, we
further compare our results to Bloch-type master equations
valid in the large bias Coulomb blockade case.

We analyze model II using the phenomenological voltage
probe technique, extended to the nonequilibrium regime, as ex-
plained in Ref. [23]. In this approach we hybridize the quantum
dot 1 to a metal terminal (probe), then impose the condition of
zero net charge current in this connection. Electrons can thus
dephase and exchange energy in the probe, but (net) charge
current only flows between the L and R terminals.

III. RESULTS

In our simulations below we adopt the following pa-
rameters: 	μ = 0.6, inverse temperature of the electronic
reservoirs β = 50, U = 0.1, γν,n = 0.05–0.2, flat bands ex-
tending between D = ±1. INFPI numerical parameters are
δt = 0.5–1.2, Ns = 3–6, and Ls = 120. Convergence was
reached for τc ∼ 2, in agreement with the rough estimate
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0.1

t

I
(t

,±
φ
)

U=0

U=0.1

20 40 60
0.015

0.02

0.025

t

I
(t

,±
φ
)

U=0

U=0.1

FIG. 4. (Color online) Model I with a horizontal mirror symme-
try, showing phase rigidity. INFPI simulations using φ = ±π/2,
γL,1 = γL,2 = 0.2, γR,1 = γR,2 = 0.05, ε1 = ε2 = 0.15, 	μ = 0.6,
U = 0 (bottom two overlapping lines) and U = 0.1 (top two
overlapping lines) Ns = 6 and δt = 0.6. The inset zooms on the time
evolution after the early transients.

τc ∼ 1/	μ. We consider different setups, obeying or violating
the horizontal and vertical mirror symmetries; see Fig. 3.

A. Model I

We analyze nonlinear transport behavior in model I using
INFPI simulations, then compare our results to the Hartree
mean-field approach and the Coulomb blockade case. We
begin with a setup preserving the horizontal symmetry, ε1 =
ε2, γL,1 = γL,2 > γR,1 = γR,2. As pointed out in Ref. [30],
the current in this model should be an even function of the
magnetic field, beyond linear response. Figure 4 confirms this
“phase locking” behavior in the transient regime as well, given
the symmetric initial condition and the symmetrized definition
of the current operator.

In Fig. 5 we consider a setup with only a vertical mirror
symmetry. We separate the current into its odd and even
conductance terms by studying the dynamics with a reversed
bias, then calculating R = (I + Ī )/2 and D = (I − Ī )/2.
Using INFPI, we find that Eq. (16) is obeyed even before
steady state is reached.

We exemplify the convergence behavior of this model in
Fig. 6. In panels (a) and (b) we display R(t,±π/2) and
demonstrate that it obeys the symmetry relation (16) even
before convergence is achieved. We also examine the steady-
state behavior of the system using different values for the
simulation time step; see panels (c) and (d). A large time step
δt = 1.2 does not allow convergence for R, but with δt = 0.6,
R(±π/2) converges around τc = 3. Odd conductance terms
[panel (d)] slowly converge, but again maintain transport
symmetries [overlapping data for D(±φ/2)] under a short
memory time. This observation is not trivial: the dynamics
under the phases ±φ is quite different, see for example
Fig. 5(a). The fact that δt = 1.2 data seem to properly behave
for D, yet not for R, should not be alarming: We found in
previous studies that (within the same INFPI computation)
different observables converge following different curves,
with distinctive time step and memory time [26]. Since R
and D conductance terms contain complementing scattering
processes, it is not surprising that they follow different
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FIG. 5. (Color online) Model I with a vertical mirror symmetry.
(a) Total current and its breakup into (b)D and (c)–(d)R components;
φ = π/2, γν,n = 0.1, ε1 = 0.1, ε2 = 0.2, 	μ = 0.6, U = 0.1, Ns =
6, and δt = 0.6.

convergence patterns. We note that the D curve is reaching
convergence with increasing τc; our interpretation of the R
curve goes as follows: Results are meaningful as long as they
are independent of the time step δt , when the Trotter error is
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FIG. 7. (Color online) Model I. (a) Total current and its breakup
into its (b) R and (c) D components for noncentrosymmetric
and nondegenerate double-dot system; φ = π/2, γL,1 = γL,2 = 0.2,
γR,1 = γR,2 = 0.05, ε1 = 0.1, ε2 = 0.2, 	μ = 0.6, U = 0.1, Ns = 6,
and δt = 0.6.

insignificant. At small τc, its increase through Ns directs us
to convergence. However, as we increase Ns we add time
evolution operators and collect a larger total Trotter error,
deviating us from the exact answer, though τc is increasing.
This is reflected by the departure from the (short) plateau
around τc ∼ 3–4 in Fig. 6(c). Thus, to reach convergence one
should simultaneously increase Ns and reduce δt , to make
sure no significant errors are accumulated due to either source.
Following this discussion, we take below the values obtained
with the smallest time step, δt = 0.6 and Ns = 6 to represent
INFPI’s numerical solution here. More extensive simulations,
with δt ∼ 0.5 and Ns = 2–10, are necessary to achieve more
accurate values for R.

The symmetry relations (16) are invalidated when the
horizontal and vertical mirror symmetries are broken;
see Fig. 7. Note that in panel (c), D(φ) �= D(−φ); deviations
are order of 10−4. We can use Fig. 7 and estimate the magnitude
of high-order conductances. For example, from the behavior
of D (assuming G3 provides the largest contribution after
G1) we find that at φ = π/2, G1 ∼ D/	μ = 0.06, G3 ∼
[D(π/2) − D(−π/2)]/2	μ3 ∼ 5 × 10−4, and G2(π/2) ∼
R(π/2)/	μ2 ∼ 10−3. Thus, at this phase, G3/G1 = 10−2

and G2/G1 = 2 × 10−2. These conductances are translated
to physical units when multiplied by the factor 2e2

�
. Note that

G2 and G3 are of the same order of magnitude.
In Fig. 8 we display the long-time quasi-steady-state data

for R(φ) and D(φ). Within the present simulation times, we
have not reached the steady-state limit for R using φ/π <

1/2 [42]. We compare exact simulations to a mean-field
approach as explained in Sec. II D; see Fig. 9. Both exact
and approximate treatments satisfy the relations (16) when the
vertical mirror symmetry is preserved. However, the Hartree
approach is unreliable as it predicts incorrect magnitudes for
R. Similarly, in the absence of mirror symmetries, exact and
approximate tools demonstrate the violation of Eq. (16), but
the Hartree approach overestimates the magnitude of R.
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FIG. 10. (Color online) Steady-state behavior of model I in the
Coulomb blockade regime with the parameters of Fig. 8 using
Eq. (18). Setups with a vertical mirror symmetry, γν,n = 0.1 (◦),
and missing mirror symmetries, γL,n = 0.2 and γR,n = 0.05 (�).

Previous studies of nonlinear transport in quantum dot
systems had indicated that Hartree MF approximation suffers
from fundamental artifacts; e.g., it predicts an incorrect hys-
teresis behavior in the single-impurity Anderson model [41].
Here we find that the method conserves correct transport
symmetries, but it produces incorrect values for the nonlinear
terms. We have also implemented a Hartree-Fock (HF)
approach as described in Ref. [43] by further correcting off-
diagonal elements in the Green’s function with the expectation
values of the coherences σ1,2. This had reduced the amplitude
of the oscillatory pattern around φ/π = ±0.2, but HF results
still overestimate R by almost an order of magnitude, for
φ ∼ π/2. It is interesting to adopt an equations-of-motion
treatment [44] and explore these deviations maintaining
higher-order correlation effects.

Complementing Green’s function approaches, one can
derive a Bloch-type number-resolved master equation for
the reduced density matrix using a technique developed by
Gurvitz et al. [45]. This treatment is valid in the large-bias
limit 	μ � γν,n, 	ε, T , with 	ε = ε1 − ε2. In the Coulomb
blockade case, εn + U � 	μ, equations of motion for the
reduced density matrix are included in Ref. [46], to provide
the steady-state current

I (φ) = I0
	ε2

	ε2 + I0
(
2γR sin2 φ

2 − 	ε sin φ
) . (18)

Here I0 = 2γLγR

2γL+γR
is the current in the absence of the magnetic

field. This expression was derived under the assumption of a
unidirectional current, allowing electrons to flow only from
the left terminal to the right one. For noninteracting electrons
the infinite bias limit can be well approximated by a system
with a finite bias, if the electronic levels are placed deep
inside the bias window, μL − μR � ε1,2 [45]. Our parameters
satisfy this condition. Equation (18) discloses that the current
is oscillatory with φ when 	ε �= 0, but it shows an asymmetric
behavior. This again demonstrates that Onsager relation is
violated for interacting systems at finite voltage bias. A
peculiar nonanalytic (in φ) behavior develops when 	ε → 0
as was discussed in Ref. [46].

We now use Eq. (18) and calculate R(φ) and D(φ), by
considering the reversed polarity with μR � μL. Results are
displayed in Fig. 10. It is extremely interesting to note that
this infinite-U case shares qualitative similarities with finite-
U results, U/	μ ∼ 0.2, of Fig. 8 (exact) and Fig. 9 (mean
field). Of course, given the underlying large-bias assumption
in Eq. (18) the R and D components in Fig. 10 are comparable
in magnitude. Furthermore, when the vertical mirror symmetry
is violated, the even symmetry of D is clearly broken, given
the dominance of high-order conductance terms such as G3,
G5, . . . over the linear response term G1.

We conclude the following: (i) The AB interferometer
can act as a charge diode (R �= 0) in a spatially symmetric
device (γν,n are all identical) if the following conditions are
simultaneously met: the dots’ energies are nondegenerate, the
magnetic flux is nonzero φ �= πm, and many-body interactions
are in play; see Fig. 8(a). This observation agrees with recent
simulations based on wave-packet propagation [47]. (ii) The
Hartree mean-field approach properly describes the develop-
ment of transport symmetries when the device acquires vertical
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or horizontal mirror symmetries; its quantitative predictions
are unreliable. (iii) The large voltage-bias Coulomb blockade
case exhibits similar features to intermediate-bias finite-U
simulations. This observation reveals that G2n conductance
terms within R apparently attain a similar functional form
with φ and U .

B. Model II

Here we simulate with INFPI the dynamics of model II, an
AB interferometer coupled to a dissipative environment. The
FE provides a mechanism for elastic and inelastic scattering
of electrons on dot 1, and it dissipates energy from the AB
unit. We focus on an equilibrium environment, μ+ = μ−; in
Fig. 15 we further address the role of a nonequilibrium FE on
transport symmetries within the AB interferometer. It should
be noted that with dot 1 coupled to the FE, the model lacks a
horizontal mirror symmetry by construction.

Model II with an equilibrium FE may be mimicked by
a noninteracting model with dot 1 connected to a voltage
probe. The voltage probe is a metal terminal; its parameters
are set so as the net charge current directed towards it,
from the AB systems, vanishes. It provides a mechanism for
implementing dissipative inelastic scattering of electrons in the
interferometer, while allowing one to work in the Landauer
formalism of noninteracting electrons. In Ref. [23] we used
this machinery and proved that in systems with a vertical
mirror symmetry even and odd conductance components of
the charge current (14) and (15) obey in steady state the rela-
tions (16). When spatial asymmetry in the form γL = γL,1 =
γL,2 �= γR = γR,1 = γR,2 is introduced, the relations (16) are
violated [23]. Here we complement the probe analysis and
explore model II with genuine many-body effects: We confirm
the relations (16) under a vertical mirror symmetry, study
violations of this equation in general cases, and point out that
under certain conditions the diode effect, missing in the phe-
nomenological probe treatment, shows up in exact simulations.

In Fig. 11 we display the charge current in the interferom-
eter, either isolated (U = 0) or coupled to a FE (U = 0.1).
We confirm that the former, a coherent system, obeys phase
rigidity I (t,φ) = I (t,−φ). When the AB setup is coupled to
the FE, the transient current and the steady-state value do not
transparently expose any symmetry, but Figs. 11(b) and 11(c)
demonstrate that in a geometrically symmetric setup, γL = γR ,
the symmetries (16) are satisfied in the transient regime and in
the steady-state limit.

It is important to recall that the occupations of the dots in
the AB interferometer do not satisfy analogous symmetries,
even in the isolated U = 0 limit. In Fig. 12 we display the
occupation of dot 1 and show that, in agreement with analytical
results [25], σ1,1(t,φ) does not satisfy a phase symmetry away
from the symmetric point. Note that at short time, γνt � 0.5,
the current and the occupation of dot 1 are insensitive to both
interactions and the magnetic phase. When U is turned on, the
case with φ = π/2 approaches steady state significantly faster
than the opposite φ = −π/2 situation. This is reflected in both
the occupation dynamics and the current.

In Fig. 13 we present steady-state data for R and D. We
demonstrate the validity of Eq. (16) in junctions with a vertical
mirror symmetry, and its violation in general situations. Note
that D(φ) �= D(−φ) under a spatial asymmetry, but deviations

0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

t

I(
t,

φ
)

(a)

0 100 200
−4

−2

0

2

4
x 10

−3

t

R
(t

,±
φ
)

(b)

0 100 200
0

0.01

0.02

0.03

t

D
(t

,±
φ
)

(c)

U=0, φ=π/2

U=0, φ=−π/2

U=0.1, φ=π/2

U=0.1, φ=−π/2

FIG. 11. (Color online) Model II, an interferometer coupled to an
equilibrium FE, with a vertical mirror symmetry. (a) Charge current
in the AB interferometer, U = 0 with φ = ±π/2 (dot and circles,
overlapping) and U = 0.1 with φ = π/2 (dashed-dotted), φ = −π/2
(dashed). (b) and (c) Odd and even conductance terms obey the
symmetries (16). The quantum dots in the AB interferometer are
set at ε1,2 = 0.15, γν,n = 0.05. The FE is set at equilibrium (μ± = 0)
with εp = −0.5 and γ± = 0.2. The four reservoirs are prepared at the
temperature 1/β = 50. Numerical parameters are δt = 0.6, Ns = 4,
and Ls = 120.

are small, for exampleD(π/2) − D(−π/2) ∼ 1.5 × 10−4. We
compare these results to the probe technique as described in
Ref. [23]. The coupling of dot 1 to the probe (hybridization
strength γp) does not directly correspond to the capacitive
coupling U thus we can only make a qualitative comparison
here. Results are displayed in Fig. 14. Note that we used
here a higher electronic temperature, 1/β = 25, to facilitate
convergence. It was shown in Ref. [23] that an increase of
the metals’ temperature only leads to a weaker visibility of
the current with the magnetic flux, but it does not alter the
oscillation of the current with flux.
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FIG. 12. (Color online) Occupation of dot 1 in a system with a
vertical mirror symmetry using the parameters of Fig. 11, Ns = 3,
δt = 0.8.
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Comparing Fig. 13 (INFPI) to Fig. 14 (probe), we observe
that the probe technique provides qualitative correct features.
However, in asymmetric setups it brings R(φ = 0) = 0, even
if the dots are nondegenerate [23]. In contrast, INFPI yields a
nonzero value for R(φ = 0); see Fig. 13. This disagreement
has an important implication: The phenomenological probe
approach predicts that in the absence of a magnetic flux the
AB system cannot act as a diode, though an asymmetry is
introduced and (effective) many-body interactions are playing
a role. In contrast, INFPI simulations show that the system
can act as a diode at zero flux if γL �= γR . The fact that the
phenomenological probe technique is missing this important
functionality (at zero flux) indicates that it does not properly
account for electron-electron interactions in the system.

We now explore the role of nonequilibrium effects in the FE,
	μF = μ+ − μ− �= 0. As long as we keep the interferometer
biased 	μ �= 0 we recover the symmetries as before, reaching
the dynamics as in Fig. 11. Transport symmetries are thus
unaffected by the nonequilibrium environment, and this could
be justified by noting that in our model dot 1 is coupled to
a number operator in the FE, as in Ref. [12], rather than to
scattering states [35].

Model II further allows us to explore the development of
the “Coulomb drag current” in the interferometer, a result of
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FIG. 14. (Color online) Model II with the FE replaced by a
voltage probe coupled to dot 1. The probe equations are detailed in
Ref. [23]; symmetric γν,n = 0.2 (◦), and asymmetric γL,n = 0.05 �=
γR,n = 0.2 (�) setups. Parameters are the same as in Figs. 11–13,
besides the temperature which is set at 1/β = 25 and γp = 0.05.

0 50 100 150
−2

−1

0

1

2
x 10

−3

t

I
(t

,±
φ
)

(a)

φ = π/2
φ = −π/2

0 50 100 150

−1

0

1

2
x 10

−3

t

(b)

I(t, φ)

R(t, φ)

FIG. 15. (Color online) Model II with an out-of-equilibrium FE.
(a) A finite drag current is induced in the interferometer (set in
equilibrium 	μ = 0), a result of its coupling to a nonequilibrium
FE with 	μF = 1. Panel (b) demonstrates that the current in the
interferometer is missing a linear response contribution (and all other
odd powers of voltage); ε1,2 = 0, γν,n = 0.1, γ± = 0.2, εp = 0.1,
U = 0.05, β = 10 (facilitating convergence), δt = 0.8, and Ns = 3.

its coupling to the FE. This effect has important implications
in nanoscale electronic junctions: When placing two quantum
wires (with independent contacts) into a close proximity, a
“drive current” passing through one conductor can induce
a “drag current” in the other wire, a result of Coulomb
(capacitive) interactions between charges in the two wires; see,
e.g., Ref. [48] for an experimental demonstration. In Fig. 15 we
explore this effect using INFPI: The interferometer is unbiased,
	μ = 0, but we voltage-bias the FE. We show that in a system
with a vertical mirror symmetry the drag current is nonzero, an
odd function of the magnetic flux. We can drive a positive or a
negative current in the AB interferometer; the directionality is
induced here through the magnetic flux, not the hybridization
coefficients as in other works [49]. Furthermore, by plotting in
panel (b) the measure R = [I (t,φ,	μF ) + I (t,φ,−	μF )]/2
we confirm that the current includes only even powers in 	μF ,
missing altogether a linear response term.

We emphasize that the drag current observed here does
not emerge from the transfer of momentum between charges;
rather, we harness here charge fluctuations in the FE. It
is thus expected that an unbiased-thermal FE could induce
a net current in a centrosymmetric AB interferometer, if
the magnetic flux is nonzero [50]. However, this situation
cannot be explored at present by the INFPI technique since
its convergence requires a large voltage biasing or high
temperatures, with the memory time approximately given by
τc = δtNs ∼ min{1/	μF ,β}.

The Coulomb drag effect has been examined so far by
breaking the spatial symmetry using uneven contacts, adopting
phenomenological rate equations or perturbative treatments;
see, e.g., Refs. [49,51,52]. Our work here is a first step towards
the exploration of this many-body phenomenon with a broken-
time-reversal symmetry, by means of an exact numerical tool.

We summarize our main observations for model II: (i) The
relations (16) are satisfied in the transient regime and in the
steady-state limit when the vertical mirror symmetry is obeyed.
The approach to steady state depends on the magnetic flux.
(ii) The probe technique, an effective mean, provides the
correct features forR andD, but it predicts zero dc rectification
current in the absence of a magnetic flux, for γL �= γR .
(iii) The FE may generate a positive or a negative drag current
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in an unbiased centrosymmetric AB interferometer, given a
nonzero magnetic phase in the system.

IV. SUMMARY

We examined the double-dot AB interferometer with
controlled many-body effects, either internal, between elec-
trons on the dots (model I), or between the AB electrons
and a dissipative environment (model II). Using a flexible
numerically exact tool, we studied the transient and the
steady-state characteristics of the charge current in the AB
system. We validated magnetic field symmetries of nonlinear
transport when the system preserves horizontal or vertical
mirror symmetries. Transport asymmetries were displayed
and quantified in general geometries. Applications beyond the
mean-field level were exemplified, including a charge diode,
charge sensing, and the Coulomb drag current.

Earlier studies of magnetotransport properties were limited
to steady-state situations, mostly analyzed at the mean-field
level. Here, we studied a double-dot AB interferometer with
genuine many-body interactions, and we simulated it with a
numerically exact tool. The comparison to effective treatments,
Hartree MF and the probe technique, reveals that these
simplified methods capture correctly transport symmetries,
though magnitudes of nonlinear terms may substantially
deviate from the exact limit. The study of a limiting case
for model I, unidirectional electron current in the Coulomb

blockade regime, teaches us that our INFPI results forR andD,
performed at finite interactions U/γ ∼ 1 and bias 	μ/γ = 5,
are qualitatively predictive even for strong interactions U →
∞ and very large bias.

In future studies we plan to examine other many-body mod-
els, for example, a nanojunction coupled to internal vibrations.
This will be done using INFPI [36] and other perturbative-
analytical and numerical schemes such as the Green’s function
technique [53,54] and quantum master equations [55,56]. Such
an analysis would not only resolve transport behavior, but
further serve as a critical test for examining the consistency of
analytical and numerical truncation schemes [57]. Other ideas
involve a detailed analysis of the Coulomb drag effect, harness-
ing (hot) thermal charge fluctuations to drive a dc current in the
interferometer [58]. Finally, we plan to study symmetries of the
thermoelectric current using both the phenomenological probe
technique and INFPI, with the objective to suggest means
for increasing heat-to-work conversion efficiency in nonlinear
situations [59–61].

ACKNOWLEDGMENTS

The work of S.B. has been supported by the Early Research
Award of D.S., the Martin Moskovits Graduate Scholarship in
Science and Technology, and the Lachlan Gilchrist Fellowship
Fund. D.S. acknowledges support from the Natural Science
and Engineering Research Council of Canada.

[1] L. Onsager, Phys. Rev. 37, 405 (1931); ,38, 2265 (1931); H. B.
G. Casimir, Rev. Mod. Phys. 17, 343 (1945).

[2] Y. Imry, Introduction to Mesoscopic Physics, 2nd ed. (Oxford
University Press, Oxford, 2002).

[3] A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys.
Rev. Lett. 74, 4047 (1995).

[4] H. Linke, W. D. Sheng, A. Svensson, A. Löfgren, L.
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[22] M. Büttiker, Phys. Rev. B 32, 1846 (1985); ,33, 3020 (1986);
,IBM J. Res. Dev. 32, 63 (1988).

[23] S. Bedkihal, M. Bandyopadhyay, and D. Segal, Phys. Rev. B 88,
155407 (2013); ,Europhys J. B 86, 506 (2013).

[24] D. Segal, A. J. Millis, and D. R. Reichman, Phys. Rev. B 82,
205323 (2010).

[25] S. Bedkihal, M. Bandyopadhyay, and D. Segal, Phys. Rev. B 87,
045418 (2013).

[26] D. Segal, A. J. Millis, and D. R. Reichman, Phys. Chem. Chem.
Phys. 13, 14378 (2011).

[27] M. Sindel, A. Silva, Y. Oreg, and J. von Delft, Phys. Rev. B 72,
125316 (2005).

235411-10

http://dx.doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.1103/PhysRev.38.2265
http://dx.doi.org/10.1103/PhysRev.38.2265
http://dx.doi.org/10.1103/PhysRev.38.2265
http://dx.doi.org/10.1103/RevModPhys.17.343
http://dx.doi.org/10.1103/RevModPhys.17.343
http://dx.doi.org/10.1103/RevModPhys.17.343
http://dx.doi.org/10.1103/RevModPhys.17.343
http://dx.doi.org/10.1103/PhysRevLett.74.4047
http://dx.doi.org/10.1103/PhysRevLett.74.4047
http://dx.doi.org/10.1103/PhysRevLett.74.4047
http://dx.doi.org/10.1103/PhysRevLett.74.4047
http://dx.doi.org/10.1103/PhysRevB.61.15914
http://dx.doi.org/10.1103/PhysRevB.61.15914
http://dx.doi.org/10.1103/PhysRevB.61.15914
http://dx.doi.org/10.1103/PhysRevB.61.15914
http://dx.doi.org/10.1103/PhysRevLett.92.046803
http://dx.doi.org/10.1103/PhysRevLett.92.046803
http://dx.doi.org/10.1103/PhysRevLett.92.046803
http://dx.doi.org/10.1103/PhysRevLett.92.046803
http://dx.doi.org/10.1103/PhysRevLett.96.116801
http://dx.doi.org/10.1103/PhysRevLett.96.116801
http://dx.doi.org/10.1103/PhysRevLett.96.116801
http://dx.doi.org/10.1103/PhysRevLett.96.116801
http://dx.doi.org/10.1103/PhysRevLett.95.256601
http://dx.doi.org/10.1103/PhysRevLett.95.256601
http://dx.doi.org/10.1103/PhysRevLett.95.256601
http://dx.doi.org/10.1103/PhysRevLett.95.256601
http://dx.doi.org/10.1103/PhysRevLett.96.126801
http://dx.doi.org/10.1103/PhysRevLett.96.126801
http://dx.doi.org/10.1103/PhysRevLett.96.126801
http://dx.doi.org/10.1103/PhysRevLett.96.126801
http://dx.doi.org/10.1016/j.physe.2006.08.023
http://dx.doi.org/10.1016/j.physe.2006.08.023
http://dx.doi.org/10.1016/j.physe.2006.08.023
http://dx.doi.org/10.1016/j.physe.2006.08.023
http://dx.doi.org/10.1103/PhysRevB.75.115309
http://dx.doi.org/10.1103/PhysRevB.75.115309
http://dx.doi.org/10.1103/PhysRevB.75.115309
http://dx.doi.org/10.1103/PhysRevB.75.115309
http://dx.doi.org/10.1209/0295-5075/88/47007
http://dx.doi.org/10.1209/0295-5075/88/47007
http://dx.doi.org/10.1209/0295-5075/88/47007
http://dx.doi.org/10.1209/0295-5075/88/47007
http://dx.doi.org/10.1103/PhysRevB.84.075332
http://dx.doi.org/10.1103/PhysRevB.84.075332
http://dx.doi.org/10.1103/PhysRevB.84.075332
http://dx.doi.org/10.1103/PhysRevB.84.075332
http://dx.doi.org/10.1103/PhysRevB.78.115429
http://dx.doi.org/10.1103/PhysRevB.78.115429
http://dx.doi.org/10.1103/PhysRevB.78.115429
http://dx.doi.org/10.1103/PhysRevB.78.115429
http://dx.doi.org/10.1103/PhysRevB.79.235311
http://dx.doi.org/10.1103/PhysRevB.79.235311
http://dx.doi.org/10.1103/PhysRevB.79.235311
http://dx.doi.org/10.1103/PhysRevB.79.235311
http://dx.doi.org/10.1103/PhysRevLett.104.080602
http://dx.doi.org/10.1103/PhysRevLett.104.080602
http://dx.doi.org/10.1103/PhysRevLett.104.080602
http://dx.doi.org/10.1103/PhysRevLett.104.080602
http://dx.doi.org/10.1103/PhysRevB.83.155431
http://dx.doi.org/10.1103/PhysRevB.83.155431
http://dx.doi.org/10.1103/PhysRevB.83.155431
http://dx.doi.org/10.1103/PhysRevB.83.155431
http://dx.doi.org/10.1103/PhysRevLett.93.106802
http://dx.doi.org/10.1103/PhysRevLett.93.106802
http://dx.doi.org/10.1103/PhysRevLett.93.106802
http://dx.doi.org/10.1103/PhysRevLett.93.106802
http://dx.doi.org/10.1002/qua.20743
http://dx.doi.org/10.1002/qua.20743
http://dx.doi.org/10.1002/qua.20743
http://dx.doi.org/10.1002/qua.20743
http://dx.doi.org/10.1103/PhysRevLett.93.226801
http://dx.doi.org/10.1103/PhysRevLett.93.226801
http://dx.doi.org/10.1103/PhysRevLett.93.226801
http://dx.doi.org/10.1103/PhysRevLett.93.226801
http://dx.doi.org/10.1103/PhysRevLett.103.166801
http://dx.doi.org/10.1103/PhysRevLett.103.166801
http://dx.doi.org/10.1103/PhysRevLett.103.166801
http://dx.doi.org/10.1103/PhysRevLett.103.166801
http://dx.doi.org/10.1103/PhysRevB.81.155323
http://dx.doi.org/10.1103/PhysRevB.81.155323
http://dx.doi.org/10.1103/PhysRevB.81.155323
http://dx.doi.org/10.1103/PhysRevB.81.155323
http://dx.doi.org/10.1103/PhysRevB.83.235310
http://dx.doi.org/10.1103/PhysRevB.83.235310
http://dx.doi.org/10.1103/PhysRevB.83.235310
http://dx.doi.org/10.1103/PhysRevB.83.235310
http://dx.doi.org/10.1103/PhysRevB.80.035416
http://dx.doi.org/10.1103/PhysRevB.80.035416
http://dx.doi.org/10.1103/PhysRevB.80.035416
http://dx.doi.org/10.1103/PhysRevB.80.035416
http://dx.doi.org/10.1103/PhysRevB.32.1846
http://dx.doi.org/10.1103/PhysRevB.32.1846
http://dx.doi.org/10.1103/PhysRevB.32.1846
http://dx.doi.org/10.1103/PhysRevB.32.1846
http://dx.doi.org/10.1103/PhysRevB.33.3020
http://dx.doi.org/10.1103/PhysRevB.33.3020
http://dx.doi.org/10.1103/PhysRevB.33.3020
http://dx.doi.org/10.1147/rd.321.0063
http://dx.doi.org/10.1147/rd.321.0063
http://dx.doi.org/10.1147/rd.321.0063
http://dx.doi.org/10.1147/rd.321.0063
http://dx.doi.org/10.1103/PhysRevB.88.155407
http://dx.doi.org/10.1103/PhysRevB.88.155407
http://dx.doi.org/10.1103/PhysRevB.88.155407
http://dx.doi.org/10.1103/PhysRevB.88.155407
http://dx.doi.org/10.1140/epjb/e2013-40971-7
http://dx.doi.org/10.1140/epjb/e2013-40971-7
http://dx.doi.org/10.1140/epjb/e2013-40971-7
http://dx.doi.org/10.1140/epjb/e2013-40971-7
http://dx.doi.org/10.1103/PhysRevB.82.205323
http://dx.doi.org/10.1103/PhysRevB.82.205323
http://dx.doi.org/10.1103/PhysRevB.82.205323
http://dx.doi.org/10.1103/PhysRevB.82.205323
http://dx.doi.org/10.1103/PhysRevB.87.045418
http://dx.doi.org/10.1103/PhysRevB.87.045418
http://dx.doi.org/10.1103/PhysRevB.87.045418
http://dx.doi.org/10.1103/PhysRevB.87.045418
http://dx.doi.org/10.1039/c1cp20702d
http://dx.doi.org/10.1039/c1cp20702d
http://dx.doi.org/10.1039/c1cp20702d
http://dx.doi.org/10.1039/c1cp20702d
http://dx.doi.org/10.1103/PhysRevB.72.125316
http://dx.doi.org/10.1103/PhysRevB.72.125316
http://dx.doi.org/10.1103/PhysRevB.72.125316
http://dx.doi.org/10.1103/PhysRevB.72.125316


MAGNETOTRANSPORT IN AHARONOV-BOHM . . . PHYSICAL REVIEW B 90, 235411 (2014)

[28] V. Kashcheyevs, A. Schiller, A. Aharony, and O. Entin-
Wohlman, Phys. Rev. B 75, 115313 (2007).

[29] H. A. Nilsson, O. Karlstrom, M. Larsson, P. Caroff, J. N.
Pedersen, L. Samuelson, A. Wacker, L.-E. Wernersson, and
H. Q. Xu, Phys. Rev. Lett. 104, 186804 (2010); O. Karlström,
J. N. Pedersen, P. Samuelsson, and A. Wacker, Phys. Rev. B 83,
205412 (2011).

[30] J. König and Y. Gefen, Phys. Rev. Lett. 86, 3855 (2001); ,Phys.
Rev. B 65, 045316 (2002).

[31] M. W.-Y. Tu, W.-M. Zhang, J. Jin, O. Entin-Wohlman, and
A. Aharony, Phys. Rev. B 86, 115453 (2012).

[32] S. Bedkihal and D. Segal, Phys. Rev. B 85, 155324 (2012).
[33] T. Kubo, Y. Tokura, and S. Tarucha, J. Phys. A: Math. Theor.

43, 354020 (2010).
[34] D. Sanchez and K. Kang, Phys. Rev. Lett. 100, 036806 (2008).
[35] V. I. Puller and Y. Meir, Phys. Rev. Lett. 104, 256801 (2010).
[36] L. Simine and D. Segal, J. Chem. Phys. 138, 214111 (2013).
[37] J. E. Hirsch, Phys. Rev. B 28, 4059 (1983).
[38] S. Weiss, R. Hützen, D. Becker, J. Eckel, R. Egger, and M.

Thorwart, Phys. Status Solidi B 250, 2298 (2013).
[39] N. Makri, J. Math. Phys. 36, 2430 (1995).
[40] A. Komnik and A. O. Gogolin, Phys. Rev. B 69, 153102 (2004).
[41] B. Horvath, B. Lazarovits, O. Sauret, and G. Zarand, Phys. Rev.

B 77, 113108 (2008).
[42] INFPI simulations allow us to explore the quasi-steady-state

regime, limited by the recurrence time which is dictated by
the finite discretization of the fermionic baths. Numerical
simulations in Fig. 8 are limited to certain phases since the
relaxation time towards steady state significantly grows when the
magnetic phase is small, φ/π < 1/2. Indeed, in Ref. [32] we had
shown analytically that the two-dot dynamics is controlled by
rate constants of the form [1 ± cos(φ/2)]; the rate proportional
to [1 − cos(φ/2)] apparently controls the dynamics of R(t,φ).

[43] M. Goldstein and R. Berkovits, New J. Phys. 9, 118 (2007).
[44] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and

Optics of Semiconductors (Springer, Berlin, 1996).
[45] S. A. Gurvitz and Ya S. Prager, Phys. Rev. B 53, 15932 (1996);

S. A. Gurvitz, ibid. 57, 6602 (1998).
[46] F. Li, X.-Q. Li, W.-M. Zhang, and S. A. Gurvitz, Europhys. Lett.

88, 37001 (2009).
[47] Y. Li, J. Zhou, F. Marchesoni, and B. Li, Sci. Rep. 4, 4566

(2014).
[48] D. Laroche, G. Gervais, M. P. Lilly, and J. L. Reno, Nat.

Nanotechnol. 6, 793 (2011).
[49] R. Sanchez, R. Lopez, D. Sanchez, and M. Büttiker, Phys. Rev.
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