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Scattering of two-dimensional massless Dirac electrons by a circular potential barrier
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We calculate the differential, total, and transport cross-sections for scattering of two-dimensional massless
Dirac electrons by a circular barrier. For scatterer of a small radius, the cross-sections are dominated by quantum
effects such as resonant scattering that can be computed using the partial-wave series. Scattering by larger
size barriers is better described within the classical picture of reflection and refraction of rays, which leads to
phenomena of caustics, rainbow, and critical scattering. Refraction can be negative if the potential of the scatterer
is repulsive, so that a p-n junction forms at its boundary. Qualitative differences of this case from the n-N
doping case are examined. Quantum interference effects beyond the classical ray picture are also considered,
such as normal and anomalous diffraction, and also whispering-gallery resonances. Implications of these results
for transport and scanned-probe experiments in graphene and topological insulators are discussed.
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I. INTRODUCTION

Recently, much interest has been attracted by electronic
properties of materials where quasiparticles behave as mass-
less two-dimensional (2D) Dirac fermions. Examples of
such materials include graphene [1] and surface states of
topological insulators [2,3]. Graphene has been studied more
extensively because of advances in sample fabrication and
a number of exceptional virtues, including a wide tunability
of doping level and superior transport properties. The latter
are characterized by mean-free paths approaching several
microns and the corresponding transport times τtr in the range
of picoseconds [1,4–6]. However, scattering mechanisms
limiting the transport mobility of graphene are still not fully
understood. For instance, a weak dependence of the mobility
on the impurity density found in some experiments [7]
remains an open problem. It was argued that this weak
dependence could be due to correlations in impurity positions.
Both negative, i.e., repulsive [8] and positive, i.e., attractive
correlations could impact the mobility. An example of the
latter is aggregation of impurities into clusters of size of tens
of nanometers. Modelled as circularly symmetric potential
barriers with sharp boundaries, such finite-size scatterers were
predicted [9] to degrade the mobility much less compared to
random uncorrelated impurities. Another observable signature
of finite-size scatterers is a significant difference between the
transport time τtr and the quantum lifetime τq . (The latter can
be extracted from magnetotransport measurements.) Although
the ratio

η ≡ τtr/τq (1)

varies widely among different experiments, it can be as
high as a factor of six [10]. For massive 2D fermions
scattered by random sharp barriers, η should approach 3/2
when the barriers become impenetrable [11]. Since graphene
quasiparticles behave as massless fermions, they can penetrate
arbitrary high potential barriers (lower than the total energy
bandwidth) via the process of Klein’s tunneling and associated
negative refraction [12–14]. Therefore the dependence of η on
the barrier parameters is another open problem. For these and
other reasons, scattering of quasiparticles by finite-size defects
warrants further qualitative and quantitative investigation in

order to better understand transport and magnetotransport
properties of graphene. While there have been already a
number of previous studies of circular potential barriers in
graphene [9,14–20], they have not elucidated in a comprehen-
sive way how scattering by such a barrier depends on its size
and strength. Furthermore, some of this prior work contains
minor errors. In this paper, we correct, refine, and extend these
investigations.

The question of what limits the surface electron conduction
in topological insulators is even more wide open. There are
few studies that examined scattering of Dirac fermions by
circular potential barriers in this context although other types
of scattering defects have been considered [21–26]. Most of
our results for this problem should also apply to Dirac fermions
at the surface of topological insulators.

The effective low-energy Hamiltonian of the model we
study is [9,14–20]

H = vF (σxpx + σypy) + V (r) , (2)

where pν are the momentum operators, σν are the Pauli
matrices, and vF ∼ 108 cm/s is the Fermi velocity. The
potential V (r) is assumed to be steplike,

V (r) = V0 θ (a − r), (3)

where θ (r) is the unit step function and a is the radius of the
disk. The scattering of an electron with energy E > 0 by this
potential is characterized by two dimensionless parameters,

X = Ea

�vF

≡ ka and ρ = −V0a

�vF

, (4)

which specify the size and the strength of the barrier,
respectively; X also gives an estimate of the maximum angular
momentum involved in the scattering.

Consider a plane wave incident on the scatterer. The
problem is to find the far-field scattering amplitude f (φ) as a
function of the deflection angle φ, see Fig. 1. The differential
cross-section is then calculated from

dσ

dφ
= |f (φ)|2 . (5)
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FIG. 1. (Color online) Electron plane wave scattered by a circu-
larly symmetric steplike potential in a Dirac metal such as graphene
or a surface of a topological insulator.

The formal solution of this problem is given by the standard
partial-wave decomposition (PWD)

f (φ) = − i√
2πk

∑
j

(e2iδj − 1)ei(j−1/2)φ, (6)

where δj is the phase shift for angular momentum j . The
well-known peculiarity of Dirac fermions is that j ’s are not
integers but half-integers, see Appendix A.

Integrating the differential cross-section over φ, we can
express the total and the transport cross-sections in terms of
the phase shifts [27]:

σ = 4

k

∑
j

sin2 δj , (7)

σtr = 4

k

∑
j>0

sin2(δj+1 − δj ) . (8)

The total cross-section obeys the optical theorem

σ =
√

8π

k
Imf (0) . (9)

For X � 1, the PWD is dominated by a first few terms and
the result has an intuitive interpretation in terms of resonant
scattering. Conversely, for X � 1, PWD suffers from slow
convergence and lacks a transparent physical meaning. In fact,
it appears that numerical results reported in a previous work
on this problem [9] are inaccurate [see the second paragraph
below Eq. (25)]. The main effort in this paper is devoted to
treating this difficult X � 1 regime by alternative methods.
Especially instructive one is the semiclassical approximation.
This approach leads to the so-called ray series, which accounts
for most of the observable features of the X � 1 regime and
has an intuitive representation in terms of ray paths (Fig. 2). In
this context it is convenient to introduce another dimensionless
parameter, the refractive index:

n = X′

X
= 1 + ρ

X
, (10)

where X′ is defined as

X′ ≡ X + ρ . (11)
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FIG. 2. (a) The first three rays p = 0, 1, 2 in the ray series for an
n-N junction. (b) Same for an n-p junction. (c) Ray tunneling and a
whispering gallery mode inside the scatterer.

The refractive index n can be of either sign. If it is positive
(negative), we deal with, respectively, n–N and n-p junction
at r = a. In the latter case, realized for ρ < −X, the Dirac
quasiparticles exhibit the aforementioned negative refrac-
tion [13]. This modifies the ray trajectories qualitatively [14],
cf. Figs. 2(a) and 2(b) and Sec. III.

The remainder of the paper is organized as follows. In
Sec. II, we classify the regimes of scattering according to X

and ρ. We present the global regime diagram (Fig. 3) and
give the formulas for the cross-sections in each regime. We
find the most feature-rich case to be X � 1. In Sec. III, we
study this case using the semiclassical method. In Sec. IV, we
discuss phenomena beyond the semiclassical approximation.
In Sec. V, the angular dependence of the differential cross-
section in various large-X regimes is analyzed. Besides far-
field scattering, we also consider the structure of the electron

ρ

X = 1

X = ρX = ρ3

WR

HEA

FP

SR

RS
1

X = −ρ X = −ρ3 X

WR

HEA

FP

SR (VR)

RS
-1

BA

WS

FIG. 3. (Color online) Regime diagram of the scattering. RS:
resonant scatterer, SR: strong reflector, FP: Fabry-Pérot resonator,
WR: weak reflector, WS: weak scatterer, HEA: high-energy approx-
imation, BA: Born approximation. VR: Veselago reflector, where
negative refraction occurs.
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wave functions near the scatterer. In Sec. VI, we briefly discuss
implications of these near-field effects for scanned-probe
experiments with graphene and topological insulators. In
Sec. VII, we summarize our contributions and comment on
possible future extensions of our study. The general outline of
our analytical derivations is presented in Secs. III–V, with the
additional details provided in the Appendices.

II. MAIN RESULTS

We start with a brief overview of different scattering
regimes indicated in Fig. 3. These regimes are classified
according to the behavior of the cross-sections as functions
of X and ρ. The horizontal line X = 1 partitions Fig. 3 into
two domains. In the upper one, X � 1, the scattering has a
predominantly semiclassical character. Except for the region
of small deflection angles φ < 1/X, which is governed by
diffraction, the scattering amplitude is obtained by summing
the ray series (Fig. 2), expressed mathematically by the Debye
expansion [28,29]. In the lower domain, X � 1, scattering is
dictated by quantum effects and the ray picture generally does
not apply.

In the strong reflector (SR) and weak reflector (WR)
regimes of Fig. 3, the interference between the rays and
the diffraction can be neglected. As a consequence of the
Babinet principle, each of the two contributes 2a to the total
cross-section [11], and so the total cross-section is

σ � 4a (SR and WR regimes) . (12)

In contrast, in the weak scatterer (WS) regime of Fig. 3,
where most of the rays are scattered by small angles, the
interference of the ray and diffraction amplitudes becomes
important. In this “anomalous diffraction” (AD) regime [30]
the ray picture fails. Instead, the scattering can be dealt with
the perturbation theory, such as the high energy approximation
(HEA) and the Born approximation (BA). As discussed below,
Eq. (12) becomes replaced by more complicated expressions,
Eqs. (17a) and (20), that predict oscillations of σ as a function
of ρ. The BA in fact describes the entire |ρ| � 1 strip in Fig. 3,
including the X � 1 part.

In the rest of the quantum domain X � 1, |ρ| � 1,
the cross-sections σ and σtr are determined by resonant
scattering (RS), see Fig. 3. These cross-sections can be
efficiently computed by summing the partial-wave series,
Eqs. (7) and (8). Unlike the |ρ| � 1 case, where the lowest
angular momenta [15] j = ±1/2 dominate, here significant
contributions arise from certain high j for which the resonant
tunneling condition is satisfied.

Let us now give more detailed information about each of
the regimes. The transport cross-sections in the SR and WR
regimes are dominated by the ray series, since the diffraction
is restricted to small angles. Neglecting interference among
different rays, we obtained the result

σtr

a
= 8

3
− sgn(n)ς (n) , (13)

ς (n) = 4
∫ min(1,|n|)

0
db

(2n − 1)b2 − n

n2 − (2n − 1)b2

√
n2 − b2

√
1 − b2

(SR and WR regimes). (14)
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FIG. 4. Analytical approximation [Eq. (13)] for the transport
cross-section as a function of the refractive index.

The correction term ς (n) can also be written as a linear
combination of the complete elliptical integrals, see Sec. III.
Equation (13) predicts the following asymptotic behavior of
the transport cross-section:

σtr

a
�

⎧⎪⎨⎪⎩
3(n − 1)2 ln

∣∣ 1
n−1

∣∣, n � 1 ,

8
3 − 2π (

√
2 − 1)|n|, |n| � 1 ,

8
3 − π

2 , |n| � 1

(SR and WR regimes). (15)

Notable features include the zero of σtr at n = 1 and the
plateaulike inflection point at n = −0.96 (see Fig. 4). The
left SR regime in Fig. 3 corresponds to the negative refractive
index n < 0, and so we gave it an additional appellation of
“Veselago reflector” (VR). The typical ray trajectories are
shown in Fig. 2(b). The left diagonal line X = −ρ separating
the WR and the SR(VR) regimes corresponds to n = 0. Along
this line the ray formalism predicts a cusp in σtr, see Fig. 4 and
the second line of Eq. (15). (In reality, the cusp is rounded and
shifted by O(1/X) quantum corrections, cf. Fig. 7 below.) On
the other hand, transport cross-section varies smoothly across
the right diagonal line X = ρ (or n = 2) in Fig. 3 separating
the WR and the SR regimes.

Another analytical result can be derived in the limit |n| →
∞, which describes the leftmost and rightmost parts of the SR
regimes in Fig. 3. The rays pass almost through the center of the
disk in this limit, and so it is possible to sum the ray amplitudes
fully taking into account their interference and obtain

σtr

a
� 8

3
+ sec5 2X′

[
cos 2X′ − 7

3
cos 6X′

+ 1

4
(−8 cos 4X′ + cos 8X′ + 7) ln tan2 X′

]
(SR regime, |n| → ∞ limit). (16)

This expression is π/2-periodic in X′ and if ρ is fixed, also in
X, as expected for the Fabry-Pérot (FP) resonator of length 2a.
Figure 5 shows the transport cross-section and the comparison
between the exact result and Eq. (16).

The border of the WS regime in Fig. 3 is defined by
the curves X3 = ±ρ at X > 1 and ρ = ±1 at X < 1. The
X > 1 part is described by the HEA. More precisely, the HEA
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FIG. 5. (Color online) Transport cross-section for |n| � 1 case
as a function of {X′/π}, the fractional part of X′/π . The line
labeled “exact” represents Eq. (8) evaluated for a fixed X = 103

and {X′/π} = X′/π − 107. The line labeled “ray” is Eq. (16).

describes the small-angle part of the scattering amplitude;
however, it is sufficient for computing both the total and
transport cross-sections in the WS regime. The total cross-
section is given by

σ

a
= 2πH1(2ρ) (17a)

�
{

16
3 ρ2, ρ � 1 ,

4
[
1 − π

4ρ
cos

(
2ρ − π

4

)]
, ρ � 1

(17b)

(HEA regime),

where H1(z) is the Struve function. The transport cross-section
has the form

σtr

a
� 2ρ2

X2
ln X (HEA regime). (18)

The |ρ| � 1 part of the HEA domain is alternatively described
by the BA. Additionally, the BA gives the form of the
differential cross-section for arbitrary angles φ:

dσ

dφ
= π

2

ρ2a

X
cot2

(
φ

2

)
J 2

1

(
2X sin

φ

2

)
(BA). (19)

Integrating Eq. (19) over φ, we obtain

σ

a
�

{ 16
3 ρ2, X � 1 ,

π2

2 ρ2X, X � 1 ,
(20)

σtr

a
�

{
2ρ2

X2 ln X, X � 1 ,

π2

4 ρ2X, X � 1
(21)

(BA regime).

The upper lines in these equations agree with the HEA. The
formulas on the lower lines differ from Eq. (12) of Ref. [16] and
Eq. (51) of Ref. [15] proposed earlier for the same regime. We
believe ours to be the correct ones. Unlike in the SR and WR
domains, the cross-sections in the WS regime (both HEA or
BA) cannot be written solely in terms of the classical quantities
n and a.

A component missing in the ray series is the resonant
tunneling of the rays with impact parameters b larger than
the radius of the disk [Fig. 2(c)]. These rays correspond to
the partial wave with j = kb > X. Within the semiclassical
picture the region a < r < b is classically forbidden due to
the “centrifugal” potential barrier. The tunneling through such
a barrier is usually exponentially small unless the resonance
condition is met. For certain values of ρ and X, tunneling
of the waves with specific ±jr becomes strongly enhanced,
which creates sharp maxima of the cross-sections [29]. The
resonant tunneling may be encountered for either type of
doping. A necessary condition for the resonance is that some
of disk interior is classically allowed. This is possible if n > 1
or n < −1, so that the interval X < |j | < |X′| exists. The
condition for the zth resonance (z = 1,2, . . .) can be derived
from the Bohr-Sommerfeld quantization rule valid for X � 1.
This condition has the form

2
√

X′2 − j 2 − 2|j | cos−1 |j |
X′ + 2�+ − π

2
= 2πz , (22)

where �+ ∼ 1 is the phase shift of the inner reflection at
the disk boundary, cf. Sec. IV A. Since Eq. (22) is invariant
under the sign change of j , a pair j = ±jr would resonate
simultaneously. From Eq. (7), we see that each resonant
partial wave with |j | > X contributes up to 4a/X to the
cross-section, so each resonant pair contributes up to 8a/X.
This amount is parametrically small compared to the collective
contributions ∼a of all the j < X partial waves. Hence, the
resonances produce only a small “ripple structure” in the
cross-section [31]. In contrast, at X � 1 and ρ � 1, the RS
is the dominant effect. In this regime, the cross-sections are
given by the approximate formulas [18,19] (see Sec. IV A)

dσ

dφ
�

∑
j�1/2

σj

π
cos2 jφ , (23)

σj = 8a

X

∞∑
z=1

γ 2

(ρ − ρj,z)2 + γ 2
, (24)

σ �
∑

j�1/2

σj , σtr � σ1/2

2
+

∑
j�3/2

σj (25)

(RS regime)

with ρj,z and γ defined by Eqs. (53) and (56) in Sec. IV.
The resonance widths γ ∼ X2j and their ρ-integrated weights
∼X2j−1 rapidly decrease with j , which is consistent with the
prevalent role of the lowest angular momentum resonance,
j = 1/2, for short-range scatterers.

Let us now illustrate some of the above formulas by specific
examples. The RS behavior is depicted in Fig. 6, which shows
the differential cross-sections for X = 0.3 and varying ρ. Note
that j = 3/2 resonance is much more narrow that j = 1/2, as
stated above. The BA behavior σtr ∝ ρ2 [Eq. (21)] is seen to
occur at small ρ.

Next, consider the dependence of the cross-section as a
function of the electron density, ne = k2/π = X2/(πa2) for a
fixed potential strength V0 in SR and WR regimes. Figure 7(a)
shows the transport cross-section for V0 = −0.5 eV, which
models the effect of Al, Ag, or Cu adsorbates weakly coupled
to graphene [32]. In this case, the system is always a n-N
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FIG. 6. Transport cross-section in the BA and RS regimes, X =
0.3. Labels j and z denote the angular momentum of the resonant
partial waves and index of the quasibound state in the disk.

junction, i.e., n > 0. The dashed-dotted curve in Fig. 7(a)
is given by the ray formula, Eq. (13). It fits well with the
(numerically) exact results from PWD, especially for a =

0
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FIG. 7. (Color online) Transport cross-section as a function of
electron density. (a) V0 = −0.5 eV or ρ ≈ +300 nm/a. (b) V0 =
+0.5 eV or ρ ≈ −300 nm/a. Thick solid curves: the exact result
from PWD for a = 20 nm. Thin solid curves: the exact result from
PWD for a = 100 nm. Dashed-dotted curves: Eq. (13), from the ray
picture. Dotted curves: the sum of the ray term [Eq. (13)] and a single
resonance 8a/X for a = 20 nm. The inset of (b) shows the effect of
the resonances at small density where n < −1.

100 nm. For a = 20 nm, the deviations of the PWD curve from
the ray formula are larger. However, they almost never exceed
8a/X, the vertical shift between the dashed-dotted and dotted
curves. This shows that this contribution comes predominantly
from a single resonant pair; bunching of the resonances is
atypical. We checked that the positions of the resonances are
rather well described by Eq. (22). Figure 7 also shows that
as ne increases, the resonance contribution becomes smaller
compared to the ray term, as expected because X increases.
The curve marked a = 20 nm in Fig. 7(a) is computed for
the same parameters as in Fig. 2 of Ref. [9]. The results are
clearly different in both the magnitude and the periodicity.
The reason for the disagreement is unknown because the same
mathematical formula [Eq. (8)] was used in our calculation
and in Ref. [9]. We believe our numerical results are correct
because they are consistent with our analytic formulas.

In Fig. 7(b), we consider V0 = +0.5 eV, where the system
changes from an n-p junction to a n-N junction as the
electron density increases. The ripple structure exists only at
n < −1, in agreement with the condition discussed above.
It is worth noting that in the limit |n| � 1, the transport
cross-section, σtr approaches the value of 8a/3, the known
result for an impenetrable disk [11]. This is the maximum
transport cross-section one can get for massless Dirac fermions
at X � 1. However, in the opposite limit |n| � 1, which would
also correspond to impenetrable disk for massive fermions,
Eq. (15) predicts a different and significantly smaller value
σtr = (8/3 − π/2)a ≈ 1.1a. This highlights the ability of
massless Dirac to penetrate high barriers via Klein’s tunneling.

Consider now graphene with many randomly positioned
identical disks of low enough concentration nc � 1/a2. Our
results can be used to compute the conductivity G of such a
system if its size is larger than the mean-free path l = vF τtr.
The conductivity is related to the transport cross-section by

G = 2e2

h
kF vF τtr = 2

√
π

e2

h

√
ne

ncσtr
. (26)

Note that Eq. (26) neglects logarithmic corrections due to mul-
tiple scattering effects [33,34]. If the disks are slightly different
in size or shape or if the system is at finite temperature, we
expect the ripple structure in σtr to be washed out leaving only
the overall trends. For example, for parameters used in Fig. 7,
the disorder-averaged transport cross-section should change
slowly with the carrier concentration ne, remaining close to
∼a. Hence the conductance will have an approximately

√
ne

dependence. Such a dependence is different from those for both
the charged impurities and the short-ranged defects computed
within the BA in Ref. [35], which are, respectively, linear and
constant in ne.

An important parameter η characterizing the spatial struc-
ture of impurities is the ratio of the transport time τtr and the
quantum lifetime τq [Eq. (1)]. This parameter is related to the
cross-sections via

η = τtr

τq

= σ

σtr
. (27)

Experimentally, τtr can be extracted from the conductivity
measured in the absence of magnetic field [Eq. (26)], whereas
τq can be obtained from the damping rate of the Shubnikov-de
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FIG. 8. (Color online) The ratio η of the quantum and transport
times as a function of the electron density ne. (a) V0 = −0.5 eV
or ρ ≈ +300 nm/a, same as in Fig. 7(a). (b) V0 = +0.5 eV or ρ ≈
−300 nm/a, same as in Fig. 7(b). (c) “Pointlike” scatterer, a = 1 nm.

Haas oscillations in magnetotransport. A large η indicates that
scattering is predominantly in the forward direction while a
small η indicates that scattering by large angle is possible. The
former is a feature of long-range impurities. The latter may
indicate either that the impurities are short-range or they are
have sharp boundaries.

In Figs. 8(a) and 8(b), we compute η for large scatterers
and V0 = ±0.5 eV, respectively. For the n-type scatterers
(V0 < 0) in Fig. 8(a), η increases from 4 to 7 with the
electron density, which is a range of values found in the
experiment [10]. The ray formula is basically the envelope of
the exact results. The ripple structure exists everywhere since
|n| > 1 for all the electron density. For the p-type scatterers
(V0 > 0) in Fig. 8(b), the ray formula fits even better except

again for the ripple structure at n < −1. Parameter η exhibits
a minimum at n = 0, which is due to the maximum of the
transport cross-section at such n, Fig. 7(b).

In Fig. 8(c), we show η computed for disks of small
radius a = 1 nm. Note that two scattering regimes are possible
for small impurities, RS (ρ � 1) and WS (ρ � 1). In the
WS regime, the scattering dominated by the partial waves
with |j | = 1/2, so that η ≈ 2, cf. Eqs. (24) and (25). In the
RS regime, partial waves with |j | > 1/2 can also contribute
due to the resonant tunneling. These higher-j partial waves
can interfere with |j | = 1/2 partial waves to form Fano-like
resonance, see the ρ = 6.5 and −4.5 curves in Fig. 8(c). The
Fano-like resonance leads to η < 2 at some electron density.
It is worth noting that η can be smaller than unity (σtr > σ )
at the Fano-like resonance, which is unusual: it implies that
the backscattering dominates the forward scattering. Similar
physics is discussed in Ref. [20]. However, as mentioned
earlier, small randomness in size or shape of the disks
unavoidable in practice would cause the ripple structure in
η, including the Fano-like resonances, to be suppressed.

III. SEMICLASSICAL RAY PICTURE

In this section, we outline the derivation of the ray series,
which is a useful tool for investigating the X � 1 regimes,
where the PWD series [Eq. (6)], although formally exact,
suffers from slow convergence and does not give much
physical insight. We label the rays by integer p. Figure 2 shows
schematically a first few rays in the series: the reflected ray p =
0, the directly transmitted ray p = 1, and the ray transmitted
after one internal reflection p = 2. The higher-order rays
undergo p − 1 internal reflections. The refraction angle β is
related to the incidence angle α (Fig. 2) by Snell’s law

sin β = sin α

n
. (28)

As in optics, the ray series can be derived from the PWD via
an intermediate step of the so-called Debye series, where the
summation over j , Eq. (6), is transformed into an integral and
evaluated by the saddle-point approximation. We applied a
similar procedure to our problem, see Appendix B for details.
The final result has the form

f (φ) =
∞∑

p=0

fp(φ) + i

√
2

πk

sin Xφ

φ
, (29a)

fp(φ) = e− iπ
4

∑
α

∣∣∣∣dφp

db

∣∣∣∣− 1
2

Cp(α)eiϕo+iϕc , (29b)

where φp is the total deflection angle of ray p given by

φp = π − 2α − p(π − 2β) . (30)

Each scattering angle φ may correspond to multiple, single, or
none of the rays, depending on the number of real solutions of
the equation

φ = φp + 2πl , (31)

where l is some integer. If the dependence of φp on α is
nonmonotonic, there may be several solutions for α even for
the same l, in which case they all need to be included in the
calculation of fp.
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Since the impact parameter (Fig. 2) is given by

b = a sin α, (32)

the derivative dφp/db in Eq. (29b) can be written as

dφp

db
= 1

a cos α

dφp

dα
. (33)

For now, we assume that this derivative is nonvanishing. Later
in Sec. IV B, we explain how to modify Eq. (29b) if this is not
the case. The ray amplitude Cp(α) in Eq. (29b) is expressed
in terms of the plane-wave reflection and transmission coeffi-
cients of the ray at a flat interface [15]:

Cp(α) =
{

Rout, p = 0 ,

ToutTinR
p−1
in , p > 0 ,

(34)

Rout = ieiα
sin

(
α−β

2

)
cos

(
α+β

2

) , (35)

Tout = 1 + Rout , (36)

and Rin (Tin) are obtained from Rout (Tout) by interchanging α

and β. The two phases appearing in the exponential in Eq. (29b)
are

ϕo = −2X cos α + 2pX′ cos β , (37)

ϕc = −π

2

[
p − 1

2

(
1 + sgn

dφp

db

)]
≡ −π

2
Nc . (38)

Here, ϕo represents the phase due to the optical path length and
ϕc is the phase shift due to passing of the caustics [36], which
occurs Nc times. Finally, the last term of f (φ) in Eq. (29a) is
the usual Kirchhoff diffraction contribution.

The ray series converge much more rapidly than the PWD
because for most rays Rin and Rout are appreciably less than
unity. (Recall that for the normal incidence the reflection
vanishes exactly.) In particular, for small ρ, it suffices to
consider only p = 0, 1, and 2 terms. To the leading order in ρ

the solutions for α = α(φ) and β = β(φ) can be analytically.
Substituting these into Eq. (29b), we obtain the first three terms
of the ray series as follows:

f0(φ) = − ρ

X

√
a

8

cos φ

2

sin3/2 φ

2

exp

[
−i

(
π

4
+ φ

2
+ 2X sin

φ

2

)]
,

(39)

f1(φ) =
√

X

ρ

√
a

2

[
1 +

(
Xφ

2ρ

)2
]−3/4

× exp

[
i

(
− π

4
+

√
4ρ2 + X2φ2

)]
, (40)

f2(φ) = − ρ

X

√
a

8

cos φ

2

sin3/2 φ

2

exp

[
i

(
π

4
− φ

2
+ 2X sin

φ

2

)]
.

(41)

These formulas will be important for the discussion of the
differential cross-sections in Sec. V.

The summation of the full ray series is possible using certain
approximations. Consider the calculation of the transport
cross-section. Neglecting the ray interference and the diffrac-
tion term (which is important only for forward scattering), we
arrive at

σtr =
∫ a

−a

db(1 − cos φ)
∑

p

|Ap|2 , (42)

with b defined by Eq. (32) and Ap given by

Ap = Cp(α)eiϕo+iϕc . (43)

Using Eqs. (30), (34)–(36), we obtain

σtr = 2a + a

∫ π/2

−π/2
dα cos α

[
R2 cos 2α − Re

ei(2β−2α)

1 + R2e2iβ

]
,

(44)

where R = |Rout| = |Rin|. After some changes of variable
Eq. (44) can be transformed to Eqs. (13) and (14). It is possible
to express the correction ς (n) in the latter in terms of K(m),
E(m), and �(z,m), which are the complete elliptic integrals
of, respectively, the first, the second, and the third kind. The
result is

ς (n) = −4

3

sgn(n)

(2n − 1)2
Re

[
c1E

(
1

n2

)
+ c2K

(
1

n2

)
+ c3 �

(
2n − 1

n2
,

1

n2

)]
, (45a)

c1 = −n(2n − 1)(2n3 − 4n2 + 5n − 1) , (45b)

c2 = (n − 1)(4n4 − 6n2 + 7n − 3) , (45c)

c3 = −6(n − 1)4 . (45d)

Another tractable limit is n → ∞, where β → 0 so that
all the odd-p rays scatter into the same final direction and
interfere with each other, and similar for all the even-p rays.
Equation (42) is modified to

σtr =
∫ a

−a

db(1 − cos φ)

∣∣∣∣∣∑
p

Ap

∣∣∣∣∣
2

, (46)

while the ray amplitudes are found to be∣∣∣∣∣∑
p

Ap

∣∣∣∣∣
2

=
∣∣∣∣∣∣
∑
p odd

Ap

∣∣∣∣∣∣
2

+
∣∣∣∣∣ ∑
p even

Ap

∣∣∣∣∣
2

, (47a)

∣∣∣∣∣∣
∑
p odd

Ap

∣∣∣∣∣∣
2

= cos2 φ

2

1 − sin2 φ

2 cos2 �
, (47b)

∣∣∣∣∣ ∑
p even

Ap

∣∣∣∣∣
2

= sin2 φ

2 sin2 �

1 − cos2 φ

2 cos2 �
. (47c)

Substituting Eqs. (47a)–(47c) into Eq. (46), we obtain Eq. (16)
by an elementary integration.
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IV. BEYOND THE RAY PICTURE

In the previous sections, we have shown the benefits of
the ray series for understanding the primary features of the
scattering amplitudes in the large-X semiclassical regime.
Here we address some interesting secondary effects that
are beyond the ray picture. Technically, the ray series is
derived using the saddle-point approximation to evaluate the
contour integral leading to the Debye series (Appendix B).
The additional effects can be, in principle, derived by a
more accurate approximation of the same contour integral.
Thus the resonances that produce the ripples (Sec. II) can be
accounted for by including contributions from not only the
saddle-point but also the poles in the complex j plane [28,29].
However, below we use a simpler derivation directly from
the PWD.

The saddle-point approximation is also insufficient if the ray
deflection angle φp is a nonmonotonic function of the impact
parameter b, so that dφp/db may vanish. In this case, Eq. (29b)
cannot be used as it gives a divergent result. This problem
is especially apparent for refraction index in the interval 1 <

n < 2 where the divergent contribution is not overshadowed by
other, nondivergent terms. The same divergence is encountered
in the theory of rainbow in optics [29] and a common
remedy for it is to replace the saddle-point approximation
by a so-called uniform approximation [37]. Similar issues
arise for rays with incident angle α close to the critical
angle. This regime is realized for |n| < 1 and is known
as the near-critical scattering [29]. Finally, the saddle-point
approximation becomes inaccurate if the optical phase shift
φo [Eq. (37)] is small, which occurs when the scattering
potential is weak. To handle this case we use an alternative
approach based on perturbation theory, either the HEA or the
BA. Let us now consider each of these special regimes in more
detail.

A. Resonances

As explained in Sec. I, the contribution to the cross-sections
from a partial wave of a given angular momentum j is
proportional to sin2 δj , where δj is the scattering phase shift.
This quantity can be written in the form

sin2 δj = 1

1 + ( Im sj

Re sj

)2 . (48)

The exact expression for sj given in Appendix A [cf. Eq. (A5)]
involves a combination of Bessel functions. It can be simplified
in certain limits using suitable asymptotic expansions of these
functions. Thus, for X � 1, we can use the Debye expansion
to arrive, after some algebra, at

Im sj

Re sj

� sin(�c + �+)

sin(�c + �−)
exp

(
− 2

√
j 2 − X2 + 2j cosh−1 j

X

)
,

(49)

�c ≡
√

X′2 − j 2 − j cos−1 j

X′ − π

4
, (50)

�± = π

2
+ tan−1

⎛⎝ √
X′2−j 2

X′

|j |±
√

j 2−X2

X
− |j |

X′

⎞⎠ . (51)

The resonance occurs when sin2 δj attains a maximum, i.e.,
when the left-hand side of Eq. (49) is equal to zero. Therefore
the resonance condition is sin(�c + �+) = 0, which gives
Eq. (22) and corresponds physically to the whispering-gallery
modes.

To find the resonance condition in the opposite limit of
X � 1, we use a Taylor expansion of the Bessel functions that
have X as an argument. We obtain

sin2 δj �
{

1 +
[

4j�(1/2 + j )2

πX2j

Jj−1/2(X′)
Jj+1/2(X′)

]2
}−1

, (52)

where �(x) is the Euler Gamma function. Let Zj,z be the zth
zero of one of the remaining Bessel functions, Jj−1/2(Zj,z) =
0. We define

ρj,z ≡ Zj,z − X (53)

and expand Jj−1/2(X′) = Jj−1/2(X + ρ) to the linear order in
ρ − ρj,z:

Jj−1/2(X′) � −Jj+1/2(Zj,z)(ρ − ρj,z) . (54)

From Eqs. (52)–(53), we obtain

sin2 δj = γ 2

(ρ − ρjr )2 + γ 2
, (55)

γ = π

4j�(j + 1/2)2
X2j , (56)

which leads to Eqs. (23)–(25). It is interesting to note that
γ vanishes if the incident electron has zero energy (X = 0).
Accordingly, the lifetime 1/γ of the resonance is infinite.
Physical, it means that Dirac quasiparticles can be trapped
indefinitely inside a locally doped region embedded in the
otherwise undoped graphene [17–19].

B. Dirac rainbow

If φp(α) is a nonmonotonic function of α, there may exist
αr such that

dφp

dα

∣∣∣∣
α=αr

= 0 . (57)

The same condition corresponds to the rainbow phenomenon
in optics. Near α = αr , Eq. (30) has more than one root. Two
of such roots, α+ and α−, coalesce at α → αr . At α = αr ,
the ray formula Eq. (29b) diverges and cannot be used. The
divergence is cured by the uniform approximation of the Debye
series [28,37,38], with which we obtain

fp(φ) = (−i)peiϕ (−ζ )1/4

×
∑

μ=±1

(
Ai(ζ ) + iμ

Ai′(ζ )

(−ζ )1/2

) √−μπ√
dφp

db

∣∣
αμ

Cp(αμ) ,

(58)
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FIG. 9. (Color online) Differential cross-section for X = 200 and n = 1.33. The main p = 2 rainbow appears at φ/π = 0.76. The right
inset shows the comparison among the uniform approximation, the ray formula, and the PWD. The left inset shows the comparison between
the Kirchhoff diffraction and the PWD.

where Ai(ζ ) is the Airy function. α± are chosen such
that ϕo(p,α+) − ϕo(p,α−) > 0, and ϕ and ζ are defined
by

ϕ = 1
2 [ϕo(p,α+) + ϕo(p,α−)] , (59)

ζ =
{

3i

4
[ϕo(p,α+) − ϕo(p,α−)]

}2/3

. (60)

An advantage of the uniform approximation is that it can be
used for both φ < φr and φ > φr if we allow the roots α±
to be complex numbers (which are always conjugate to each
other). In doing so, the branch cut of ζ (φ) should be chosen
such that ζ is negative for real α±, and positive when they
acquire imaginary parts.

In Fig. 9, we compare the results of the uniform approx-
imation, the ray formula, and the PWD for the differential
cross-sections computed for n = 1.33. The rainbow condition,
Eq. (57), can be satisfied for p � 2 rays. The main p =
2 rainbow appears at φ = 0.76π , and the secondary p =
3 rainbow is found at φ = 0.23π . As one can see from
Fig. 9, the ray formula strongly deviates from the exact
PDW result at the rainbow angles. On the other hand, at
such angle the uniform approximation agrees well with the
PWD (right inset). In the left inset of Fig. 9, we show the
differential cross-section for small φ where the ray formula
also fails. However, the differential cross-section is adequately
described by the Kirchhoff diffraction formula [the last term in
Eq. (29a)].

C. Near critical scattering

Another phenomenon reminiscent of rainbow is the near
critical scattering, which is realized at |n| < 1. At such n, the
p = 0 ray is totally reflected for deflection angles larger than
the critical angle [cf. Eq. (30)]

φc = π − 2 arcsin n . (61)

At φ < φc, the scattering enhanced due to the total reflection
exhibits the “supernumerary” oscillation, while at φ > φc, the
scattering rapidly decays. These Airy-function-like features
are illustrated by Fig. 10.

D. Born approximation and high energy approximation

The development of the perturbation theory for the scatter-
ing begins with the exact Lippmann-Schwinger equation:

�(r) = 1√
2

(
1
1

)
eikx +

∫
G0(r − r′)Ṽ (r′)�(r′)d2r′ , (62)

where Ṽ (r) = V (r)/(�vF ), G0(r) is the Green’s function for
the 2D Dirac equation,

G0(r) = − ik

4

[
H

(1)
0 (kr) ie−iφH

(1)
1 (kr)

ieiφH
(1)
1 (kr) H

(1)
0 (kr)

]
, (63)

and H
(1)
j (x) is the Hankel functions of the first kind. Following

the standard route [39], we seek the solution of Eq. (62) in the
form

�(r) = 1√
2

(
1
1

)
eikxP (r) . (64)

The corresponding scattering amplitude is

f (φ) = −
√

k

2π
e−iφ/2 cos

φ

2

∫
Ṽ (r)P (r)e−iq·rd2r , (65)

q = k(cos φ − 1, sin φ) . (66)

0
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FIG. 10. Differential scattering cross-section for n = 0.5 and
X = 200 computed by the PWD. The critical angle φc = 2π/3
[Eq. (61)] above which the p = 0 ray is totally reflected is labeled
on the horizontal axis. Near this angle the cross-section exhibits
oscillations similar to those near the rainbow angle in Fig. 9.
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One can show that for small angles and weak enough scattering
potential, φ � ρ/X � 1, function P is approximately equal
to

P (x,y) = exp

(
−i

∫ x

−∞
Ṽ (x ′,y)dx ′

)
. (67)

This approximation [39] is known as the HEA. (A simi-
lar method called “paraxial approximation” was applied to
graphene in Ref. [40].) Since φ is always considered to be
small within the HEA, we can achieve further simplification
by writing the change in momentum [Eq. (66)] as

q � kφŷ . (68)

Substituting this into Eq. (65) and integrating over x, we obtain

f (φ) = −i

√
k

2π
e−iφ/2 cos

φ

2

×
∫ ∞

−∞
[P (∞,y) − 1] e−ikφydy . (69)

Furthermore, under the condition
∫

Ṽ dr � 1, the quantity
P (∞,y) − 1 can be expanded to the first order in V , which
leads to the first Born approximation (BA). Within the latter,
the formula for the scattering amplitude can be simplified by
integrating over the polar angle:

f (φ) = −
√

k

2π
e−iφ/2 cos

φ

2

∫ ∞

0
2πṼ (r)J0(qr)rdr . (70)

Although the HEA is valid only for small φ, the BA result
holds for any φ as long as the potential V is weak, as specified
above, and we use Eq. (66) for q, i.e., q = |q| = 2k sin(φ/2).
For the step potential [Eq. (3)], the calculations according
to Eqs. (69), (70), and (9) yield the formulas for the total
cross-sections presented in Sec. II. Computing the transport
cross-sections within the HEA and BA [Eqs. (18) and (21)]
requires deriving the differential cross-sections first. These
quantities are discussed in the next section.

V. DIFFERENTIAL CROSS-SECTIONS IN EACH REGIME

In principle, numerical evaluation of the PWD series is not
difficult even for large X as long as one keeps enough terms
in the summation and uses reliable library subroutines for
computing the requisite Bessel functions. The results of these
calculations, which can be considered numerically exact, for
X = 106 are presented in Fig. 11(a). While it is too high to
be practical for graphene, choosing such a large X enables us
to show more clearly the qualitative trends displayed by the
differential cross-section dσ/dφ as a function of φ for four
different fixed ρ. These trends are schematically illustrated
in Figs. 11(b)–11(e). In the rest of this section, we discuss
how these trends can be understood based on the analytical
approximations we developed above.

We begin with the SR regime where the ray series is
accurate, and so Eqs. (29a) and (29b) can be used. At small
angles, the last (diffraction) term in Eq. (29a) is the dominant
one. It goes to a constant at φ = 0 and decays as dσ/dφ ∼ φ−2

at φ � 1/X. A crude sketch illustrating this behavior is shown
in Fig. 11(b). It consists of a plateau at φ < 1/X and a straight
line at φ > 1/X. We label it by “D” (for “diffraction”). The

ray series dominates the diffraction at φ > 1/
√

X, as shown
schematically in Fig. 11(b). Since the scattering potential is
strong, there is no particular restriction on the characteristic
deflection angle of the rays. For any p, it can be as small as zero
or as large as the maximum possible angle π . Therefore the
differential cross-section due to the ray contribution is shown
to be flat in Fig. 11(b), meaning it does not vary much on
the logarithmic scale. This is indeed the behavior exhibited by
the ρ = 3 × 106 curve in Fig. 11(a), which corresponds to the
largest refraction index curve (n = 4) in that figure.

In the WR regime, the “D” feature is also present, see
Fig. 11(c). The ray contribution exceeds that of diffraction at
φ >

√
ρ/X. From Eqs. (39)–(41), one can show that the p = 1

ray dominates at
√

ρ/X < φ <
√

ρ/X and the p = 0 and p =
2 rays take over at φ >

√
ρ/X. The contribution of the p = 1

ray to the cross-section decays at φ > ρ/X as dσ/dφ ∼ φ−3.
This occurs because at such φ the p = 1 rays graze along the
edge of the disk, b ≈ a; hence, this domain is labeled “E” in
Fig. 11(c). Note that a small dip in dσ/dφ exists at φ ∼ √

ρ/X

that separates angular intervals dominated by p = 1 ray and
the p = 0, 2 rays. Inside this dip no classical solutions exist
for either p = 1 or 2 ray, while the contribution of p = 0 ray
is already small. However, on the high-φ side of the dip there
are two such solutions for p = 2. The interference between
them gives rise to the Dirac rainbow, which was discussed in
Sec. IV B.

In the HEA and BA regimes, Figs. 11(d) and 11(e),
respectively, the formulas from Sec. IV D apply. In the HEA
regime, we use Eqs. (3) and (69) to obtain

f (φ) = i

√
2

πk

sin Xφ

φ
+ I (φ) , (71)

I (φ) = −i

√
k

2π

∫ 1

−1
dy e−iXφy exp (2iρ

√
1 − y2) . (72)

The first term of Eq. (71) is the same as the diffraction
term in Eq. (29a). The second term I (φ) admits analytical
approximations in some limits. At φ � ρ2/X, it can be
calculated by the saddle-point approximation. The result is
identical to f1(φ) given by Eq. (40). At ρ2/X � φ � 1,
the leading-order analytical approximation to I (φ) can be
calculated by deforming the contour to a rectilinear path
(−1,−1 − iν∞,1 − iν∞,1), with ν = sgn ρ. The result is

I (φ) � −2ρ

X

√
a

φ3
cos

(
Xφ + π

4

)
, (73)

which is equal to the sum of f0(φ) and f2(φ), Eqs. (39)
and (41). In the intermediate region, φ ∼ ρ2/X, the two
approximations match by the order of magnitude but none
of them is quantitatively accurate. If desired, the integral
I (φ) can be calculated numerically. The result would then
provide a smooth connection between the p = 1 and p = 0,
2 ray formulas. Unlike in the WR regime, the differential
cross-section has neither a dip nor a peak (rainbow) in this
regime. Such geometrical optics features are smeared out in
the HEA regime. Apart from this, it is remarkable that the
HEA, which is typically considered a quantum theory, can be
reproduced using the semiclassical ray picture. It is not very
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FIG. 11. (Color online) Differential cross-section as a function of the deflection angle. The labels on the graphs stand for D: diffraction, C:
central rays (b � a), E: edge rays (|b| ≈ a), AD: anomalous diffraction. (a) The exact results for X = 106 and several ρ computed using the
PWD. (b)–(e) are the schematic diagrams illustrating different regimes. (b) SR regime: at angles less than 1/

√
X the cross-section is dominated

by diffraction. At larger angles, the cross-section can be computed from geometrical optics; however, accurate results require summing over
many p in the ray series. (c) WR regime: diffraction dominates at small angles, followed by the p = 1 ray and then by the p = 0 and 2 rays.
A shallow dip followed by a peak exists in the narrow gap between the last two angular regions, at φ ∼ √

ρ/X. The peak, which occurs on
the ray-0,2 side, is the Dirac rainbow (Sec. IV B). The dip between the ray-1 region and the rainbow exhibits another effect beyond the ray
approximation—the Fock transition [29]. (d) HEA regime: diffraction dominates at small angles followed by the p = 1 ray and smoothly
continued by the p = 0, 2 rays. (e) BA regime. Anomalous diffraction exists at angles smaller than 1/X. At larger angles the scattering is
dominated by the p = 0 and 2 rays.

difficult to show that the crossover between the HEA and the
WR occurs at X ∼ |ρ|3, see Fig. 3.

The differential cross-section of the HEA regime is shown
schematically in Fig. 11(d). The p = 1 ray dominates over
diffraction at φ >

√
ρ/X. Its contribution to the cross-section

behaves as φ−3 at φ > ρ/X. The same trend is smoothly
continued by the p = 0, 2 rays, which dominate at φ > ρ2/X.

Lastly, in the BA regime, we use Eqs. (3) and (70) to obtain

f (φ) =
√

2πXa ρ e−iφ/2 cos
φ

2

J1
(
2X sin φ

2

)
2X sin φ

2

, (74)

which entails Eq. (19). The differential cross-section in the
BA regime is shown in Fig. 11(e). As mentioned in Sec. II,
the small-angle scattering in the BA regime is described by the
anomalous diffraction, which originates from the destructive
interference of the p = 1 rays with the usual diffraction.
Consequently, the maximum value σ ′(0) = (π/2)aρ2X of the
differential cross-section is much smaller than the Kirchhoff
result σ ′(0) = (2/π )aX [see the first term in Eq. (71)]. At
1/X � φ � 1, Eq. (74) agrees with Eq. (73) because the BA
and the HEA are both valid at such angles, predicting the
dσ/dφ ∝ φ−3 decay.

In summary, scattering of quasiparticles by large disks,
X � 1, can be described by the ray series at all but very small
deflection angles φ. At such small angles, there is a competition
between the rays and diffraction. Diffraction dominates for the

strong enough potential, ρ � 1. In the opposite case, the p = 1
rays nearly cancel the diffraction, making it “anomalous.” As
one can see from Fig. 11(a), the exact results for the differential
cross-section at sufficiently large X = 106 agree very well with
our schematic diagrams for all ρ pictured therein. Based on the
above results for the differential cross-sections, derivation of
the transport cross-sections within the HEA and BA [Eqs. (18)
and (21)] is straightforward, and so we will not elaborate on it.

VI. NEAR-FIELD SCATTERING

The previous sections have been devoted to quantitative and
qualitative discussion of far-field scattering amplitudes. In this
section, we turn our attention to the behavior of the electron
wave function �(x,y) near the scatterer. As previously, we
assume that electrons propagate ballistically before and after
they collide with the disk. In such an idealized system, the
incident plane wave can be created by injecting a small electric
current in a particular direction. One quantity we will discuss
is |�(x,y)|2, which determines the current-induced change in
the local charge density (CCLCD). Additionally, having in
mind Dirac fermions on a surface of a topological insulator,
we will consider 〈σz〉 ≡ 〈�|σz|�〉, which determines the
current-induced change of the z component of the local spin
density (CCLSD). In graphene, the same expectation value
defines pseudospin rather than spin density (and so it may
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FIG. 12. (Color online) Near-field features of the scattering wave
function �(x,y) for several representative choices of X and ρ. In order
to avoid drastic contrast variation in these false color diagrams, we
plot |�|1/8 rather than |�|2. (a) A low angular momentum resonance
occurring at X = 0.3, ρ = 3.363. The partial waves with j = ±3/2
are resonant. (b) A high angular momentum resonance (“whispering
gallery mode”) at X = 100, ρ = 81.7762. The partial waves with
j = ±165/2 are resonant. (c) An example of negative refraction in
the VR regime, X = 100, ρ = −281 (n = −1.81). (d) An example of
caustic and lensing in the SR regime, X = 100, ρ = 81 (n = 1.81).
(e) and (f) FP regime n � 1 on and off the resonance, {X′/π} = 0
and 0.25, respectively (cf. Fig. 5).

be more difficult to probe experimentally). Our goal is to see
how the qualitative features of the CCLCD and the CCLSD
can be understood in terms of the concepts introduced in the
previous sections, in particular, partial wave resonances and
semiclassical ray trajectories.

Figure 12 shows a suitably normalized CCLCD for six
representative choices of X and ρ. The false color scale in
this figure is effectively nonlinear because we plot |�|1/8

instead of |�|2 to mitigate sharp contrast variations. The
top left panel of Fig. 12 pertains to the smallest-ρ |j | = 3/2
resonance in the RS regime. The resonance is seen to generate
a dramatic enhancement of the CCLCD at the scatterer. It
may be surprising that this enhancement is axisymmetric.
This defies naive expectations that interference of ±jr partial
waves should produce an oscillatory angular dependence of the
CCLCD. In fact, the lack of angular oscillations is peculiar to

massless Dirac fermions. The states of angular momenta ±jr

are characterized by mutually orthogonal spinors; therefore,
these states do not interfere with one another yielding a nearly
axisymmetric CCLCD.

Resonances can also occur in the WR and SR regimes
for the partial waves of high angular momenta |j | � 1, cf.
Eq. (22). Such partial waves are analogous to the “whispering
gallery” modes in optics. They produce ring-shaped CCLCD
enhancement shown in Fig. 12(b). (Note that within the
semiclassical picture the resonant states correspond to particles
trapped inside the disk and orbiting in either direction around
its center.) In Figs. 12(c) and 12(d), we present examples of
negative [13] and positive refraction, respectively. Figure 12(c)
depicts the CCLCD for n = −1.81, which is in the VR regime.
The most notable features are the internal caustics that can
be explained using the ray picture [14]. Figure 12(d) shows
CCLCD for n = 1.81. Here the refraction is positive and
instead of the internal caustics, the rays exhibit focusing
outside the disk. The narrowness of the whispering-gallery
resonance can be appreciated by comparing Figs. 12(b)
and 12(d). Although the refractive indices in the two cases
differ by little more than 1%, their CCLCD look dramatically
different. While in Fig. 12(d), the CCLCD is dominated by the
focal point of the rays, in Fig. 12(b) it is almost completely
overshadowed by the resonant partial waves. Thus, for the
CCLCD a single pair of resonant partial waves can be more
prominent than all other waves combined. This is in contrast
to the far-field scattering quantities at X � 1, for which such
a resonance typically gives only a small correction to the ray
formula result [Eqs. (12) and (24)].

The last two panels in Fig. 12 illustrate the role of ray
interference in the FP regime (n � 1), where the far-field
cross-section exhibits periodic oscillations, see Fig. 5 in Sec. II.
We see in Figs. 12(e) and 12(f) that the ray interference also
strongly influences the CCLCD, causing marked change in
the CCLCD intensity along the vertical diameter of the disk
on and off the resonance.

Let us now turn to the features of the local spin density. We
have found that the CCLSD maps in the WR and SR regimes
show qualitatively the same caustics and focal spots as the
maps of the CCLCD. Therefore these CCLSD maps do not
seem to give much additional information and are not presented
here. However, striking differences between the CCLCD and
CCLSD appear in the RS regime. Figure 13 shows the CCLSD
at the positions of the four resonances seen in Fig. 6. Unlike the
CCLCD maps, the CCLSD shows strong angular variations.
This can be seen from the comparison of Figs. 12(a) and 13(b),
which have the same ρ and X. In order to avoid too drastic
contrast variations in the false color, we again use nonlinear
scaling and plot sgn〈σz〉|〈σz〉|1/2 instead of 〈σz〉 in Fig. 13.
The oscillations of the CCLSD are enabled by the discussed
above interference of the ±jr waves owing to the nonzero term
〈�−jr

|σz|�jr
〉. This interference causes the CCLSD to change

its sign 2|jr | times in the angular direction and z times in the
radial direction.

One may wonder how the predicted CCLCD or CCLSD can
be measured in experiments. We think it may be possible with
modern scanned-probe techniques. However, this task would
require probing a current-carrying system with a nanoscale
spatial resolution. One somewhat indirect method is to utilize
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FIG. 13. (Color online) Local z-component spin density 〈σz〉 ≡
〈�|σz|�〉 for the four resonances at X = 0.3 shown in Fig. 6. We plot
sgn〈σz〉|〈σz〉|1/2 rather than 〈σz〉 to avoid too much contrast in these
false color diagrams. (a) ρ = 1.739, the j = 1/2, z = 1 resonance.
(b) ρ = 3.363, the j = 3/2, z = 1 resonance. (c) ρ = 4.883, the j =
1/2, z = 2 resonance. (d) ρ = 6.555, the j = 3/2, z = 2 resonance.

the scanned gate microscopy (SGM), in which the change of
the conductance of the system is measured in response to a
local gating by the scanned tip. With further analysis, this type
of measurement can in principle reveal the CCLCD [41–46].
A more direct method is the scanned tunneling potentiometry
(STP) [47] recently implemented to study current-carrying
graphene [48]. By incorporating magnetized scanned probes
into the SGM and STP, it may also become possible to study
the predicted patterns of the local spin density on a surface of
a topological insulator.

VII. DISCUSSION AND CONCLUSIONS

Several remarks are in order before we conclude. First,
the transport properties of graphene have provided a major
motivation for this study. Since there have already been
numerous previous theoretical investigations of this subject,
it may be worthwhile to draw attention to the points where
we find qualitatively different results. Recall that the two most
common models of scatterers in graphene are random (uncor-
related) charged impurities and random short-range defects.
For the former, the theory predicts the linear dependence of
the conductivity on the electron density ne, for the latter the
conductivity is roughly density-independent [4,5]. Introducing
some degree of correlations among the impurity positions
into these basic models modifies the conductivity dependence
quantitatively [8] but preserves this main dichotomy. In
contrast, in our model the conductance has an approximately√

ne dependence [Eq. (26)] if the potential barrier is strong
enough, ρ > 1. Let us give a specific example. Suppose the
potential scatterers of our model are formed by aggregation
of charged impurities with average density 1013 cm−2 into
circular clusters inside of which the distances between the

impurities is about 1 nm. From the conservation of the total
impurity number one concludes that in this model there is an
inverse relation between the density nc of the clusters and their
radius a:

nc ∼ 0.03a−2 . (75)

Substituting this formula into Eq. (26), we obtain an estimate
of the conductivity

G ∼ 100
e2

h

√
nea , (76)

which exhibits the
√

ne behavior. Since G is proportional to
a, formation of clusters greatly increases the conductivity [9]
in comparison to the case of random isolated impurities. This
conclusion is further strengthened by the large numerical factor
in Eq. (76).

The lifetime ratio η [Eq. (1)] is another fundamental
parameter characterizing the transport properties of the system.
Most of previous calculations of η have been limited to the
perturbation theory (the Born approximation), which predicts
η � 2 for the charged and 1 � η � 2 for the short-ranged
defects. As we point out in Sec. II and illustrate in Fig. 8(c),
η can be less than 2 and even less than 1 for small-radius
scatterers because of the resonant tunneling, a nonperturbative
effect. Conversely, for large-radius scatterers, η can be very
large, see Fig. 8(a). Note that the small lifetime ratio η < 2
observed in some experiments [49,50], while large η ∼ 6 is
found in some others [10].

Next, we wish to address the validity of our steplike
model of the potential barrier. If the potential is indeed
created by a cluster of charged impurities, this model is
oversimplified. The actual potential has no discontinuity.
Instead, it sharply but continuously drops over a distance of
the order of the screening length, which is usually comparable
to the Fermi wavelength [1]. For such a smooth boundary,
the reflection and transmission coefficients that enter the ray
formula Eq. (29b) are modified, e.g., the reflection coefficient
is enhanced [51,52]. Therefore the transport and total cross-
sections should be greater than what we calculated for a sharp
boundary. The correction is relatively small if both X and X′
are large, so that the radius of the cluster is much larger than the
Fermi wavelength on both sides of the boundary. However, if
either exterior or interior of the cluster is doped weakly, a more
accurate calculation will be necessary. Another omission of the
steplike model is the long-range tail of the screened Coulomb
potential induced by the cluster. For high Fermi energy, the
screening is strong and the effect of such a tail can be treated
perturbatively. A weak long-range potential tail would cause
additional small-angle scattering, which should make only a
small correction to the transport cross-section. The effect on
the total cross-section could be more substantial. Within the
HEA, the contribution of the long-range potential tail to the
total cross-section is given by [39]

�σ � 8a

X

∫ ∞

0
[sin2(δj + �δj ) − sin2 δj ] dj , (77)

�δj � − 1

�vF

∫ ∞

max(a,b)

V (r)rdr√
r2 − b2

, b = ja

X
. (78)
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It is well known that an external charge screened by a gas
of 2D electrons (either massive or massless) produces the
potential that behaves as V (r) ∝ r−3 at distances much larger
than the screening length. It is then easy to see that the
integral in Eq. (77) converges. Thus there should be a range
of parameters where neglecting �σ is legitimate. However,
for massless Dirac fermions, large enough total charge of the
cluster, and low enough Fermi energy, the screened potential
would exhibit a slower decay V (r) ∝ r−3/2 over a range of
intermediate distances [53]. According to Eq. (77), this may
yield logarithmic corrections to the total cross-section. This
interesting problem warrants further study.

In conclusion, we studied in some depth scattering of
massless Dirac fermions by a step-like circular potential. We
unified many possible scattering regimes into a single global
diagram (Fig. 3) and presented analytical and numerical results
for the scattering amplitude in each of the individual regimes.
We verified that the semiclassical ray formalism accounts for
most of the scattering properties in the large-X regimes and
at the same time provides an intuitive physical description of
both the far-field and near-field scattering. We showed that
the ray picture applies even for weak scattering potentials,
which is the case where the semiclassical method is usually
eschewed in favor of quantum scattering theory. We also
discussed phenomena beyond the ray picture, such as the
regularization of the divergence of the scattering amplitude
at the rainbow angle and the quantization of the whispering-
gallery resonances. While the perfect axial symmetry and the
steplike discontinuity of the potential barrier that enabled us
to make progress in terms of analytical theory are not fully
realistic, some of our nonperturbative semiclassical techniques
can be extended to barriers of more general shapes and
profiles. It may also be interesting to apply our techniques
to bilayer graphene and graphene with an externally-induced
mass [17,25]. We expect the types of the scattering regimes to
be the same. However, because of the energy-dependent Fermi
velocity, different pseudospin structure, and/or suppression of
the Klein tunneling by the mass gap in these systems the
positions of the regime boundaries and the angular dependence
of the differential cross-sections should be different from those
for monolayer graphene. Finally, we hope that our results may
stimulate future transport and scanned-probe experiments with
graphene and topological insulators.
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APPENDIX A: PARTIAL WAVE DECOMPOSTION

In order to make the paper self-contained, in this Appendix,
we review the partial wave series. Using the notations of
Ref. [14], we denote by h

(2)
j and h

(1)
j , respectively, the incoming

and the outgoing waves of angular momentum j . At r > a,
where V (r) = 0, such waves are given by

h
(d)
j (r,φ) =

(
H

(d)
j−1/2(kr)e−iφ/2

iH
(d)
j+1/2(kr)eiφ/2

)
eijφ. (A1)

The angular momenta j are half integers, so that h(d)
j are single-

valued. At 0 � r < a, the solutions that are well-behaved at
the origin are

χj (r,φ) =
(

Jj−1/2(k′r)e−iφ/2

iJj+1/2(k′r)eiφ/2

)
eijφ (A2)

with k′ = (E − V0)/(�vF ) = X′/a. Equation (A2) can be used
for both positive and negative k′. In the latter case, a n-p
junction forms at the boundary of the scatterer.

In the partial wave method, the scattering wave function �

is expanded as follows. At r > a, it is given by

� = 1√
2

(
1
1

)
eikx + e− iπ

4

2
√

2

∑
j

ij (e2iδj − 1)h(1)
j , (A3)

where the coefficient in front of the sum is chosen to match the
coefficient in a similar expansion of the incident plane wave
(the first term). At r < a, we have

� = e− iπ
4

2
√

2

∑
j

i(j−1/2)Bjχj . (A4)

By imposing the continuity of the wave function at r = a, it is
straightforward to find

e2iδj = − s∗
j

sj

, (A5)

sj = H
(1)
j+1/2(X)Jj−1/2(X′) − H

(1)
j−1/2(X)Jj+1/2(X′) , (A6)

Bj = H
(1)
j+1/2(X)H (2)

j−1/2(X) − H
(1)
j−1/2(X)H (2)

j+1/2(X)

sj

. (A7)

Applying the asymptotic expansion for Hankel function
[Eq. (B7)] at large argument, the second term of Eq. (A3)
yields the scattering amplitude f (φ) [Eq. (6)].

APPENDIX B: DEBYE AND RAY SERIES

To derive the ray series, we first decompose e2iδj in Eq. (A5)
into the Debye series [29]

e2iδj = R22 +
∞∑

p=1

T21T12(R11)p−1 , (B1)

where

R22 = H
(2)
j+1/2(X)H (2)

j−1/2(X′) − H
(2)
j−1/2(X)H (2)

j+1/2(X′)

dj

,

(B2)

T21 = H
(2)
j−1/2(X)H (1)

j+1/2(X) − H
(2)
j+1/2(X)H (1)

j−1/2(X)

−dj

, (B3)

dj ≡ H
(1)
j−1/2(X)H (2)

j+1/2(X′) − H
(1)
j+1/2(X)H (2)

j−1/2(X′) . (B4)

Coefficient R11 (T12) is obtained from R22 (T12) by interchang-
ing 1 with 2 and X′ with X. These R’s and T ’s should not
be confused with the plane-wave reflection and transmission
coefficients such as Rin and Tin in Sec. III.
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The scattering amplitude Eq. (6) can be now written as

f (φ) = − i√
2πk

∞∑
p=0

∑
j

Dpei(j−1/2)φ , (B5)

with D0 = R22, D1 = T12T21 − 1, and Dp = T12T21R
p−1
11 for

p > 1. Using the Poisson summation formula, we obtain

∑
j

Dpei(j−1/2)φ =
∞∑

m=−∞

∫ ∞

−∞
dλDpeiλ(φ+2mπ) , (B6)

with λ = j − 1/2. For |λ − X| > X1/3, we can use the Debye
expansion of the Hankel function,

H
(1,2)
λ (X) �

(
2

π

)1/2

(X2 − λ2)−1/4

× exp{±i[
√

X2 − λ2 − λ cos−1(λ/X) − π/4]},
(B7)

valid for |λ| < x, to approximate Dp. After some tedious
algebra, we find

Dp �
{
C1(α)e2iδ1 − 1, p = 1 ,

Cp(α)e2iδp , p �= 1 ,
(B8)

where Cp(α) is defined in Eq. (34) and δp is given by

δp = −
[
X cos α − λ

(π

2
+ α

)
− π

4

]
+p

[
X′ cos β − λ

(π

2
+ β

)
− π

4

]
, (B9)

with

α = − sin−1

(
λ

X

)
, β = − sin−1

(
λ

X′

)
. (B10)

It can be shown that Dp becomes very small at λ > X for
all p. (For p = 1, having −1 term in D1 is essential for this
property.) Thus the infinite integration limits in Eq. (B6) can be
replaced by ±X. The integrand has a saddle-point determined
by the condition

2
dδp

dλ
+ φ + 2mπ = 0 . (B11)

Applying the saddle-point approximation, we obtain Eq. (29b).
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