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Voltage control of the spin-dependent interaction constants of dipolaritons
and its application to optical parametric oscillators
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A dipolariton is a voltage-controlled mixture of direct and indirect excitons in asymmetric double quantum
wells coupled by resonant carrier tunneling, and a microcavity photon. We calculate the voltage dependence of
the spin-singlet and spin-triplet interaction parameters α1 and α2. Both parameters can reach values 1 order of
magnitude larger than that of exciton-polaritons thanks to the strong interaction between indirect excitons. We
show that the variation of the indirect exciton fraction of the dipolaritons induces a change of sign of α2: the
interaction passes from attractive to repulsive with increasing voltage. For large enough voltage, α2 becomes
larger than α1, which in principle can lead to the formation of a circularly polarized dipolariton condensate. We
propose an application of the α2 dependence to a voltage-controlled dipolaritonic optical parametric oscillator.
The change of sign of α2 allows on-site control of the linear polarization degree of the optical signal and its
on-demand inversion.
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I. INTRODUCTION

Cavity exciton-polaritons are mixed exciton-photon quasi-
particles formed by the strong coupling between cavity
photons and quantum well excitons [1]. They interact strongly
between each other because of their excitonic component.
They represent one of the best examples of interacting photons
implementing the concept of photonic quantum fluid [2]. From
an applied point of view, these strongly interacting photonic
particles represent a unique opportunity for the realization of
low-threshold nonlinear optical devices [3–8]. The typical way
to modify the strength of the polariton-polariton interaction is
to change the excitonic content of the polariton by changing
the energy detuning between the bare exciton and photon
energy [9]. Using this approach, changing the interaction
constants means changing the position of the experiment on
a wedged sample. Polaritons are also spinor particles with a
spin structure similar to that of photons [10]. Their interactions
are strongly spin anisotropic. Indeed, quantum well Wannier
1s excitons do not possess a dipole moment, and the main
mechanism of their interaction in the case of small transferred
momentum is the short-range exchange interaction [11]. We
will call the interaction parameter in the triplet configuration
(same spins) α1. If one considers two polaritons with opposite
spins, the exchange of the carriers of their excitonic part
leads to the formation of dark excitonic states of total angular
momentum ±2, whose separation from the polariton states is
of the order of the Rabi splitting. An alternative mechanism
of interaction between dipolaritons having opposite spins is
associated with the formation of an intermediate biexciton
state [12–14]. As a result, interaction between polaritons of
opposite spins described by an interaction parameter α2 is a
second-order process. One should notice that far from the
biexciton resonance it is strongly suppressed compared to
the first-order carrier exchange interaction α1 and is weakly
attractive. This fact had numerous consequences, verified
by multiple experiments, such as the linear polarization
of polariton condensates [15–17], structure of topological

defects [18,19], polarization inversion in polariton optical
parametric oscillators [20], multistability effects [5,21], and
others. On the other hand, when the polariton state is approach-
ing the biexciton energy, α2 increases and it can even change
sign while crossing the resonance [13,14]. This interesting
mechanism of control of the sign of the interaction parameter
is, however, necessarily associated with strong losses in the
resonant biexciton state, and also by a large thermal depletion
of the polariton states [5,22].

If we now consider the indirect excitons (IXs) in coupled
quantum wells (CQWs), they are formed by an electron and
a heavy hole in neighboring CQWs and thus have a dipole
moment oriented along the growth direction (due to the applied
bias) and proportional to the CQW separation distance d.
Consequently, the dipole-dipole repulsion of IXs is a first-order
effect and is even stronger than their exchange interaction,
which switches from repulsive to attractive while increasing
d [23,24]. However, the coupling of an IX with a cavity photon
mode is limited by the small oscillator strength of the IX,
proportional to the overlap of the vanishing tails of the electron
and hole wave functions in the barriers.

Recently, exploiting the asymmetric double quantum wells
(ASDQWs) for resonant tunnel coupling of IX to the conven-
tional direct exciton (DX), their bound state was suggested
and realized [25]. The ASDQW embedded in a microcavity
structure is schematically shown on Fig. 1. The coupling of
three modes, indirect and direct exciton and cavity photon,
gives rise to a new two-dimensional quasiparticle - dipolariton.
Being thus a mixture of dipolar matter and light, dipolaritons
represent photons with strong dipolar interaction.

In this work we theoretically describe the voltage depen-
dence of the spin anisotropic interaction between dipolaritons
and see how this dependence can be exploited in a practical
application. We demonstrate that the interaction of dipolaritons
is at least 1 order of magnitude stronger than that of
conventional polaritons. We also show that the nature of
the interaction between dipolaritons of opposite spins can
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FIG. 1. (Color online) A sketch of the studied system. The
asymmetric double quantum well (ASDQW) is situated between the
contacts and two Bragg reflectors forming a microcavity. Voltage V ,
applied to the contacts, shifts the energy diagram of the ASDQW
and the energies of the indirect (EIX) and direct (EDX) exciton states,
coupled via tunneling of the electron through the barrier.

be switched from attractive to repulsive. We illustrate this
dependence by calculating the polarization response of a
dipolaritonic optical parametric oscillator (DOPO). This effect
manifests itself in the linear polarization inversion of the
DOPO that can be switched by an applied voltage. We also
predict bistable behavior of the DOPO emission versus the
pumping intensity and the applied voltage.

The present work is organized as follows. The spin-
dependent dipolariton wave functions are calculated in Sec. II.
The calculation of the matrix elements of the interaction
between dipolaritons is described in Sec. III. The analysis of
the suggested dipolaritonic OPO scheme is given in Sec. IV.
Discussion of the obtained results concludes the work in
Sec. V.

II. GENERAL DESCRIPTION, CALCULATION OF THE
DIPOLARITON WAVE FUNCTIONS

We consider a structure consisting of ASDQWs embedded
in a microcavity composed of two Bragg mirrors (Fig. 1). The
DX state is formed by an electron-hole pair in the ground state,
confined in one QW, while the IX consists of a hole in the same

QW as that of the DX and an electron in the other QW. The
DX and IX are thus coupled via the electron tunneling through
the barrier, described by the coupling constant J , while the
DX coupling to the cavity mode is induced by the exciton
oscillator strength, giving rise to the Rabi splitting �.

The ASDQWs are subject to an external electric field,
normal to their plane, produced by a voltage V , applied to
the contacts on the doped layers [26]. The field shifts electron
and hole levels of size quantization in both QWs, so that
the DX energy EDX(V ) = EDX(0) − βV 2 slowly decreases,
depending quadratically on the field, due to the quantum
confined Stark effect [27]. On the other hand, the IX energy
EIX(V ) = EIX(0) − γV shift is steeper and depends linearly
on the field with the proportionality coefficient being the IX
dipole moment [28]. In the absence of field, EIX(0) > EDX(0).
Therefore, at a certain voltage V0 both exciton states have
the same energy and become resonantly coupled. We consider
the range of voltages around V0, where the IX energy shift
is smaller than the energy distance to the nearest electron
confinement level or the closest cavity photon mode. This
allows us to neglect the presence of other states and to write
the following system Hamiltonian [25]:

H (Q,V ) =
⎛
⎝EIX(V ) −J/2 0

−J/2 EDX(V ) −�/2
0 −�/2 EC + TC(Q)

⎞
⎠ , (1)

where the term TC(Q) = �
2Q2/2mC accounts for the propa-

gation of light in the cavity plane and represents the kinetic
energy of the confined photon. Here Q is the wave vector in the
cavity plane and mC stands for the effective mass of the cavity
photon. Similar terms for excitons may be safely neglected
due to the large exciton mass mI = mD ∼ 104mC.

Diagonalization of the Hamiltonian (1) gives three dipo-
lariton branches resulting from the strong coupling between
the three initial resonances. They are shown as a function
of voltage V on Fig. 2(a), while Fig. 2(b) demonstrates the
dispersion of the branches for a given applied bias. The

FIG. 2. (Color online) Dipolaritonic branches stemming from direct (DX) and indirect (IX) excitonic and microcavity photonic modes.
(a) Lower (LP), middle (MP), and upper (UP) dipolaritonic branches (solid lines), lower (LD) and upper (UD) dark exciton branches (dashed
lines), uncoupled DX,IX and microcavity energies (dotted lines) versus applied voltage at zero wave vector. (b) The same branches versus
wave vector at a specific voltage (4.5 V). Parameters of the branch calculations are taken to fit the results of Ref. [26].
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following parameters were taken to qualitatively reproduce the
results of Ref. [26]: EIX(0) = 1.55 eV, EDX(0) = 1.43 eV, γ =
0.027|e|, β = 7.2 × 10−16 eV−1, mC = 10−4me, � = 6 meV,
and J = 6 meV. Here e and me stand for electron charge and
mass.

Each dipolariton eigenstate is a linear combination of
excitonic and photonic components with the generalized
Hopfield coefficients:

|Q,S〉DP =
∑

j=IX,DX,C

cj(Q,V )|Q,S〉j. (2)

Here, the index j spans over indirect (IX), direct (DX) exciton,
and cavity photon (C) states. Q and S designate quasimomen-
tum and total angular momentum projection (below denoted
as spin for simplicity) on the QW plane (in units of �). These
coefficients may be obtained by exact diagonalization of the
Hamiltonian (1), but their analytical form is quite cumbersome
and we do not present them here.

In the following sections we will be interested in the
excitonic part of the dipolaritons

|Q,S〉X = cIX(Q,V )|Q,S〉IX + cDX(Q,V )|Q,S〉DX, (3)

as it is responsible for their Coulomb interactions. The
quantum states |Q,S〉IX and |Q,S〉DX represent an IX and a
DX in the 1s state with center-of-mass momentum Q and spin
S = ±1, described by wave functions having a common form
with decoupled motional and spin parts [24]:

�Q,S(re,rh) = �Q (R) �ρ(ρ)�z(ze,zh)χS(se,jh), (4)

where R = (mere + mhrh)QW/(me + mh) is the exciton
center-of-mass projection on the QW plane, ρ = (re − rh)QW

is the in-plane distance between the electron and the hole
bound into the exciton, ze(h) is the electron (hole) coordinate
in the QW growth direction, and se, jh are the electron spin
and heavy hole angular momentum projections on the z axis.
The center-of-mass motion part �Q (R) = S−1/2 exp(−iQR),
where S is the normalization area, is the same plane wave for
both types of excitons. The internal motion part �ρ(ρ) reads

�ρ(ρ) = 1√
2πb(b + r0)

exp

⎛
⎝−

√
ρ2 + r2

0 + r0

2b

⎞
⎠ ,

where the b and r0 parameters are different for IX and
DX. The out-of-plane part may be set as �z(ze,zh) =
δ (ze − Ze) δ (zh − Zh), where Ze and Zh are the coordinates
of the QWs where the electron and the hole are confined.
They coincide for DX and differ in the case of IX. The spin
part χS(se,jh) plays a major role in the calculation of the
scattering matrix elements, as they drastically depend on the
spin configuration of a dipolariton pair. Only the exciton states
with a total spin S = ±1 are coupled to the photonic mode,
thus forming dipolaritons. For them we define the spin part as
χ±1(se,jh) = δse,∓1/2δjh,±3/2.

III. POLARITON-POLARITON INTERACTIONS

In this section we shall derive the expressions for the
dipolariton-dipolariton scattering matrix elements and then
consider the particular case of the parametric scattering of two

particles (conserving energy and momentum). We are using the
perturbation theory within the Born approximation and follow
the approach of Refs. [29–31] in the Sec. III A. When the
corresponding contribution becomes very weak, as it happens
for the interspin interaction in the range of voltages where
IX and DX modes are weakly coupled, we need to proceed
further to the second-order correction, which is presented in
Sec. III B.

A. Born approximation

The excitonic part of a dipolariton pair state, accounting for
the fermionic nature of carriers, is constructed from the direct
product of two excitonic parts (3) of single dipolariton states:

|Q,S; Q′,S ′〉 = [|Q,S〉X ⊗ |Q′,S ′〉X]a, (5)

where the subscript a denotes the antisymmetrization with
respect to the permutations of either electrons (re ↔ r′

e, se ↔
s ′
e) or holes (rh ↔ r′

h, jh ↔ j ′
h).

Considering two possible spin configurations of a scattering
pair, triplet (S = S ′), and singlet (S = −S ′), without loss of
generality we write the scattering matrix elements in the Born
approximation as

V
(1)
f ←i = 〈f |V̂ |i〉 ≡ 〈Qf ,S; Q′

f ,S ′|V̂ |Qi ,S; Q′
i ,S

′〉,
with V̂ for the scattering potential, which accounts for the
interexciton carrier Coulomb interactions,

V̂ = e2

ε

[
1

|re − r′
e|

+ 1

|rh − r′
h|

− 1

|re − r′
h|

− 1

|rh − r′
e|

]
,

where e is the electron charge and ε is the dielectric constant.
The matrix elements (6) may be decomposed into the

following sum:

V
(1)
f ←i =

∑
i,j,k,l=IX,DX

C
k,l
i,j (Qi,Q

′
i ,Qf ,Q′

f ,V )

× [〈Qf ,S|k ⊗ 〈Q′
f ,S ′|l]aV̂ [|Qi ,S〉i ⊗ |Q′

i ,S
′〉j]a,

(6)

where C
k,l
i,j = ci(Qi,V )cj(Q′

i ,V )c∗
k(Qf ,V )c∗

i (Q′
f ,V ).

We consider the range of wave vectors Q  a−1
B , where

aB ∼ 10 nm is the bulk exciton Bohr radius. In this range, all
quantum averages in the summation (6) are independent of
the wave vectors, as their characteristic scale of variation is
a−1

B . Therefore the dependence on the wave vectors, as well as
on the bias, is only kept in the Hopfield coefficients product
C

k,l
i,j (Qi,Q

′
i ,Qf ,Q′

f ,V ). Finally, the vanishing overlap of DX
and IX wave functions allows only the terms where either
i = k, j = l or i = l, j = k to be kept and to obtain

V
(1)
f ←i = C

DX,DX
DX,DXV

S,S ′
DX,DX + C

IX,IX
IX,IXV

S,S ′
IX,IX

+ [
C

IX,DX
IX,DX + C

DX,IX
IX,DX + C

IX,DX
DX,IX + C

DX,IX
DX,IX

]
V

S,S ′
DX,IX,

(7)

with interaction constants V
S,S ′

DX,DX, V
S,S ′

IX,IX, and V
S,S ′

DX,IX repre-
senting DX-DX [11], IX-IX [23], and DX-IX [24] interactions.
The corresponding matrix elements can be written as follows:

V
S,S ′

i,j = [〈0,S|i ⊗ 〈0,S ′|j]aV̂ [|0,S〉i ⊗ |0,S ′〉j]a. (8)
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FIG. 3. (Color online) Interaction parameters calculated in Born
approximation as a function of the separation distance between
the QWs. The red lines represent interaction between two IXs,
while the blue one corresponds to the interaction of an IX with a
DX. The solid lines describe the interaction of two excitons with
the same spin (αII

1 ,αDI
1 ) and the dashed one is for two excitons with

opposite spins (αII
2 ).

where i,j span over IX,DX. The spin dependence of each
of the above integrals is then conveniently described by its
decomposition into a sum of four terms with evident spin
parts:

V
S,S ′

i,j = V dir
i,j + δS,S ′V X

i,j + δse,s ′
e
V e

i,j + δjh,j
′
h
V h

i,j. (9)

The first term represents the direct dipole-dipole interaction
and is present for any combination of exciton spins. The second
term describes the exciton exchange contribution and accounts
for the bosonic nature of the exciton. Finally, the last two
terms represent the electron and hole exchange contributions,
accounting for the fermionic nature of the carriers. Matrix
elements (8) are evidently expressed in these terms:

V
+1,+1

i,j = V dir
i,j + V X

i,j + V e
i,j + V h

i,j,

(10)
V

+1,−1
ij = V dir

i,j .

Neglecting the DX dipole with respect to that of the IX re-
sults in V

+1,−1
DX,DX = V

+1,−1
DX,IX = 0. Figure 3 shows the dependence

of nonzero matrix elements (10) on the QW separation distance
d. The zero separation limit corresponds to the transition from
IX to DX. At d ≈ aB/4, the carrier exchange contribution
changes sign and therefore V

+1,−1
IX,IX > V

+1,+1
IX,IX for d > aB/4.

Note that V
+1,+1

DX,IX , plotted by the blue line, is inaccurate
in the vicinity of point d = 0, where the IX and DX are
indistinguishable. Moreover, the range where the distance
between the QW centers is shorter than their widths is
physically meaningless.

Setting i = f = |Q,S,Q,S ′〉 states that at a given point
of the energy dispersion branches, we calculate the effective
dipolaritonic interaction constants α1 and α2 responsible
for frequency shifting of dipolaritonic luminescence due to
interaction between dipolaritons with the same (α1) and

FIG. 4. (Color online) Interaction constants responsible for the
blueshift and the bistability of pumped dipolariton states calculated
in the Born approximation. Left and right columns correspond to α1

and α2, while the three rows correspond to LP, MP, and UP dipolariton
branches. The voltage and wave-vector dependencies are due to the
variation of Hopfield coefficients.

opposite (α2) spins, as quantum averages (6):

α1 = |cDX(Q,V )|4V +1,+1
DX,DX + |cIX(Q,V )|4V +1,+1

IX,IX

+ 4|cDX(Q,V )|2|cIX(Q,V )|2V +1,+1
DX,IX ,

α2 = |cIX(Q,V )|4V +1,−1
IX,IX . (11)

Figure 4 presents the results of the numerical calculation
of these constants throughout the three dipolaritonic branches
in dependence on the applied bias. Note that α1(2) reflects
a blueshift of photoluminescence in a particular circular
polarization due to optical pumping with the same (opposite)
circular polarization.

All listed interaction constants are positive; therefore the
dipolariton scattering matrix elements (8) obtained in this
section describe only repulsive interactions. In order to include
the dipolariton attraction in our model, we continue the
expansion of the interactions to the second order.

B. Second-order corrections

In this section, we study the second-order corrections to
the interaction matrix elements, which are important for a
scattering of two dipolaritons with opposite spins in the region
of voltages and momenta where the IX fraction of either the
initial or final state is small and so is the first-order matrix
element. This condition can be satisfied for the voltages where
|EI − ED| � J . One can expect the change of sign of the
singlet interaction parameter α2 at the point where the first-
and the second-order contributions become comparable.

Scattering of two polaritons with opposite spins has been
recently studied theoretically [12] and experimentally [13].
In particular, Ref. [13] reports a strong attraction of singlet
lower-branch polariton pairs depending on the energy detuning
between the DX and cavity modes.
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We start to generalize the results of Ref. [12] to the
case of lower-branch dipolaritons with the expression for the
correction to the scattering matrix element in the second order
of the perturbation theory [32]:

V
(2)↑↓
f ←i =

∑
m

〈f |V̂ |m〉〈m|V̂ |i〉
Ei − Em

≡
∑
m

〈Qf ,+1; Q′
f ,−1|V̂ |m〉〈m|V̂ |Qi ,+1; Q′

i ,−1〉
Ei − Em

,

(12)

where m enumerates all intermediate states of two electrons
and two holes playing the role of the interaction mediator.

Intermediate states representing two dipolaritons with
opposite spins are coupled with initial and final states by spin
conserving dipole-dipole scattering and result in a second-
order correction to the repulsion. On the contrary, states
formed by two “dark” excitons |Q + P, + 2; Q′ − P,−2〉 are
coupled to dipolariton pair states |Q, + 1; Q′,−1〉 via virtual
fermion exchange. Terms with such intermediate states give
a negative contribution to the interaction potential exceeding
the first-order repulsion in absolute value. The same applies to
the contribution coming from biexcitonic intermediate states.
It becomes important in the case of polaritonic Feshbach reso-
nance [14], when the dipolariton pair energy coincides with the
biexciton energy and expression (12) diverges. In this work,
we consider polariton states being far from the biexciton and
dark exciton resonance, so that both terms give qualitatively
the same type of contributions. Then, in order to simplify the
calculations, we neglect the biexciton states’ contribution and
focus on the contribution of dark exciton states.

Due to the electron tunneling through the barrier, the dark
IX and DX states are coupled and form two anticrossing
branches LD and UD, plotted with dashed lines in Fig. 2.
Direct and indirect fractions d

LD(UD)
D and d

LD(UD)
I of the dark

branches, obtained by diagonalization of the Hamiltonian (1)
with � = 0, are independent of Q due to equal IX and DX
effective masses. Similar to the previous section, we derive the
following:

V
(2)↑↓
f ←i =

m,n=LD,UD∑
i,j,k,l=IX,DX

C
k,l
i,j D

m,n
i,j,k,l

×
∑

P

V exch
k,l (P )V exch

i,j (P )

−�m,n − �2P 2/MX

,

where D
m,n
i,j,k,l(V ) = dm

i (V )dn
j (V )dm

k (V )dn
l (V ) and �m,n(V ) =

Em(V ) + En(V ) − Ei . Here, we neglect once again the de-
pendence of the virtual fermion exchange matrix elements
V exch

i,j (P ) on the dipolariton momenta Q  aB , although
we keep the virtual transferred momentum P which spans
over the whole reciprocal space. Furthermore, we omit the
terms where i = j = IX and k = l = IX, representing the next-
order correction to the IX repulsive contribution. The virtual
exchange matrix elements are

V exch
IX,DX(P ) = [〈0,+1|IX ⊗ 〈0,−1|DX]aV̂ [|P, − 2〉IX

⊗ |−P,+2〉DX]a,

FIG. 5. (Color online) Effective interaction parameters responsi-
ble for blueshift, bistability, and polarization of the ground dipolariton
state (sketched in the inset), calculated in the second order of the
perturbation theory, are plotted in red. Interaction parameter α2,
describing the interaction potential of two dipolaritons with opposite
spins, changes sign with voltage and even exceeds α1, the one
describing two dipolaritons with aligned spins. The gray(hatched)
area represents possible values of α1 (α2) for conventional polaritons.
The result of the first-order calculation of α2 is plotted with a black
dashed line for comparison.

V exch
DX,DX(P ) = [〈0,+1|DX ⊗ 〈0,−1|DX]aV̂ [|P,−2〉DX

⊗ |−P,+2〉DX]a

+ [〈0,+1|DX ⊗ 〈0,−1|DX]aV̂ [|P,+2〉DX

⊗ |−P,−2〉DX]a.

Note that the two terms of the latter correspond to electron
and hole exchange, contrary to the IX-DX case, where
only the hole exchange is possible. Both matrix elements
are integrated numerically in dependence on the transferred
momentum [11,24] and vanish at P > aB/2.

Substituting the two-particle ground dipolariton state as
both i and f into Eqs. (7) and (12), we calculate the effective
interaction constants for the ground state. The results of this
calculation are plotted in Fig. 5. One can observe that α2 is
changing sign at some particular voltage, similar to the case
of resonant interaction with the biexciton resonance [13,14],
which has the disadvantage of inducing strong losses. Here,
the mechanism is the increase of the mixing with the IX state,
which does not add any losses to the dipolariton. However, the
whole system can be possibly affected by the large intrinsic
losses of the dipolaritonic states, induced by the presence of
the metallic contacts and doped mirrors. A second remarkable
point occurs at a slightly larger voltage, when α2 and α1

become equal. In the case of a dipolariton condensation, this
boundary corresponds to a transition between linearly and
circularly polarized states [13] which can therefore be tuned,
simply by changing the applied voltage.

IV. OPTICAL PARAMETRIC OSCILLATOR

The OPO configuration of the dipolariton excitation scheme
implies parametric scattering of two quasiparticles from the
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FIG. 6. (Color online) Optical parametric oscillator properties.
(a) Numerical solution of energy-momentum conservation law for
parametric scattering, sketched on the inset. Two dipolaritons in the
pump state (large circles) scatter to signal and idler states (small
circles). Depending on applied bias there are from 2 to 4 solutions
corresponding to different scattering configurations. The wave vector
of the pump state, representing the magic angle of optical excitation,
is plotted with colors corresponding to the following configurations:
red and green for scattering within LP and MP branches, orange
and magenta for interbranch scattering. (b) Interaction constants
calculated for dipolariton parametric scattering in the second order of
the perturbation theory. Solid lines represent interaction between the
dipolaritons with the same spin (α1), dashed lines are for dipolaritons
with opposite spins (α2). The gray (hatched) area limits the possible
values of α1 (α2) for conventional microcavity polaritons. Both LP and
MP configurations have a range of voltages where α2 > α1. In the LP
case, α2 is changing sign due to variation of the energy detuning and
dipolariton oscillator strength. The inset shows the relation between
linear polarization degrees of signal emission and optical pumping in
the most relevant case of LP parametric scattering.

resonantly excited pump state (Qp), conserving the energy and
the momentum into the signal (Qs = 0) and idler (Qi) states,
schematically shown in the inset of Fig. 6(a). The numerical
solution of in-plane momentum and energy conservation
equations,

2Qp = Qs + Qi, 2Ep = Es + Ei, (13)

gives all possible pump state wave vectors, satisfying the OPO
condition, as a function of the applied voltage, plotted in
Fig. 6(a). Note that in contrast with the single-branch OPO
schemes, where all states involved in the OPO lie on the same

branch (for example, lower polariton branch), the ASDQW
structure permits in principle an interbranch OPO scheme
with LP signal, MP pump, and UP idler states. Such an OPO
configuration may be used for generation of entangled photon
pairs as both signal and idler states are photonic; therefore the
problem of idler polariton coherence loss due to the strong
excitonic interactions is avoided. The UP branch alone does
not provide a possibility of a single-branch OPO scheme due
to the absence of an inflection point. Moreover, the states
lying above the bare exciton energy are resonantly coupled
to a large density of excitonic states and can suffer from a
significant dephasing, even if their excitonic fraction is small.
This dephasing is not accounted for in our approach. The
resonant pumping of the LP is therefore the only configuration
which we expect to be properly described by our approach.

The spin kinetics of the system strongly depend on the type
of polariton-polariton interaction. Polarization of photons,
emitted from the signal state once the OPO turns on, is defined
by polarization of pumping and two interaction constants
α1 and α2 describing parametric scattering of a pair of
dipolaritons with aligned and antialigned spins, respectively.
In the particular case of linearly polarized pumping, the signal
linear polarization degree is expressed by a simple relation [20]

Plin,s = α1α2

α2
1 + α2

2

Plin,p, (14)

where Plin,p is the linear polarization of the optical pumping.
The sign of Plin,s and thus the orientation of the signal
polarization plane, are therefore determined by the relative sign
of the interaction parameters α1 and α2 describing parametric
scattering of dipolaritons with aligned and opposite spins.

To calculate them accounting for the second-order correc-
tion, we substitute the pump, signal, and idler dipolariton states
into Eqs. (7) and (12):

α1 = c2
DX(Qp,V )cDX(Qs,V )∗cD(Qi,V )∗V +1,+1

DX,DX

+ c2
IX(Qp,V )cIX(Qs,V )∗cIX(Qi,V )∗V +1,+1

IX,IX

+ 2cIX(Qp,V )cDX(Qp,V ))[cDX(Qs,V )∗cIX(Qi,V )∗

+ cDX(Qs,V )∗cIX(Qi,V )∗]V +1,+1
DX,IX ,

α2 = c2
IX(Qp,V )cIX(Qs,V )∗cIX(Qi,V )∗V +1,−1

IX,IX

+
m,n=LD,UD∑
i,j,k,l=IX,DX

ci(Qp,V )cj(Qp,V )ck(Qs,V )∗cl(Ci,V )∗

× dm
i (V )dn

j (V )dm
k (V )dn

l (V )
∑

P

V exch
k,l (P )V exch

i,j (P )

−�m,n − �2P 2/MX

.

(15)

The results of this calculation are plotted in Fig. 5(b) for
LP, MP, and interbranch scattering configurations. Notably, the
following situations may be achieved by voltage variation for
different OPO configurations: (i) α2 < 0, linear polarization
inversion is on; (ii) 0 < α2 < α1, and (iii) α2 > α1, linear
polarization inversion is off. Moreover, as can be seen in
Fig. 5(b), in a certain range of voltages, the dipolaritonic OPO
interaction constant exceeds the theoretically achievable value
of α1 = 6Ra2

B for conventional microcavity polaritons [12].
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Substitution of the calculated interaction constants into
relation (14) finally gives the dependence of the signal linear
polarization degree on the applied bias for the case of full linear
polarization of the pumping (Plin,p = 1), plotted in the inset of
Fig. 5(b). It has a fast switching region from negative to positive
values in the vicinity of the crossing point of the three modes,
where α2 value crosses zero. Realistically, the absolute value
of the signal polarization degree is lowered by spin relaxation
processes. However, the main result is that the orientation
of the signal emission polarization plane may be switched
between that of the optical pump and the one orthogonal to it.

V. CONCLUSION

We have calculated the spin-dependent interaction param-
eters for dipolaritons and analyzed the specific role played
by the dipolar interaction between indirect excitons. We have
shown that these parameters can be 1 order of magnitude larger
than for conventional polaritons. By tuning the applied voltage,
the interaction parameter α2 between dipolaritons with oppo-

site spin changes sign and can become larger than α1—the in-
teraction parameter between dipolaritons having the same spin.

This shows that dipolaritons are promising particles for
spin-optronic applications. In particular, we consider a dipo-
laritonic OPO scheme, which, due to the large values of
the interaction parameters, has a very low threshold. It
offers the possibilities of interbranch parametric scattering.
Flipping the sign of the singlet interaction α2 parameter allows
the on-demand linear polarization inversion switching and
polarization degree control by the applied bias.

ACKNOWLEDGMENTS

This work has been supported by EU FP7 ITN INDEX
(Contract No. 289968) and ANR QUANDYDE (Contract No.
ANR-11-BS10-001). N.G. acknowledges support from the
RFBR and the Ministry of Education and Science of Russian
Federation (Project No. RFMEFI58114X0006). We thank
M. Glazov for fruitful discussions.

[1] A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy,
Microcavities, edited by R. J. Nicholas and H. Kamimura
(Oxford University Press, Oxford, UK, 2007).

[2] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).
[3] P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick,

D. M. Whittaker, and J. S. Roberts, Phys. Rev. Lett. 84, 1547
(2000).

[4] G. Messin, J. P. Karr, A. Baas, G. Khitrova, R. Houdré, R. P.
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