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Origins of thermal conductivity changes in strained crystals
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The strain-dependent phonon properties and thermal conductivities of a soft system [Lennard-Jones (LJ)
argon] and a stiff system (silicon modeled using first-principles calculations) are predicted using lattice dynamics
calculations and the Boltzmann transport equation. As is commonly assumed for materials under isotropic strain,
the thermal conductivity of LJ argon decreases monotonically as the system moves from compression into tension.
The reduction in thermal conductivity is attributed to decreases in both the phonon lifetimes and group velocities.
The thermal conductivity of silicon, however, is constant in compression and only begins to decrease once the
system is put in tension. The silicon lifetimes show an anomalous behavior, whereby they increase as the system
moves from compression into tension, which is explained by examining the potential energy surface felt by an
atom. The results emphasize the need to separately consider the harmonic and anharmonic effects of strain on
material stiffness, phonon properties, and thermal conductivity.
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I. INTRODUCTION

To simplify modeling efforts, the assumption that a material
or device is at zero strain is often made. Under realistic
conditions in many systems, however, zero strain is not the
case. For example, the extreme pressures in the Earth’s core
(~300 GPa) can increase the thermal conductivity of the
constituent materials (e.g., iron) by a factor of three [1].
Strain can also be induced by epitaxial interfaces [2—4],
mechanical loading, and the thermal expansion that results
from an imposed temperature gradient or Joule heating.
Strain can be used to engineer the transport properties of
electrons and phonons [5], to tune the thermal conductance
of interfaces [6,7], and can modify the thermal conductivities
of nanostructures such as nanowires and one- and two-
dimensional materials [8—12].

There have been previous efforts to quantify the effect of
strain on thermal conductivity in bulk crystalline systems. Ross
et al. presented a comprehensive review of experimental mea-
surements of the thermal conductivity of strained materials,
including covalent and semiconducting structures [13]. They
concluded that compression increases the thermal conductivity
of this class of materials. Picu et al. studied strain effects on a
model Lennard-Jones (LJ) crystal using molecular dynamics
(MD) simulations for isotropic strains ranging from —0.03
to 0.03, where a negative strain indicates compression [14].
Using the Green-Kubo (GK) MD-based method, they found
that the thermal conductivity increased under compression
and decreased under tension. They attributed this behavior
to changes in “stiffness.” Tretiakov and Scandolo explored
thermal transport in crystalline argon at high temperatures
and pressures using MD simulations, the GK method, and
the exponential-6 potential [15]. As the compressive stress
increased from 2 to 50 GPa, they found a power-law increase of
thermal conductivity. Bhowmick and Shenoy studied strained,
crystalline LJ argon using MD simulations and the GK method,
also finding a power-law scaling of thermal conductivity with
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increasing compressive strain [16]. They predicted the same
power-law scaling from Fermi’s golden rule (exponent within
5%) based on analytical scalings of the phonon lifetime and
sound speed. Goncharov er al. experimentally investigated
thermal transport in high-temperature, compressed argon using
a transient heating technique [17]. Using a diamond anvil
cell, argon was compressed in the stress range of 10 to
50 GPa. They found a power-law dependence of thermal
conductivity with increasing compression at a temperature of
300 K. Chernatynskiy and Phillpot explored high-temperature
(400 to 1200 K) argon using harmonic and anharmonic
lattice dynamics calculations with force constants obtained
from density functional theory (DFT) calculations over a
compressive stress range of 10 to 50 GPa [18]. Their thermal
conductivity predictions fit the power-law functional form
proposed by Tretiakov and Scandolo [15]. Li et al. studied
thermal transport in strained crystalline Tersoff silicon and
diamond using MD simulations and the GK method [8]. They
found thermal conductivity to monotonically decrease from
compression to tension over a strain range of —0.09 to 0.12
and justified this trend using changes in the phonon group
velocities. While these previous studies focused on quantifying
how thermal conductivity is altered by strain, modifications to
the properties of individual phonon modes due to strain have
yet to be explored.

In this work, we apply atomistic calculations to investigate
how isotropic strain affects phonon mode properties in bulk
systems where electrons make a negligible contribution to
thermal conductivity. From a solution to the Boltzmann trans-
port equation, the lattice (i.e., phonon) thermal conductivity in
direction n, k,, can be expressed as [19]

kn=Y Cpy (5) o2, (’:) T <’1‘)> . (1)

Here, the summation is over all phonon modes with wave
vector k and polarization branch v. Inside the summation,
C,i(}) is the heat capacity, v, a(}) is the component of the
group velocity vector v, in the direction n, and 7(}) is the
lifetime. We will predict thermal conductivity in the [100]
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direction, although all directions are equivalent through the
cubic symmetry of the materials considered.

We first consider an LJ argon crystal as a representative
soft system. Thermal transport in LJ argon is
well-studied [14,16,20-24], primarily because it uses a
computationally-inexpensive two-body potential. As typical
of a soft material, LJ argon has a low zero-strain thermal
conductivity [O(1) W/m K] that results from contributions
from the full spectrum of phonon modes [25]. Molecular
dynamics simulations and the GK method are first used to
predict thermal conductivity for benchmarking purposes.
Phonon properties are then predicted from harmonic lattice
dynamics (HLD) [26,27] and anharmonic lattice dynamics
(ALD) [22,28-30] calculations and are used to evaluate Eq. (1).

We then consider silicon as a representative stiff material.
Stiff materials typically exhibit a high thermal conductiv-
ity that is dominated by low-frequency acoustic phonon
modes [25,31]. The phonon properties required to evaluate
Eq. (1) are predicted from HLD and ALD calculations with
force constants obtained from DFT and density functional
perturbation theory (DFPT) calculations.

The rest of the paper is organized as follows. In Sec. II, we
describe the computational methods and details. The thermal
conductivities and phonon mode properties are then presented
and discussed for LJ argon (Sec. III A) and silicon (Sec. III B).
To explain differences in the phonon lifetime trends for these
two materials, the potential energy wells experienced by the
atoms in each are compared in Sec. IIIC. We conclude by
summarizing our results in Sec. IV.

II. COMPUTATIONAL DETAILS

A. Lennard-Jones Argon

Argon is an insulating face-centered cubic crystal that can
be described by the two-body LIJ interatomic potential [32]

) ()]
where i and j denote a pair of atoms, r;; is the distance between
the two atoms, €| ; is the energy scale (1.67x 107! J), and oy j is
the length scale (3.40x 107! m). Argon has an atomic mass 7,
of 6.63x1072¢ kg. All calculations are made at a temperature
of 20 K, where the zero pressure lattice constant, a,, is
5315 A [23]. We use a cutoff of 2.501y with a shifted potential
well for the MD simulations and the lattice dynamics (LD) cal-
culations. Isotropic strains, &, of —0.06 to 0.06 are considered,
such that the lattice constant, a, is a,(1 + &). The strains, lattice
constants, and resulting stresses are provided in Table I.
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The primitive one-atom basis is used to perform the HLD
and ALD calculations with in-house codes. The phonon
wave-vector grid is sampled using N, uniformly spaced wave
vectors in each direction. Ten values of N, are considered
ranging from 32 to 50 in increments of two. The phonon
frequencies w are obtained from HLD calculations, which
require the second-order force constants [27]. Using the
frequencies, we calculate the group velocities using finite
differencing from vy, = dw/dky,. The second-order force
constants are calculated up to the potential cutoff of 2.507;.
Since harmonic plane waves do not interact, HLD calculations
do not provide any information about the phonon scattering
and lifetimes. The phonon lifetimes are predicted using ALD
calculations, which use the third-order force constants to
account for three-phonon interactions [22,33]. The third-order
force constants are calculated up to first-nearest neighbor. The
force constants are calculated by displacing selected atoms by
10~*a from their equilibrium position in a supercell and finite
differencing of the resulting forces.

Using the group velocities and lifetimes, we evaluate
thermal conductivity from Eq. (1). Because the MD simu-
lations to be used for benchmarking are classical, we use
classical occupation statistics in the ALD calculations and
the classical harmonic value of heat capacity C ph(i) = ]‘VB,
where kg is the Boltzmann constant and V is the system
volume a*N?3. The inverse of thermal conductivity is plotted
verses 1/N, and a line is fit to the data, whose extrapol-
ated value at 1/N, = 0 gives the infinite system-size (i.e., bulk)
value [22].

Turney et al. observed a difference between GK and ALD
predictions of thermal conductivity for LJ argon at zero strain
for temperatures above 40 K, where increasing anharmonicity
cannot be captured with ALD. Because strain affects the
anharmonicity, we also use the MD-based GK method as a
self-consistent check of the thermal conductivities calculated
from ALD.

The MD simulations are performed using the open-source
LAMMPS package [34]. The time step is 4.28 fs and the cubic
simulation cell contains 256 atoms. We did not observe
changes in thermal conductivity due to size effects over all
strains. At each strain, a temperature rescale is performed for
250,000 time steps to bring the system temperature to 20 K.
The system is then evolved in an NV E ensemble (a constant
number of atoms, volume, and energy) for 250,000 time
steps. A further 1,000,000 time steps are run where the heat
current vector is recorded every five time steps. Each strain
case is run with ten seeds (randomized initial velocities) and
the heat current autocorrelation functions are averaged. The
heat current autocorrelation function is the input to the GK
method, which is an equilibrium technique for extracting the

TABLEI. Properties of LJ argon under different strains (¢). The lattice constants (a), isotropic stresses (o ), MD-based thermal conductivities

(kgxk), and LD-based thermal conductivities (kp) are provided.

3 —0.06 —0.04 —0.02
a (A) 4.996 5.102 5.209
o (GPa) —-0.97 —0.49 —0.18
kip (W/mK) 6.5 3.8 22
kek (W/mK) 8.0 4.8 2.5

—0.0
52
—-0.0
1.6
1.7

1 0.00 0.01 0.02 0.04 0.06

62 5.315 5.368 5.421 5.528 5.634

8 0.00 0.06 0.11 0.17 0.19
1.2 0.88 0.66 0.33 0.14
1.2 0.88 0.68 0.35 0.19
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TABLE II. Properties of first-principles silicon under different strains (¢). The lattice constants (a), isotropic stresses (o), and LD-based

thermal conductivities (k. p) are provided.

e 003 -0.025 -002 -0015 -001
a (A) 5241 5268 5295 5322 5349
o (GPa) -10 -84  —65 —47 =30
kip (W/mK) 147 148 154 149 152

—0.005 0.0
5.376
—15 0.0 1.4 2.7 3.8 5.0 6.0 7.0

0.005
5.430

0.01
5.457

0.015
5.484

0.02
5.511

0.025
5.538

0.03

5.403 5.565

150 151 150 151 150 145 140 137

thermal conductivity kgk based on the fluctuation-dissipation
theorem [35]. There is inevitably noise in the heat current
autocorrelation function due to a limited sampling of the phase
space from the finite sampling time. To find the converged
value of the integral of the heat current autocorrelation
function, we applied the first-avalanche method [36]. We found
kgk to be converged to within 4% with 10 seeds. This error was
estimated by removing one seed and calculating the difference
in the predicted thermal conductivity when all ten seeds
are used.

B. Silicon

We consider isotopically pure silicon at a temperature of
300 K. At this temperature, silicon undergoes a phase change
from the diamond lattice structure to the 8-Sn lattice structure
at compressive stresses greater than 12 GPa [37]. To avoid this
phase transition, we explored strains between —0.03 and 0.03,
as provided in Table II. HLD and ALD -calculations using
in-house codes are performed to obtain phonon frequencies
and lifetimes with force constants obtained from DFPT and
DFT calculations [29]. A norm-conserving pseudo-potential
in the local density approximation is employed in the
plane-wave package QUANTUM ESPRESSO [38]. The total
energy is converged to within 1.6 meV for a Monkhorst-Pack
electronic wave-vector grid of 6x6x6 and a plane-wave
energy cutoff of 80 Ryd. The harmonic force constants are
obtained using DFPT calculations with a phonon wave-vector
grid of 8x8x8 using the primitive (i.e., two-atom) unit cell.
The third-order force constants are obtained using finite
differences of DFT forces on a 64-atom supercell with a cutoff
of third-nearest neighbor. The forces are obtained by applying
displacements of 0.006a to selected atoms. The translational
invariance constraint (i.e., the acoustic sum rule) for the
second- and third-order force constants is enforced using
the Lagrangian approach discussed by Lindsay et al. [39].
For the HLD and ALD calculations, the primitive basis
and a 20x20x20 sampling of the phonon wave-vector grid
are used.

We are studying silicon at a temperature of 300 K, which is
less than half of its Debye temperature of 625 K [32]. Quantum
effects on the heat capacity are important and are included
using Bose-Einstein statistics. The thermal conductivity of
unstrained silicon calculated using lifetimes from an iterative
solution to the Boltzmann transport equation [30] is 151
W/m K and is converged to within 2% for the above choice of
parameters. The experimental value for isotopically enriched
silicon is 158 W/m K [40]. This 5% difference is a large im-
provement over empirical potential-based predictions of ther-
mal conductivity, which can differ from the experimental value
by as much as a factor of six at a temperature of 300 K [41]. All

reported thermal conductivities are from the iterative solution
to the Boltzmann transport equation. For the analysis to follow
in Sec. III B, the lifetimes obtained from the relaxation time
approximation will be used because the iterative lifetimes
have larger noise that makes direct comparison across strains
unfeasible. The relaxation time approximation lifetimes lead
to a thermal conductivity prediction of 147 W/m K, such
that we do not believe that this choice will affect our
conclusions.

III. RESULTS

A. Lennard-Jones argon
1. Thermal conductivity

The strain-dependence of thermal conductivity for LIJ
argon predicted from MD simulations and LD calculations
is presented in Table I and is plotted in Fig. 1. The thermal
conductivities span two orders of magnitude. Because the MD-
based GK method includes all anharmonic effects (compared
to ALD, where we only include up to third-order phonon
scattering effects), kgk is taken as the benchmark. The two
sets of thermal conductivity data follow the same trend:
an exponential decrease when moving from compression
to tension (as evidenced by a straight line on the semilog
plot). This trend for LJ argon at 20 K was also observed by
Bhowmick and Shenoy using the GK method and by Fermi’s
golden rule-based analytical scalings [16]. The difference
between k. p and kg is less than 25% for all strains considered.
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FIG. 1. (Color online) Comparison of LJ argon thermal conduc-
tivities predicted from MD and LD.
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FIG. 2. (Color online) [100] strain-dependent phonon dispersion
for LJ argon.

2. Group velocities and lifetimes

We now seek to understand the thermal conductivity trend
in Fig. 1 by considering the phonon mode properties. The
changes in group velocity can be visualized by considering the
[100] phonon dispersion plotted in Fig. 2 for strains of —0.06,
0, and 0.06. The maximum phonon frequency decreases as
the system moves from compression to tension, causing the
group velocities to decrease. Since the dispersion is calculated
using harmonic force constants, it only captures the harmonic
effect of strain. The phonon lifetimes are plotted in Fig. 3. As
with the group velocities, the lifetimes decrease as the system
moves from compression to tension.

We quantify the mode-level changes by dividing the strain-
and mode-dependent squared group velocities (]v, [?) and
lifetimes by their zero-strain counterparts. The results for
strains of —0.06 and 0.06 are plotted in Figs. 4(a) and 4(b).
The individual mode scalings of squared group velocities

1079
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FIG. 3. (Color online) Strain-dependent phonon lifetimes for LJ
argon.
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FIG. 4. (Color online) LJ argon phonon mode properties normal-
ized by zero strain values for N, = 50: (a) squared group velocity and
(b) lifetime.

[Fig. 4(a)] and lifetimes [Fig. 4(b)] are relatively flat, with
effectively no spectral dependence. The relative change in the
squared group velocities with strain is larger than that of the
lifetimes.

To get a system-level measure of the mode scalings, we
average the normalized properties at each strain. The results
are plotted in Fig. 5. The normalized squared group velocities
and lifetimes both scale exponentially and the least-squares
fits are plotted in Fig. 5 [42]. The exponential constant is
—17 for the squared group velocity and —9 for the lifetime.

LJArgon, T = 20K
1 1 1

1 1 1 1
—0.06 —0.04 —0.02 0 0.02 0.04  0.06
Strain, e

0

FIG. 5. (Color online) Normalized mean lifetimes and mean
squared group velocities for LJ argon for N, = 50. Each data set
is fit to an exponential function (solid lines).
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FIG. 6. (Color online) Strain dependence of silicon thermal
conductivity predicted from first principles.

Therefore the group velocity scaling is exp (—8 &) stronger than
that of the lifetime, making it the dominant factor in thermal
conductivity changes with strain.

B. Silicon
1. Thermal conductivity

The strain-dependence of the thermal conductivity of
silicon predicted from first-principles is plotted in Fig. 6.
Thermal conductivity is relatively constant under compression
and then decreases with increasing tension. This trend is in
contrast to that for LJ argon, where the thermal conductivity
monotonically decreased in moving from compression into
tension (Fig. 1). The overall change in thermal conductivity
is smaller in silicon (~15%) as compared to LJ argon
(two orders of magnitude).

2. Heat capacity, group velocities, and lifetimes

In interpreting the silicon data at the phonon mode level,
we consider changes in heat capacity, squared group velocity,
and lifetime. In Fig. 7, we plot the silicon dispersion. The
maximum frequency decreases as the system moves from
compression into tension, but the difference is less than that
observed in LJ argon (Fig. 2). The stretching of the dispersion
results in a decrease in group velocity under tension with the
exception of the transverse acoustic branch, which reduces in
frequency near the Brillouin zone edge. The silicon lifetimes
plotted in Fig. 8 display an increase of the lifetimes in tension,
opposite to the trend for LJ argon (Fig. 3).

The mode-dependent property normalizations to the zero
strain values are plotted in Figs. 9(a)-9(c). Because the
thermal conductivity of silicon is dominated by low-frequency
acoustic phonons [25,29], we do not include modes with
frequencies past the point where 90% of the thermal con-
ductivity is realized. This choice eliminates modes that do
not meaningfully contribute to the thermal conductivity, but
can show large scatter in the normalizations. The changes
in mode properties with strain are smaller than the changes

PHYSICAL REVIEW B 90, 235201 (2014)
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FIG. 7. (Color online) [100] strain-dependent phonon dispersion
for silicon.

observed in LJ argon, which is consistent with the smaller
changes in thermal conductivity. The heat capacity follows
a predictable scaling from Bose-Einstein statistics. As the
phonon mode’s frequency (i.e., energy) decreases in moving
from compression to tension, its heat capacity decreases. No
trend in the normalized squared group velocities is discernible
from Fig. 9(b). There is an overall reduction of lifetimes with
compressive strain and an overall increase in lifetimes with
tensile strain. The squared group velocities and lifetimes show
more spectral dependence than in LJ argon.

In Fig. 10, we plot the mean values of the normalized
properties versus strain, as plotted in Fig. 5 for LJ argon.
Before performing the average, we exclude any group velocity
normalizations that are greater than a value of five. In doing
so, we eliminate nonphysical values due to the effects of van
Hove singularities (i.e., where the group velocity approaches
zero). The phonon frequencies decrease as the system moves
from compression to tension, and thereby the heat capacity
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FIG. 8. (Color online) Strain-dependent phonon
silicon.
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FIG. 9. (Color online) Silicon phonon mode properties normal-
ized by zero strain values for N, = 20: (a) heat capacity, (b) squared
group velocity, and (c) lifetime.

and squared group velocity also decrease. These changes are
related to harmonic effects. There is an increase in the lifetimes
when moving from compression to tension over the entire
strain range explored, opposite to what is observed in LJ argon.
These competing effects balance in compression, leading to a
constant thermal conductivity. In tension, the heat capacity
and squared group velocity effects dominate, leading to a
decrease in thermal conductivity. Using MD simulations, Li
et al. found a monotonic decrease in the thermal conductivity
of Tersoff silicon in moving from compression to tension. They
attribute this behavior to a reduction in the group velocities and
heat capacities [8]. We note that they explored a larger strain
range (—0.09 to 0.12) and used an empirical potential with the
classical statistics inherent to MD simulation.
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FIG. 10. (Color online) Normalized mean lifetimes, mean
squared group velocities, and mean heat capacities for silicon for
N, = 20.

C. Potential Well
1. Root mean squared displacement

The strain-dependence of the phonon lifetimes is dissimilar
in LJ argon and silicon. In LJ argon, the lifetimes decrease as
the system moves from compression to tension (Figs. 3 and 5),
while in silicon they increase (Figs. 8 and 10). To explore these
opposite trends, we analyze the local potential well felt by
atoms in the two systems. First, the root mean-square (RMS)
displacement is calculated to quantify how much of the unit cell
is explored by an atom. Second, the local potential energy well
is mapped to decompose the potential energy into harmonic
and anharmonic components.

The RMS displacement (|u|?)!/? can be calculated through
MD simulations by time-averaging the positions or from
the harmonic phonon properties using the analytical expres-
sion [43]

1/2
I N (A T W
a2 _ |
(luf?) nNZbe@ o)
3)

Here, u is the displacement of an atom from its equilibrium
position, 7 is the reduced Planck constant, n is the number of
atoms in the unit cell, e( 2) is the component of the eigenvector
for mode (k,v) for atom b in direction o, *(¥ 2) is the complex
conjugate eigenvector component, and f(¥) is the distribution
function.

For the LJ argon crystal, the RMS displacement is calcu-
lated directly using the MD simulations and using Eq. (3). We
use classical-limit value of f({) = kg7 /Aw(}) in Eq. (3) so
as to make the prediction comparable to the MD result. The
value is normalized by the nearest-neighbor distance, a/ ﬁ,
for each strain and the results are plotted in Fig. 11(a). The
RMS displacement for LJ argon from MD is greater than that
calculated from Eq. (3), which we attribute to the inclusion
of the full anharmonicity in the MD simulations. We note
that Turney et al. [22] erroneously included the zero-point
energy in the phonon occupation in Eq. (3) yielding accidental
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FIG. 11. (Color online) Strain-dependent RMS displacements
normalized by the nearest-neighbor distance: (a) LJ argon using
time-averaging of the atomic positions in MD simulation and Eq. (3),
and (b) silicon using Eq. (3).

agreement with MD simulation results. As it is computation-
ally prohibitive to run DFT-driven MD simulations, the RMS
displacement for silicon is calculated only using Eq. (3). The
results, normalized by the nearest-neighbor distance, V3a /4,
are plotted in Fig. 11(b). We use the Bose-Einstein distribution
for the distribution function to be consistent with the thermal
conductivity prediction.

The normalized RMS displacement for LJ argon more
than doubles from compression to tension. The percentage
of the unit cell that is accessible by the atom is reduced in
compression and increased in tension. In silicon, the opposite
trend is observed: the normalized RMS displacement decreases
from compression to tension. Since the atom is only allowed
to displace from equilibrium through the natural energy of the
thermal fluctuations, kg7, the further the atom deviates from
the equilibrium position, the more phonon-phonon scattering
occurs (i.e., the system is more anharmonic). The RMS data for
LJ argon and silicon are therefore consistent with the lifetime
data in Figs. 3, 5, 8, and 10.

2. Potential snergy surface mapping

To further understand the difference in the lifetime trends,
we next performed molecular statics (i.e., single-point energy)
calculations for LJ argon and silicon to map the potential
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energy surface experienced by an atom. A single atom is
displaced in small increments along the [100] direction and
the total potential energy of the system is calculated. This
analysis is performed up to the RMS displacement.

In Figs. 12(a) and 12(b), the displacement energy (i.e.,
the energy minus the zero-displacement energy) is plotted for
LJ argon and silicon. To capture the harmonic part of the
curve, a parabola is fit to the first four displacements and is
plotted over the full range. The curvature of the harmonic
potential decreases in both argon and silicon as the strain
is increased. For both systems, the harmonic curve deviates
from the full potential well as the atom is displaced further
from its equilibrium position, an indication of increasing
anharmonicity. The deviation from the harmonic curve is
smaller in silicon as compared to argon, which is expected
because silicon is stiffer.

We next subtract the harmonic fits from the potential wells
and the results are plotted in Figs. 12(c) and 12(d). For LJ argon
[Fig. 12(c)], the anharmonic contribution is positive for all
strains. The anharmonicity at the RMS displacement increases
as the strain is increased, thereby increasing phonon-phonon
scattering and reducing the lifetimes (Fig. 5). In silicon
[Fig. 12(d)], the anharmonic contribution is negative for all
strains and the greatest amount of anharmonicity (i.e., devia-
tion from the harmonic potential) is felt under compression.
This decreasing anharmonicity from compression to tension
increases the lifetimes (Fig. 10).

In silicon, we observe competing effects between harmonic
(i.e., heat capacity and group velocity) and anharmonic (i.e.,
lifetime) effects. These two effects are thus decoupled and
need not scale together under strain, as seen in LJ argon.
Compression does not just increase the “stiffness”[14], but
can induce positive or negative changes in the anharmonic
contribution to the energy potential. The opposite behaviors
of the LJ argon and silicon systems demonstrate the need
to separately inspect harmonic and anharmonic effects when
interpreting strain-dependent properties.

IV. SUMMARY

We applied atomistic calculations to predict the strain-
dependent phonon properties and thermal conductivities of
LJ argon and silicon. LJ argon undergoes an exponential
decrease in thermal conductivity with increasing strain (Fig. 1).
For silicon, as shown in Fig. 6, the thermal conductivity
remains constant under compressive strain and decreases with
increasing tensile strain.

For LJ argon, the mode-averaged lifetimes and squared
group velocities both decrease exponentially as the system
moves from compression to tension, with the squared group
velocity effect dominating the thermal conductivity (Fig. 5).
For silicon, the squared group velocities decrease from com-
pression to tension, while the lifetimes increase anomalously,
as shown in Fig. 10.

To explain this behavior, we examined the local potential
well. The normalized RMS displacement, plotted in Figs. 11(a)
and 11(b), describes how much anharmonicity is experienced.
In LJ argon, the normalized RMS displacement increases as
strain is increased while for silicon it decreases as strain is
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FIG. 12. (Color online) Potential energy changes for displacement in the [100] direction for multiple strains. (a) LJ argon displacement
energy and harmonic fit. (b) Silicon displacement energy and harmonic fit. (c) LJ argon anharmonic energy. (d) Silicon anharmonic energy.

increased. These trends are consistent with the lifetime trends,
which is physically justified as larger displacements will lead
to more anharmonicity and reduced lifetimes.

We performed molecular statics to map the local potential
well in the [100] direction. As shown in Figs. 12(a) and 12(b),
for LJ argon, the anharmonic contribution increases with
increasing strain, similar to how the harmonic contribution
increases. For silicon, however, the anharmonic contribution
decreases with increasing strain, opposite to the argon trend
[Figs. 12(c) and 12(d)]. Strain can thus affect the anharmonic

contribution to the potential differently than it affects the
harmonic contribution, qualitatively changing the scaling of
the phonon lifetimes.
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