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Three-dimensional strong topological insulators (TIs) guarantee the existence of a two-dimensional (2-D)
conducting surface state which completely covers the surface of the TI. The TI surface state necessarily wraps
around the TI’s top, bottom, and two sidewalls, and is therefore topologically distinct from ordinary 2-D electron
gases (2-DEGs) which are planar. This has several consequences for the magnetoconductivity �σ , a frequently
studied measure of weak antilocalization which is sensitive to the quantum coherence time τφ and to temperature.
We show that conduction on the TI sidewalls systematically reduces �σ , multiplying it by a factor which is always
less than one and decreases in thicker samples. In addition, we present both an analytical formula and numerical
results for the tilted-field magnetoconductivity which has been measured in several experiments. Lastly, we predict
that as the temperature is reduced �σ will enter a wrapped regime where it is sensitive to diffusion processes
which make one or more circuits around the TI. In this wrapped regime the magnetoconductivity’s dependence
on temperature, typically 1/T 2 in 2-DEGs, disappears. We present numerical and analytical predictions for the
wrapped regime at both small and large field strengths. The wrapped regime and topological signatures discussed
here should be visible in the same samples and at the same temperatures where the Altshuler-Aronov-Spivak
(AAS) effect has already been observed, when the measurements are repeated with the magnetic field pointed
perpendicularly to the TI’s top face.
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I. INTRODUCTION

The hallmark of topological insulators (TIs) is metallic
transport on their surfaces, coexisting with and reinforced
by an insulating bulk [1–6]. In diffusive samples where
the scattering length is smaller than the sample size, the
TI surface state’s conductivity is predicted to increase in
the presence of scattering due to a quantum interference
phenomenon called weak antilocalization (WAL) [7–10]. The
weak antilocalization is destroyed if time-reversal symmetry
is broken, so a small perpendicular magnetic field is sufficient
to cause a clear drop in a TI’s conductivity [11,12]. This
negative magnetoconductivity at small fields is both the most
accessible and the most frequently measured signal of weak
antilocalization in TIs. The magnetoconductivity profile has a
universal shape described in Hikami, Larkin, and Nagaoka’s
(HLN’s) celebrated paper, and frequently observation of this
signal is used as a diagnostic determining the presence of
two-dimensional (2-D) surface transport [13].

The HLN formula was derived for a 2-D electron gas
(2-DEG) moving on an infinite plane. In an infinitely extended
TI slab there would be two 2-DEG layers, one on the TI’s
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top and the other on the bottom. If the top and bottom
are decoupled then both the TI’s conductance G and its
conductivity σ = GL/W will simply be twice the HLN result,
while if they are tightly coupled the doubling will be absent.
(L and W are the sample length and width.) This simple
prescription for doubling the HLN magnetoconductivity has
been confirmed by experiments on TI films which varied the
coupling between the top and bottom surfaces [14–16].

This prediction suffers, however, from ignoring the struc-
ture of the topological insulator’s surface state. As illustrated
in Fig. 1, any strong TI sample is completely enfolded by
its surface state, as guaranteed by topological protection. In
particular, the surface state occupies not only the TI’s top
and bottom, but also its sidewalls. All of the TI’s surfaces
are coupled to each other, in contradiction to the simplistic
HLN picture. Therefore the finite TI sample size cannot be
pushed to infinity, and must have an important role in the
magnetoconductivity. The current paper is devoted to a detailed
investigation of the corresponding effects.

We will will start from consideration of a TI surface
state that wraps the entire sample and we will compute the
perpendicular magnetoconductivity including the top, bottom,
and sidewalls. We will show that the sidewalls always cause
a reduction of the conductivity with respect to the prediction
of the HLN formula, because a perpendicular magnetic field
does not destroy quantum interference processes which occur
on the sidewalls. This result will modify the interpretation
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FIG. 1. (Color online) The TI sample geometry and typical
weak antilocalization states. This paper studies a TI sample of
width Lx and height Ly . The conducting topological state com-
pletely wraps and covers the sample. Conduction is along the
z axis, and the magnetic field B is in the x-y plane. “Perpen-
dicular” fields are parallel to the y axis and perpendicular to
the sample’s top face, with θ = 0. “In-plane” fields are parallel
to the x axis, with θ = π/2. We use an r coordinate which
wraps the TI sample’s perimeter, as shown by the arrowed
line making a circuit around the front face. The dashed lines illustrate
three kinds of weak antilocalization states which contribute to
the magnetoconductivity. The Harmonic Oscillator WAL states
execute cyclotron motion on a single face, the Sidewall states execute
plane-wave motion on the sidewalls and reflect off the top and bottom
faces, and the Wrapped states make circuits around the entire TI
perimeter.

of experimental measurements of the magnetoconductivity
signal’s magnitude, which is used as a diagnostic determining
whether a TI sample’s surfaces are strongly coupled.

A more intriguing result occurs when quantum phase
coherence survives long enough to allow a diffusing charge
to make a circuit around the sample, i.e. when the diffusive
coherence length Lφ is comparable to the sample perimeter
Lr . In this regime the magnetoconductivity is dominated
by quantum interference between the paths making one or
more turns around the sample, and the HLN formula must
be completely replaced. In contrast with the HLN formula’s
prediction that the magnetoconductivity is governed by Lφ , in
this wrapped regime the TI magnetoconductivity at low fields
is controlled by the sample width Lx . The most distinctive
signature of this effect is that σ (B) will lose its temperature
dependence, differently from the HLN formula which scales
with T −2. The transition from wrapped to HLN behavior
occurs at a characteristic field strength eBw/� = (4Lxl)−1

where l is the scattering length. It is remarkable that the mag-
netoconductivity, a result of diffusive physics at long length
scales, is sensitive to the small scattering length scale l. This is a
consequence of equipartition of kinetic and potential energy in
each Landau level state, as we will discuss later. The Lr � Lφ

regime discussed here has already been achieved in those
experiments which have used a longitudinal magnetic field to
observe Altshuler-Aronov-Spivak (AAS) oscillations; all that

is needed is to orient the field perpendicularly to the sample and
repeat the magnetoconductivity measurement [17,18]. AAS
oscillations have been reported at T = 2 K in samples with
perimeters Lr as large as 500 nm, indicating that in those
samples Lφ reached or exceeded the same value [19–21].
Another experiment reported that Lφ exceeded 2 microns at
T = 60 mK [22].

We will also report on the case when the magnetic field
is oriented in-plane so that it pierces the TI sidewalls rather
than the top and bottom. All previous theory about the in-plane
magnetoconductivity treated quantum wells where the charge
carriers move freely between the top and bottom surfaces,
or attributed it to the TI surface state’s penetration into or
through the bulk [23–27]. In-plane signals in TIs sometimes
have been attributed to the bulk contribution to conduction in
the TI sample [28,29]. Here we show that the TI sidewalls
are also a natural explanation of in-plane observations in TIs.
In this case the sample height Ly , not the penetration depth
λ, controls the in-plane effect, consistently with at least one
recent experiment [30].

Lastly we report analytical and numerical results on tilted
fields (i.e., when the field orientation makes an arbitrary angle
θ between the perpendicular and in-plane directions). The
corresponding measurements have been used as diagnostics
to confirm that the observed magnetoconductivity is sensitive
only to B cos θ , not B and cos θ separately, as expected
for a 2-D electron gas [14,28,29,31–35]. Most experiments
find good agreement with the 2-D expectation only at small
fields and small angles [28,29,33,35]. Some experiments
have attributed the in-plane signal to the bulk and simply
subtracted it from their results at other angles [28,29], while
one detailed experiment showed that this procedure could
not match observations [31]. Here we present graphs of the
magnetoconductivity corresponding to the tilted field results
that experimentalists might expect to obtain and propose an
approximate interpolating formula.

The structure of this paper is as follows. In Sec. II we will
review the HLN formula for perpendicular fields and several
results for in-plane fields, because these results are widely used
and will be our reference points. Next Sec. III introduces our
model, explains our method for evaluating the magnetocon-
ductivity numerically, and details the important parameters
and length scales. Section IV presents and discusses our
numerical results, and we summarize our conclusions in
Sec. V. The Appendix presents certain analytical results on
the magnetoconductivity.

II. OVERVIEW OF THE RESULTS
FOR 2-D ELECTRON GASES

For magnetic fields perpendicular to a 2-D electron gas, the
Hikami-Larkin-Nagaoka (HLN) formula has proved to give an
adequate description of numerous experimental results. The TI
surface is a spin-1/2 system with strong spin-orbit coupling,
and spin polarization decays very quickly so only the spin
singlet channel participates in diffusive conduction [36]. In
this case the HLN formula reads

σHLN(x)

= σ (B = 0) + α
G0

2π
(ψ(1/2 + El/x) − ψ(1/2 + 1/x)),

(1)
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where G0 = 2e2/h is the conductance quantum, ψ(x) is
the digamma function, and α = 1/2 sets the magnitude.
LB = √

�/2eB is the magnetic length controlling quantum
interference in a magnetic field, and the parameter x =
2L2

φ/L2
B is proportional to the magnetic field strength B.

Lφ = √
Dτφ is the average distance that an electron covers

before dephasing kills the corresponding quantum interference
diagrams, and D is the diffusion constant. τφ is the dephasing
time, which typically scales with T −1 in 2-D diffusive systems
and is sensitive to the dimensionality. The short-wavelength,
high-energy cutoff on quantum interference processes is given
by El = L2

φ/ l2, where l is the scattering length.
At small B (i.e., LB � Lφ) the HLN formula is a quadratic

σHLN ≈ −α G0
2π

x2

24 . It displays a shoulder at LB ∝ Lφ and
transitions to a logarithmically decreasing curve at high fields.
At small fields σHLN is typically proportional to T −2, at large
fields it scales with ln T , and the shoulder occurs at a value of
B which typically scales with T .

Experimental fits to the HLN formula focus on three
parameters:

(i) Many experiments focus on σ (B) at small fields where
it is quadratic. They measure the coefficient b of the quadratic
term, i.e. the coefficient b of σHLN = −α G0

2π
×bB2. The HLN

formula predicts that b = 2e2L4
φ/3�

2.
(ii) Using data at higher fields it is possible to measure the

diffusion length Lφ = √
Dτφ , which determines the position

of the HLN shoulder. Since only τφ and not D depends on
temperature, magnetoconductivity measurements are a good
probe of dephasing and its sources.

(iii) At higher fields one can also measure the magnitude
α. If one plots σ (B) as a function of ln B, one should obtain
a straight line for large B. The slope determines α. The HLN
formula fixes α unambiguously at α = 1/2 for a single 2-DEG
with strong spin-orbit coupling. However experimentally α is
observed to vary continuously in TI samples and to have values
as large as 1 (or even larger [15]), and this has been attributed
to the TI’s top and bottom surfaces.

Several authors have generalized the HLN formula to a
pair of 2-DEGs linked by random (disordered) jumps from
one layer to the other, similarly to an infinite TI slab with
no side surfaces [16,27,37]. This model adds an extra time
scale τc characterizing the average time between interlayer
jumps. Its behavior is strongly dependent on the ratio τc/τφ

and on the coupling length scale Lc = Lφ

√
τc/τφ . The exact

result is the sum of two HLN curves σa and σb. In the
weakly coupled τc/τφ � 1 regime each of the two terms
corresponds to the HLN result of one of the two 2-DEGs;
each 2-DEG contributes independently and additively to
the magnetoconductivity. In the strongly coupled τc/τφ � 1
regime the two terms σa,σb have two distinct values of Lφ

which depend strongly on the both τc and τφ . The two Lφ’s
differ considerably. At small fields LB � Lc either σa or
σb dominates the magnetoconductivity, similarly to a single
2-DEG. Large enough fields disrupt the hopping between the
2-DEGs and restore the magnetoconductivity to a sum of terms
from two independent surfaces. Practically speaking, these
results indicate that at small fields the magnetoconductivity
can be fit well with an HLN curve with variable magnitude
α. At strong coupling and weak fields one will find α = 1/2,
while at either weak coupling or strong fields α = 1.

If we change the magnetic field’s orientation to lie in plane
with the sample (and still perpendicular to the conduction),
we obtain the problem of the in-plane magnetoconductivity.
This signal must be absolutely null in a 2-DEG with zero
depth because there is no magnetic flux through the 2-D plane.
Assuming that the electrons are free to diffuse throughout the
vertical extent of the quantum well, Altshuler and Aronov
published a seminal result which takes into account the
2-DEG’s depth [23]. They studied a dirty film where the
scattering length l is much shorter than the sample thickness
Ly � l and obtained a logarithmic form:

σAA = −α
G0

2π
ln |1 + bB2|, b = e2L2

yL
2
φ/12�

2. (2)

Like the HLN result for perpendicular fields, the AA formula
for in-plane fields is quadratic at small fields and logarithmic at
large fields, and displays a shoulder which transitions between
the two. Unlike HLN, σAA depends on the sample thickness,
is typically proportional to L2

φ ∝ T −1 at small fields, and its
shoulder occurs at a value of B which typically scales with
L

−1/2
φ ∝ T 1/2. Later papers by Dugaev and Khmelnitsky and

by Beenakker and Van Houten showed that these scaling laws
are general to any model where charge moves throughout the
sample interior and the dephasing length Lφ is larger than the
thickness [24,25]. Changing to a cleaner sample where Ly �
l only multiplies b by 3Ly/8l, and changing the boundary
conditions only multiplies b by a numerical constant.

It is straightforward to apply the AA approach to calculate
the effect of the surface state’s penetration into the bulk,
in a half-infinite TI. Tkachov and Hankiewicz reported that
b = 2e2λ2L2

φ/�
2 where λ is the penetration depth [26].

More interestingly, Raichev and Vasilopoulos (RV) calcu-
lated the in-plane magnetoconductivity of a pair of 2-DEGs
with random hopping [27]. This scenario is similar to a
TI with no sides but with some random way for carriers
to jump between the top and bottom surfaces. At strong
coupling τφ/τc � 1 RV obtain an AA-type formula with
b = e2L2

yL
2
φ/4�

2, but at strong enough fields bB2 � τφ/τc the
in-plane magnetoconductivity saturates and becomes constant.
At weak coupling τφ/τc � 1 the magnetoconductivity is
strongly suppressed, and in particular the quadratic coefficient
b at small fields is multiplied by 4

3 (τφ/τc)2.
These results indicate that the coefficient b measured at

small in-plane fields is sensitive to the intersurface hopping τc

and to the temperature τφ ∝ 1/T , and this has been confirmed
experimentally [30]. They also indicate that b is three times
bigger when current moves only on a TI’s top and bottom
surfaces than its value when current moves in the bulk; b can
be used to measure the current distribution within a TI [38].
However these results give little insight into the physics to
be expected from a TI’s side surfaces, and no insight into
topologically induced wrapping around the TI. In particular, is
the coupling from side surfaces a strong coupling, or a weak
coupling?

III. WEAK ANTILOCALIZATION OF A WRAPPED
SURFACE STATE

The focus of our study is weak antilocalization, a quantum
interference process which either adds to or subtracts from
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the probability that a charge will return to its starting point.
One speaks of weak localization or weak antilocalization
depending on the sign of the quantum correction to the
return probability. On a TI surface the return probability
is decreased, the conductivity increases, and this is called
weak antilocalization. This is caused by the strong spin-orbit
coupling found in TIs. In materials without a strong spin-
orbit coupling one obtains the opposite effect, a decreasing
conductivity called weak localization. The essential reason
is that conduction is a long-distance phenomenon, and that
the spin singlet channel and the three spin triplet channels
contribute with opposite signs to the quantum interference
diagrams. In materials with weak spin-orbit coupling both the
spin singlet and the spin triplet persist over long distances, the
three spin triplet channels win, and the net effect is an increased
return probability. In contrast, it has been established both
theoretically and experimentally that in TIs the spin relaxation
length is very short [14,31,36]. Therefore only the spin singlet
contributes to quantum interference, producing a decreased
return probability and weak antilocalization.

The absence of long-distance spin physics also allows
us to neglect the Zeeman energy, which ordinarily would
mix the triplet channel with the singlet channel and thus
destroy the weak antilocalization signal which is the focus
of our paper [39]. It is also known that Coulomb interactions
combined with the Zeeman energy cause additional changes
to weak antilocalization [40,41]. Fortunately both theory and
experiment also verify that these effects disappear when
the spin decay time is very short, as is the case on a TI
surface [14,31,40–42]. In conclusion, the physics of weak
antilocalization on the surface of a TI, because it concerns
only long length scales, is entirely determined by diffusion
of the spin singlet. In particular, spin triplet diffusion does
not need to be modeled, and the effect of interactions on
weak antilocalization can be neglected [43]. At the long
distance scales which concern us the only net effects of the
TI’s spin-orbit coupling are to destroy the spin polarization and
reverse the overall sign of the quantum corrections. Therefore
we will model only the singlet channel of quantum interference
in a magnetic field.

In the diffusive regime, after many scatterings, the quantum
correction to the conductivity at a position �x is equal to

σWAL(B,�x) = G0
Dτ

�0
〈�x|�(B)|�x〉,

�(B) = �0(τ/τφ − Dτ ( �∇ − ı2e �A/�)2)−1, (3)

where �0 = (2πντ )−1 describes the scattering strength and
scatterer density, ν is the density of states, τ is the scattering
time, and �A is the gauge field associated with the magnetic
field [13,16,44,45].1

The mathematical content of this formula is very simple—it
simply calculates the return probability of a particle that

1If we had included the three spin triplet states in our calculation of
σWAL, then �(B) would be a 4×4 operator acting on the space of spin
singlet and spin triplet states, and σWAL would be determined by �’s
trace. Because the spin triplet has short decay times, its contribution
to �(B)’s trace is small.

starts at �x and executes a random walk in a magnetic field
�B = �∇× �A. The result of many scatterings is diffusion, which
is described by the diffusion kernel Dτ ( �∇ − ı2e �A/�)2. The
additive constant τ/τφ describes gradual extinction of the
random walker at the dephasing time scale τφ , and the
matrix element 〈�x|�(B)|�x〉 extracts the random walker’s return
probability. A last detail is left implicit in our formula: an
ultraviolet cutoff at the scattering length l. We are concerned
with random walks with an average step length l, so we exclude
length scales smaller than l and energy scales higher than
El = L2

φ/ l2.
The only tricky issue here is the identity of the random

walker. It is not electronic charge, as can be seen from the factor
of 2e – not e – which multiplies the gauge potential. Instead
it is the Cooperon, a disorder-induced correlation between
the electron wave-function ψ and its complex conjugate ψ†,
which is completely responsible for both weak localization
and weak antilocalization. The correlation in question here is
of a very special nature: the Cooperon describes correlations
where on one hand ψ executes random walks, while on the
other hand ψ† executes time-reversed copies of the same
random walks. For this reason the Cooperon can not be reduced
to classical physics; it is a distinctly quantum phenomenon.
For the same reason the Cooperon is extremely sensitive to
anything which breaks time-reversal symmetry, which is why
weak antilocalization has such a distinctive signal at small
magnetic fields.

σWAL(B,�x) is an inherently position-sensitive quantity,
describing the quantum probability of returning to point �x. It is
sensitive to the device geometry and also to spatial variations in
the diffusion constant, dephasing time, and magnetic field. In
previous works on quantum wells such spatial dependence has
been neglected because the quantum well’s geometry is well
approximated by an infinite plane with translational invariance.
Here we consider TIs, where the conduction occurs on a
surface which always completely wraps the TI bulk. Therefore
we must track explicitly spatial variations in σWAL(B,�x). The
dominant source of these variations is changes in the amount of
magnetic flux piercing the surface. We will neglect subleading
effects, such as the sensitivity of the surface state dispersion
to the crystallographic orientation of the TI surface [46,47].
Variations in the diffusion constant and dephasing time,
whether within the TI’s surfaces or when crossing the edges
between surfaces, are outside the scope of this paper, and we
will fix these constants to spatially uniform values.

The experimental observable that has been measured widely
is not the local conductivity σWAL(B,�x), but instead the global
conductivity σ = GL/W of the TI device. In the diffusive
regime where electrons diffuse freely around the TI surface,
the global conductivity is equal to the spatial average of
σWAL(B,�x), which will be our focus:

〈σWAL(B)〉 = G0L
2
φ

∫
d2 �x
LrLz

〈�x|�̃(B)|�x〉,

�̃(B) = (−L2
φ ( �∇ − ı2e �A/�)2 + 1

)−1
. (4)

The d2 �x integral covers the entire surface of the TI sample. Lr

is the sample’s perimeter and Lz is its length, so LrLz is the
surface area.
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We note immediately that because the Cooperon kernel is
diffusive, and because a decay term equal to 1 is added to
−L2

φ
�∇2, the Cooperon decays exponentially at the dephasing

length Lφ . Therefore weak antilocalization is not sensitive
to the TI surface’s wrapping around the sample, unless the
perimeter Lr is either comparable to or smaller than Lφ . This
same condition regulates the existence of Altshuler-Aronov-
Spivak (AAS) oscillations, another weak antilocalization
signal which occurs when the magnetic field is oriented
longitudinally with the axis of conduction.

A. Reduction to a one-dimensional problem

In a magnetic field a charged particle executes circular
motion around a slowly moving point called the guiding center
that drifts in response to external forces. In our problem there
are no forces other than the magnetic force, so the guiding
center’s momentum is conserved. We take advantage of this
and choose a gauge potential which preserves translational
invariance along the ẑ axis of conduction. This technique
effectively solves the guiding center’s motion. We choose a
gauge potential �A = Azẑ that is aligned with the ẑ axis. We
restrict it to depend only on r , the coordinate which wraps
around the TI surface. These choices simplify the Laplacian
to ( �∇ − ı2e �A/�)2 = −[kz − 2eAz(r)/�]2 + (∂/∂r )2. We have
preserved translational invariance along the ẑ axis and there-
fore can resolve the Cooperon with the z momentum kz. A
simple exercise obtains the equations which we will use for
our numerical calculations:

〈σWAL(B)〉 = G0

4π
x

∫
dRg

Lr

∫
dr

〈r|(V (r,Rg) − L2
φ(∂/∂r )2 + 1

)−1|r〉

= G0

4π
x

∫
dRg

Lr

Tr (A−1 )

= G0

4π
x

∫
dRg

Lr

Ei<El∑
i

E−1
i ,

Ei |i〉 = A|i〉, (5)

A = V (r,Rg) − L2
φ(∂/∂r )2 + 1,

V (r,Rg) = (
x2

/
4L2

φ

)
(R(r) − Rg)2,

R(r) = −2eAz(r)L2
B

/
�,

Rg = −L2
Bkz.

Here and elsewhere x = 2L2
φ/L2

B is a dimensionless variable
that is proportional to the magnetic-field strength B. We
now have an integral over the guiding center’s longitudinal
momentum kz, which is linearly related to Rg = −L2

Bkz, the
guiding center’s equilibrium position on the r coordinate
which parametrizes the TI’s perimeter. For each particular
value of Rg ∝ kz we must solve a 1-D Schrodinger equation
Ei |i〉 = A|i〉 = (V (r,Rg) − L2

φ(∂/∂r )2 + 1)|i〉 describing the
problem of cyclotron motion in the TI’s magnetic field.

In the limit of an infinitely wide 2-D surface with no
boundaries or sidewalls, the potential V (r,Rg) in Eq. (5)
is quadratic, and the eigenvalue problem Ei |i〉 = A|i〉 maps
exactly to the Landau level problem. The energies are Ei =
(i + 1/2)ωC + 1 where ωC = 2L2

φ/L2
B = x is the cyclotron

frequency of the Cooperon. Equation (5)’s sum over the
equally spaced Landau level energies Ei can be summed
analytically, producing the HLN formula found in Eq. (1).

In a TI with top and bottom surfaces and sidewalls the
potential V (r,Rg) is not a simple quadratic, which will force
us to use numerical not analytical methods to evaluate Eq. (5).
If the TI sample’s height and width are Ly,Lx respectively and
the magnetic field is aligned at an angle θ with respect to the
y axis which lies normal to the TI’s top and bottom surfaces,
then the R(r) function figuring in the potential is

R(r) =

⎧⎪⎨
⎪⎩

(r − Lx/2) cos θ − (Ly/2) sin θ, 0 < r < Lx,

(Lx/2) cos θ + (r − Lx − Ly/2) sin θ, Lx < r < Lx + Ly,

(−r + 3Lx/2 + Ly) cos θ + (Ly/2) sin θ, Lx + Ly < r < 2Lx + Ly,

−(Lx/2) cos θ + (−r + 2Lx + 3Ly/2) sin θ, 2Lx + Ly < r < 2Lx + 2Ly.

The second moment of R(r) is

〈R2(r)〉 = (Lx/3 + Ly)L2
x cos2 θ + (Lx + Ly/3)L2

y sin2 θ

4(Lx + Ly)
. (6)

On each surface we have a quadratic potential V (r,Rg) =
(x2/4L2

φ)(R(r) − Rg)2 with minima located at Rg . This poten-
tial describes the fact that eigenstates are constrained to orbit
Rg . A state with energy E has cyclotron radius (2Lφ/x)

√
E,

and decays exponentially outside that radius. The largest
permitted cyclotron radius is determined by the ultraviolet
cutoff El = L2

φ/ l2, is equal to δR = L2
B/l = 2L2

φ/lx, and
scales with B−1.

Since R(r)’s range is limited to the interval [−(Lx | cos θ | +
Ly | sin θ |)/2, + (Lx | cos θ | + Ly | sin θ |)/2], we can set Rg’s
limits of integration at ±((Lx | cos θ | + Ly | sin θ |)/2 + δR).

B. Classification of Cooperon eigenstates

Equation (5)’s structure, which is centered on a Schrodinger
equation Ei |i〉 = A|i〉 with a non-uniform potential, indicates
that the eigenstates |i〉 are crucial to determining the magneto-
conductivity. These are not electron states. They are eigenstates
of the Cooperon operator, the diffusive operator which controls
the interference diagrams that cause weak antilocalization. We
can immediately distinguish four types of Cooperon eigen-
states by comparing their eigenvalues Ei to the maximum value
of the potential, which is Vmax(kz) = L2

φ((Lx/2L2
B)| cos θ | +
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FIG. 2. (Color online) The potential and the Cooperon eigen-
states. The grey dashed lines sketch the potential V (r,Rg) as a function
of the coordinate r which wraps around the TI sample. El = L2

φ/ l2

represents the ultraviolet cutoff. The orange wavy lines illustrate
typical Harmonic Oscillator, Sidewall, and Wrapped states. Pane (a)
illustrates a strong magnetic field with Rg = Lx/2 positioned in the
middle of the top face; all states are Harmonic Oscillator (H.O.)
states centered at Rg . Pane (b) illustrates a strong magnetic field with
Rg = 0.8 Lx near the Sidewall, allowing some Sidewall states. Pane
(c) illustrates a weaker field inside the wrapping transition, allowing
Wrapped states. Pane (d) illustrates a very weak field where all states
wrap the TI.

(Ly/2L2
B)| sin θ | + |kz|)2. We illustrate these four types of

states in Fig. 2. They are:
(1) Wrapped states. If the energy Ei is large enough that

it exceeds Vmax, then the state wraps around the entire TI
nanowire.

(2) Harmonic Oscillator states. If the energy Ei is smaller
than Vmax, AND if E = Ei intersects the potential at two points
on the same face of the TI, then the state is trapped on that
face and executes cyclotron motion there.

(3) Sidewall states. If the energy is smaller than Vmax, AND
if E = Ei intersects the potential on two opposite faces of the
TI (for example the top and bottom), then the state is spread
across three faces of the TI. We focus on the particular case
where the magnetic field B is perpendicular to the TI top
surface; in this case the state moves as a plane wave on one of
the TI’s sidewalls and penetrates only a small distance into the
top and bottom faces, where it executes cyclotron motion. We
call this a sidewall state.

(4) Edge states. If the energy is smaller than Vmax, AND if
E = Ei intersects the potential on two adjacent faces of the
TI, then the state is trapped at the corner between those two
faces; it is an edge state. This type of state occurs only when
the magnetic field is at an angle relative to perpendicular, i.e.,
when θ �= 0.

C. Numerical implementation

All of our numerical results in the next section were
obtained by numerically evaluating Eq. (5). Our numerical
implementation is straightforward. We evaluate −L2

φ(∂/∂r )2

by discretizing on a lattice in position space with lattice spacing
a; we obtain −L2

φ(∂/∂r )2 = 4L2
φ sin2(kra/2)/a2. We choose

a = l
√

2, so the maximum value of the kinetic term is 2El .
The finite lattice spacing does introduce certain numerical
errors, but these have no physical significance because they just
slightly redefine the high-momentum cutoff at El = L2

φ/ l2.
To obtain a numerically efficient calculation we cap the

potential at 2El , so that the spectrum is bounded above at
about 4El . For safety we take the upper bound as 4.1 El .

Numerically we implement the ultraviolet El = L2
φ/ l2

cutoff using this formula:

Tr (A−1) = Tr (D/A), D = 1
2 (1 − tanh((A − El)/δ)).

The operatorD is just a smoothed step function. δ sets the width
of the energy cutoff, which is centered around El = L2

φ/ l2.
The tanh function inside of D is approximated by a Chebyshev
polynomial, and we choose δ to match the polynomial’s order
K; δ ≈ 4El/K . We have checked that all of our results have
converged with respect to K .

We discretize the Rg integral on a grid with 2Nz + 1 points
and check for convergence with respect to Nz. Generally
speaking, convergence occurs very quickly once Nz reaches a
threshold value that is proportional to the sample perimeter Lr .

D. Important length scales and parameters

Our model has the following parameters:
(i) Lφ = √

Dτφ , the dephasing length which regulates the
Cooperon decay. This is the length that a particle can diffuse
before dephasing occurs. In diffusive 2-D systems τφ scales
inversely with temperature T , so Lφ ∝ T −1/2.

(ii) Lx , Ly , and Lr = 2Lx + 2Ly , the sample width, height,
and perimeter. We will show that when these scales are long
compared to Lφ the HLN result is, at leading order, simply
reduced by a factor of 2Lx/Lr .

(iii) l, the scattering length, which determines the
Cooperon’s ultraviolet cutoff El = L2

φ/ l2.
(iv) θ , the angle of the magnetic field.
(v) B, the magnetic field strength. Instead of B we will

usually discuss the dimensionless variable x = 2L2
φ/L2

B =
4eL2

φB/�, which is proportional to B. Our model gives
spurious results when B is strong enough that the cyclotron
radius is near the scattering length. Practically speaking, this
occurs when x/El = 2l2/L2

B > [0.3,1].
(vi) δR = L2

B/l = 2L2
φ/ lx, the cyclotron radius of the

highest Landau levels at energies near the ultraviolet cutoff El .

IV. RESULTS

A. Geometric factor at large B

A TI sample’s sidewalls are not pierced by a magnetic flux
when the magnetic field is perpendicular to the sample’s top
and bottom faces. Therefore quantum interference diagrams
occurring only on the sidewalls are completely unaffected
by the magnetic field. This reduces the sample’s average
magnetoconductivity, as compared to a simple TI model
without sidewalls.

The magnetoconductivity including sidewalls is, in the most
general case, difficult to compute because some interference
diagrams visit both the sidewalls and the sample top and
bottom, and this computation is the main focus of this paper.
However a simpler case exists which is relevant to most TI
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FIG. 3. (Color online) The TI average magnetoconductivity
〈σWAL(B)〉 is reduced by the TI sidewalls. The solid lines plot
〈σWAL(B)〉 as a function 2Lx/Lr , where Lx is the sample width and
Lr is the sample perimeter. The four lines, from top to bottom, hold
the magnetic field fixed at L2

B = [1.25,2.5,5,10]L2
φ . The coherence

length is much smaller than the sample perimeter. The dashed lines
are linear fits to the data, and their excellent agreement with the
data at 2Lx/Lr < 0.5 demonstrates that sidewalls multiply the HLN
conductivity by 2Lx/Lr . The deviation from linearity in thin samples
shows that even in infinitely thin samples the conductivity is less than
the HLN prediction because the top and bottom are coupled at the
TI’s sides.

weak antilocalization experiments, where the decoherence
length Lφ is small compared to the sample height Ly and
width Lx . In these experiments only a small fraction of the
quantum interference involves two or more of the sample’s
faces, and the following result is easily derived:

〈σWAL(B)〉 = 2Lx

Lr

σHLN(x) + O(Lφ/Lx) + O(Lφ/Ly). (7)

σHLN(x) is the HLN conductivity of two separate TI surfaces.
The point is simple: the HLN conductivity is multiplied by a
factor of 2Lx/Lr < 1. Figure 3 confirms this result by plotting
the magnetoconductivity in samples of fixed width Lx = 10, as
the sample height Ly is varied from 30 to 0. The magnetic field
strength is kept fixed at four values L2

B = [1.25, 2.5, 5, 10],
the dephasing length is Lφ = 5, and the scattering length is
l = 0.5. When the sample is of height Ly = 30 we expect
to obtain 0.25 σHLN(x), while in an infinitely thin sample we
expect the unmodified HLN result, and we expect a linear
dependence on 2Lx/Lr in intermediate cases.

Figure 3 shows our numerical results, which were obtained
by evaluating Eq. (5). They confirm Eq. (7) when 2Lx/Lr<0.5,
i.e. when the sample thickness Ly is large enough to exceed
two decoherence lengths Ly > 2Lφ . In thinner samples with
Ly < 2Lφ Fig. 3 reveals that our linear formula overestimates
the magnetoconductivity. In other words, even in infinitely thin
samples with no sidewalls the magnetoconductivity is always
less than the HLN result. We expect this undershoot in the thin
limit to be proportional to Lφ/Lx .
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FIG. 4. (Color online) The wrapping transition. Panel (a) shows
the magnetoconductivity 〈σWAL(B)〉 as a function of x ∝ B ∝ L−2

B .
The four lines are for four sample widths, from left to right Lx =
[0.8,0.4,0.2,0.1]Lφ . The HLN curve is plotted in black. At high
fields the data matches logarithms similar to the HLN curve, seen as
straight lines on this semilog plot. At x = 4L2

φ/Lxl the data departs
from a logarithm because Cooperon eigenstates begin to wrap around
the TI sample, becoming sensitive to its topology. Panel (b) shows
the same data on a log-log plot. The small-field data match well to
quadratic curves, seen here as straight lines, and are controlled entirely
by wrapped states. The small-field regime ends at L2

B < L2
x/2, when

the potential becomes strong enough to cause bound states.

These results apply only when Lφ is small compared to
the sample size. We also have studied smaller samples, and
confirmed that the linear scaling disappears.

In conclusion, at small Lφ a TI with sidewalls will
never attain the HLN prediction. In thin samples the real
conductivity will reduced by a term of order Lφ/Lx ,
while in thicker samples the HLN result will be multiplied
2Lx/Lr . This result will be of considerable interest to WAL
experiments where the magnetoconductivity’s magnitude has
been used to count the number of independent conducting
2-D channels and to analyze the coupling strength between a
TI’s top and bottom surfaces.

B. The regime of wrapped Cooperon states

We now turn toward systems whose perimeter Lr is
comparable to or smaller than the dephasing length Lφ ,
bringing weak antilocalization into a regime that is sensitive
to each of the TI’s faces. Figure 4(a) shows our results for the
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magnetoconductivity 〈σWAL(x)〉 as a function of the dimen-
sionless parameter x, which is proportional to B. Here we treat
the simple case of thin samples with height Ly = 0, and we
will discuss thicker samples later. The scattering length is l =
Lφ/100. The black line on the left of Fig. 4(a) is the HLN curve,
which is realized in samples with width Lx far exceeding Lφ .
Moving to the right, the solid curves with symbols show suc-
cessively samples with widths Lx = [0.8,0.4,0.2,0.1]Lφ . The
main qualitative features are immediately clear: in finite sam-
ples the sensitivity to magnetic field is reduced, and the HLN
curve’s shoulder at x ≈ 1 is replaced by a structure that moves
steadily to higher magnetic fields as the sample size decreases.
Attempts to fit this magnetoconductivity to the HLN curve will
obtain a value of Lφ which is reduced by a large multiplicative
factor controlled by the sample width Lx . The fitted value of
Lφ will be proportional to Lx , not to the much larger value
of Lφ .

Key to these results is the radius of cyclotron orbits, because
this length scale limits exploration of the TI perimeter. The
cyclotron radius is larger for higher excited states, and is δR =
L2

B/l at the ultraviolet cutoff El = L2
φ/ l2. At high fields δR

becomes so small that states are unable to cross between faces,
and we obtain the modified HLN formula 2Lx

Lr
σHLN(x), which

is proportional to ln x. Therefore at high fields we always
obtain the HLN logarithm. This is confirmed by the high-
field sector (right side) of Fig. 4(a). In this semilog plot all
five curves are linear at large B, matching nicely the straight
lines. This linear behavior on our semilog plot shows that the
conductivity increases logarithmically with the system size,
exactly as predicted by the HLN formula.

The HLN logarithm terminates at small fields where LB ∝
Lφ, x ∝ 1, and transitions into quadratic behavior. Figure 4(a)
shows that a TI sample begins to deviate from HLN logarithmic
behavior at far larger field strengths. The deviation begins with
a wrapping transition, where the cyclotron radius becomes
large enough to allow states to completely wrap the TI
sample. Comparison of the magnetic potential V (r,Rg) with
the ultraviolet cutoff at El = L2

φ/ l2 indicates that the highest
energy states start to wrap the sample when Lx | cos θ | +
Ly | sin θ | = 2δR, which in a perpendicular field simplifies
to L2

B = Lxl/2. This is confirmed by our numerical results
shown in Fig. 4(a). The wrapping formula predicts that the
wrapping transition is at x = [500,1000,2000,4000] for the
W = [0.8,0.4,0.2,0.1]Lφ samples. For the right-most line
(W = 0.1 Lφ) the predicted transition value x = 4000 puts
LB too close to the scattering length l to obtain good accuracy,
and the wrapping transition is hard to pin down. However the
three other lines at W = [0.8,0.4,0.2]Lφ show clear wrapping
transitions. The arrows highlight the points where the numer-
ical data show clear wrapping transitions, and these points
agree very well with our wrapping formula, L2

B = Lxl/2.
It is an amazing fact that the wrapping transition is

controlled by two very disparate length scales: the scattering
length l, and the system width Lx .2 This is a consequence
of the equipartition of energy between kinetic and potential

2The sensitivity to the system width was known to Altshuler and
Sharvin, who included it in their calculation of the effect of a small
perpendicular field on AAS oscillations [18,52].

energy. In the Landau level problem the potential energy is
L2

φ〈r2〉/2L4
B and the kinetic energy is L2

φ〈k2〉/2, where k is
the wave number and r is the radius. Setting the two equal,
we obtain 〈k2〉 = 〈r2〉/L4

B . This evidences the linear relation
between a state’s momentum and radius, which is a special
feature of the Landau level problem. In other words, states with
large spatial extension also have large momenta; their spatial
oscillations are faster. This is why the wrapping transition
is sensitive to the scattering length. A change in scattering
length translates directly to a corresponding change in the
state’s maximum spatial extent, which never exceeds L2

B/l.
Comparing the state’s extent to Lx/2, we recover the equation
for the wrapping transition, L2

B = Lxl/2.
The wrapping transition can be observed only if it occurs at

a field strength which significantly exceeds the HLN shoulder
at LB = Lφ , i.e. if Lxl/2 < L2

φ . Using L2
φ = Dτφ = lvF τφ/2,

this condition simplifies to Lx < vF τφ , where vF is the Fermi
velocity. In other words, the wrapping transition occurs only
when the width Lx is smaller than vF τφ , the length that the
electron can move ballistically before dephasing. This formula
is very remarkable, for it reveals a ballistic scale deep in the
diffusive regime.

C. Inside the wrapping transition

Figure 4(b) focuses on the region inside the wrapping
transition. It shows the same data as Fig. 4(a), but in a
log-log format which accentuates small values of the mag-
netoconductivity and reveals a straight line when the signal
follows a power law. We can distinguish two regimes inside
the wrapping transition. First we discuss small fields, where
we have plotted quadratic curves as straight lines without
symbols. The quadratic lines coincide very nicely with the
signal, which is always quadratic at small magnetic field.
The range of quadratic behavior is very roughly x < 4L2

φ/L2
x ,

which corresponds to values of the magnetic length L2
B

exceeding L2
x/2. In this regime the magnetic field is not strong

enough to create Cooperon bound states, and all Cooperon
states wrap around the sample. The observed quadratic signal
is similar to the HLN formula’s quadratic regime where
〈�σWAL(x)〉 = x2/24 when LB exceeds Lφ , but here the signal
is much weaker and extends to much larger field strengths.

Simple dimensional analysis shows that in the quadratic re-
gion where 〈�σWAL(x)〉 ∝ B2 ∝ L−4

B , the magnetoconductiv-
ity must contain some length scale to the fourth power, to com-
pensate for B2 ∝ L−4

B . In the HLN formula we have L4
φ/L4

B ,
while the in-plane magnetoconductivity is proportional to
L2

yL
2
φ/L4

B . Our data in Fig. 4(b) completely exclude either type
of scaling in the wrapped regime. HLN scaling would produce
an extra feature at x = 1, while scaling with L2

xL
2
φ/L4

B would
produce features at values of x = [2.5,5,10,20]. Both types
of scaling are absent. Moreover, our analysis of the weak-field
data in Fig. 4(b) at four values of the sample width Lx indicates
that the conductivity here is scaling with L3.5

x , and suggests
that the conductivity scales as 〈�σWAL(x)〉 ∝ L3.5

x L0.5
φ L−4

B . We
conclude that the conductivity’s dependence on Lφ is strongly
suppressed, and we will discuss this further in the next section.

In addition to the quadratic regime governed by wrapped
states, Fig. 4(b) shows also an intermediate regime lying
between the quadratic region at L2

B ≈ L2
x/2 and the wrapping

235148-8



TOPOLOGICAL EFFECTS ON THE MAGNETOCONDUCTIVITY . . . PHYSICAL REVIEW B 90, 235148 (2014)

transition at L2
B = Lxl/2. Here the low energy Cooperon

states do not make a full circuit around the TI, and remain
restricted to one, two, or three faces. Therefore the signal
includes contributions not only from wrapped states, but also
from the harmonic oscillator, sidewall, and (in tilted fields)
edge states which we have discussed earlier. We analyze
the harmonic oscillator and wrapped contributions in the
Appendix. Since this intermediate regime interpolates between
the quadratic signal seen at weak fields and the HLN logarithm
at strong fields, in this regime the magnetoconductivity will
look roughly linear.

D. Suppression of sensitivity to Lφ and to temperature
inside the wrapping transition

The HLN formula is based on the assumption that the
Cooperon is able to travel a distance Lφ , where Lφ is
associated with quantum decoherence and typically scales with
Lφ ∝ T −1/2 in 2-D diffusive systems. In this paper we concern
ourselves with wires that are smaller than Lφ , so that states
are able to wrap around the wire’s perimeter. In this scenario
the perimeter Lr provides the fundamental upper limit on the
Cooperon’s travel distance, and its dependence on Lφ and on
T are suppressed.

Mathematically, the mechanism by which the Lφ depen-
dence is suppressed in small samples originates with the level
spacing of the eigenvalues of the Cooperon diffusion operator.
At B = 0 the energy levels are L2

φk2
r = n2

r (2πLφ/Lr )2, with
a level spacing of order (2πLφ/Lr )2. This quantity should be
added to the 1 in the diffusion operator. Therefore we adopt the
following prescription for small samples: we replace L2

φ with a

new length scale L2
φr , given by L−2

φr = L−2
φ + (Lr/2π )−2. This

change of course does not affect the ultraviolet cutoff, which
remains El = L2

φ/ l2. The net effect is that in small samples
Lφ should be replaced by Lr/2π which is independent of
temperature, and in larger samples we use Lφr which retains
some weakened temperature dependence.

In Sec. 1 of the Appendix we perform an analytical analysis
of the quadratic regime, which is governed by wrapped
Cooperon states. We find that in this regime the conductivity
is governed by two dimensionless constants. The first constant
γ is determined by semiclassical considerations and is equal
to γ = 〈R2(r)〉 L2

φr/L
4
B , where 〈R2(r)〉 is the second moment

of R(r) and is given in Eq. (6). γ scales with temperature as
γ ∝ L2

φr ; it is independent of temperature in small samples and
scales with 1/T in large samples. The second dimensionless
constant is λ4/L4

B , where λ � Lr is an explicitly quantum
quantity that is independent of both Lφr and temperature T .
λ4/L4

B is difficult to compute analytically. It is never signifi-
cantly greater than γ , and may be considerably smaller than γ .

If we omit λ4/L4
B from our considerations, we obtain

Eq. (A3) for the magnetoconductivity, which we repeat here:

〈�σWAL(B)〉 = −G0

4π
ln |1 + γ |, γ = L2

φr〈R2(r)〉
L4

B

. (8)

This allows us to reach some conclusions about the quadratic
coefficient b which controls the conductivity at small fields
via 〈�σWAL(B)〉 = −(G0/4π ) bB2. The HLN formula, which
applies in large samples with large magnetic fields outside
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FIG. 5. (Color online) Suppression of sensitivity to the dephas-
ing length Lφ and the temperature T . We plot the magnetocon-
ductivity 〈σWAL〉 as a function of L2

φ , the square of the dephasing
length, which is inversely proportional to the temperature T .
We keep the magnetic-field strength fixed at five values L2

B =
[0.01,0.1,1,10,100]L2

x . On this logarithmic graph the dashed lines
show the scaling predicted by the HLN formula, σ ∝ L4

φ ∝ 1/T 2, and
match the conductivity when the coherence length is small Lφ � Lx

and the magnetic field is also small. When the coherence length is
large (on the right side of the graph) the HLN formula fails and σ is
independent of both Lφ and T .

the wrapping transition, gives b = 2e2L4
φ/3�

2 ∝ 1/T 2. In
contrast, inside the wrapping transition we find that

b ∝ 4e2

�2
〈R2(r)〉 L2

φr . (9)

This b scales with L2
rL

2
φ ∝ 1/T in samples that are much

larger than Lφ . As Lφ is increased and surpasses the sample
dimensions, the dependence on Lφ and temperature T are
suppressed, and σ becomes completely independent of these
quantities. It scales instead with the sample dimension –
b ∝ L4

r – in samples that are small compared to Lφ . Figure 5
illustrates this effect at five values of the magnetic field strength
corresponding to cyclotron radii LB which are smaller than,
equal to, and greater than the sample size Lx . The lower
curves in Fig. 5 show weak fields, i.e. LB � Lx , where the
magnetoconductivity is quadratic in B. Along the x axis we
vary the ratio of Lφ to the sample size. On the left side of Fig. 5
Lφ is small and our numerical results match well to the HLN
σ ∝ L4

φ ∝ 1/T 2 curves. As Lφ is increased our numerical
curves progressively depart from the HLN prediction. At
Lφ � Lx the conductivity is roughly constant with respect
to Lφ ; the temperature dependence is completely suppressed.

This effect will be easy to measure experimentally by
reducing the temperature while keeping the magnetic field
constant. It will manifest itself as a plateau in the magneto-
conductivity at low temperatures where the dephasing length
becomes comparable to the sample size.

E. Changes in the sample height L y

Our previous results concerned infinitely thin TI samples.
This geometry is a good approximation to thin films, which
often have a width of microns and a depth of tens of
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FIG. 6. (Color online) The effect of sample height. We plot the
magnetoconductivity 〈σWAL(x)〉 as a function of x ∝ B at three
aspect ratios Ly = [0,Lx,2Lx], signaled by unbroken lines, short
dashes, and long dashes respectively. We show samples with width
Lx = [0.8,0.4,0.2,0.1]Lφ . Inside the wrapping transition 〈σWAL(x)〉
increases when Lx increases, while the trend is reversed at large fields.

nanometers. Here we examine the magnetoconductivity of
thicker samples. The unbroken lines in Fig. 6 show the zero-
thickness results presented earlier, the lines with short dashes
show square samples with height equal to width Ly = Lx , and
the lines with long dashes show samples where the height is
twice the width Ly = 2Lx .

Outside of the wrapping transition, at large fields, increas-
ing the sample height causes the magnetoconductivity to de-
crease. This is caused by the 2Lx/Lr multiplier which we have
discussed earlier. While this multiplier is not accurate in small
samples where Lr � Lφ , it does become important when the
sample height is increased, because the perimeter grows with
sample height and eventually exceeds the dephasing length.

Inside the wrapping transition, at small fields, the trend
reverses; increasing the sample height causes 〈σWAL(B)〉 to
increase. Consistently with this, the wrapping transition moves
to smaller field strengths. This is an interesting signal of the
TI’s topology—if there were no transport along the sidewalls
then the dependence on Ly would be precisely null.

Quantitatively, the weak-field conductivity of an
Lx×Ly = 0.1 Lφ×0.1 Lφ sample is a factor of 5.5 larger
than that of an Lx×Ly = 0.1 Lφ×0 sample. When the height
is doubled to Ly = 0.2 Lφ , the conductivity is multiplied by
an additional factor of 2.3. This Lx×Ly = 0.1 Lφ×0.2 Lφ

conductivity actually exceeds that of a wider but thinner
Lx×Ly = 0.2 Lφ×0 sample.

This effect and its sign can be understood analytically in
terms of the coefficient b which controls the conductivity at
small fields, which we reported earlier:

b ∝ 4e2

�2
〈R2(r)〉 L2

φr . (10)

If the coherence length is much larger than the sample size
Lr/Lφ � 1, then Lφr ≈ Lr , which doubles when the height is
increased from zero to Ly = Lx . The second moment 〈R2(r)〉
is also doubled (see Eq. (6)), so b’s net increase is a factor
of 8. An additional height doubling to Ly = 2Lx causes b

to multiply by an additional factor of 2.625. Our numerical
results are a bit less than these analytical predictions because
we are not precisely in the Lr/Lφ � 1 limit; instead we have
Lr/Lφ = [0.2, 0.4, 0.6].

F. Tilted magnetic fields

Several experiments have reported tilted field measure-
ments to confirm that in thin samples the observed magne-
toconductivity is sensitive only to the perpendicular com-
ponent of the magnetic field, B cos θ . Using B cos θ as the
x axis and �σ as the y axis, these experiments showed
agreement between measurements performed at different an-
gles [14,28,29,31–35]. However many find that the agreement
fails at large angles or large fields, and many also observe
an in-plane (θ = π/2) signal which is inconsistent with
dependence only on a perpendicular field [28,29,31,33,35].
Here we present an analytical formula and numerical results
on tilted fields.

A simple formula which takes into account both in-plane
and perpendicular fields can be obtained when the dephasing
length Lφ is short compared to the sample size Lr . In this case
the magnetoconductivity is a sum of separate contributions
from the TI’s faces:

〈σWAL(B)〉 = 2Lx

Lr

σHLN(x cos θ ) + 2Ly

Lr

σHLN(x sin θ ).

Corrections are of order O(Lφ/Lr ). This same formula applies
also to the regime of large magnetic fields, in which the
cyclotron radius δR is much smaller than the sample size.
This formula should be a distinct improvement over previous
work which did not take into account the sidewall contribution
2Ly

Lr
σHLN(x sin θ ).
Figure 7 shows our numerical results for tilted field mea-

surements. In Fig. 7(a) the width is Lx = 0.4Lφ , the height is
one-tenth of the width, and the scattering length is l = Lφ/100.
We show results obtained at θ = 0◦, 15◦, 30◦, 45◦, 60◦, and
75◦. To help the reader to make a comparison between plots
using the perpendicular field B cos θ and plots using the total
field B, we plot both versions in the same graph. The unbroken
lines are plotted using the perpendicular field B cos θ as the x

axis, while the dashed lines show the same data but are plotted
using the total field B as the x axis.

Figure 7(a) shows that in this thin Ly = 0.1Lx sample the
data agree well with a perpendicular field dependence: the lines
with squares lie very near to each other, with the furthest depar-
ture at 75◦. In particular, the agreement between perpendicular-
field plots (unbroken lines) is a large improvement over the
total-field plots (dashed lines), which proves that in this thin
sample the perpendicular field, not the total field, controls
the magnetoconductivity. It is remarkable that the agreement
is this good even though wrapping effects are important. In
fact the angular dependence shows no qualitative difference
between small field strengths inside the wrapping transition
and large field strengths outside the wrapping transition.
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FIG. 7. (Color online) Comparison between using the total mag-
netic field vs. its component perpendicular to the sample. We
plot the magnetoconductivity 〈σWAL(x)〉 at six field angles between
perpendicular θ = 0◦ and θ = 75◦. The unbroken lines are plotted
with the perpendicular component B cos θ as the x axis, while the
dashed lines are plotted with the total field B as the x axis. In
panel (a) we show a thin sample with Ly = 0.1Lx , where use of
the perpendicular field B cos θ causes a nice collapse of the lines on
top of each other, showing that 〈σWAL(x)〉 substantially depends only
on B cos θ . In panel (b) we show a thicker sample with Ly = 0.4Lx ,
and find that the B cos θ plot has no advantage over the B plot.

In contrast, in Fig. 7(b) we show a thicker sample where
Ly = 0.4Lx and all other parameters remain the same. Here
using a perpendicular field gives no improvement over using
the total field as the x axis, presumably because the sidewall
contribution is large. Again we see little qualitative difference
between results inside and outside the wrapping transition.

Figure 8 shows our calculations of how the magnetocon-
ductivity changes when the magnetic field angle is varied
continuously between θ = 0 (perpendicular to the TI sample)
and θ = π/2 (parallel to the TI sample), a type of experiment
which may prove useful for checking systematically the effects
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FIG. 8. (Color online) Dependence on the angle of the magnetic
field in a thin sample with height Ly = Lx/10. θ = 0 for perpendic-
ular fields and θ = π/2 for in-plane fields. In panel (a) the magnetic
field is kept fixed, and in panel (b) the dephasing length Lφ is kept
fixed. In both panels the upper curves lie in the strong-field regime.
For comparison purposes, the dashed lines show the sum of the
perpendicular θ = 0 and in-plane θ = π/2 signals. In all cases the
in-plane magnetoconductivity is smaller than the perpendicular value,
with ratios ranging from 1/3 to 1/40. This is in sharp contrast with a
TI without sidewalls where the in-plane magnetoconductivity would
be null, and may explain experimental measurements of in-plane
signals.

from the TI sidewalls. In both panels the sample width is held
fixed at Lx = 1, the sample is thin with height Ly = Lx/10,
and the scattering length is Lx/100. In Fig. 8(a) we keep
the magnetic field fixed at LB = 0.1Lx and choose four
values of the coherence length L2

φ = [0.01,0.1,1,10]L2
x . In

all cases we find that in-plane magnetoconductivity σWAL(B)
is nonzero. In fact the reduction from θ = 0 to θ = π/2 is
only a factor of 9 when Lφ = Lx/10, and a factor of 3
when Lφ = √

10Lx . Significantly, the factor of 9 is close
to the ratio of the sample’s height to width Ly/Lx = 10.
In Fig. 8(b) we keep Lφ = Lx/

√
10 and move LB progres-

sively from the strong-field regime (at the bottom of the
figure) to the weak-field field regime (at the top), i.e. LB =
Lx×x[

√
0.01,

√
0.1,1,

√
10,

√
100]. Again the ratio of in-plane

signal to perpendicular signal is comparable to Ly/Lx , with
values ranging from 40 at large fields to 6 at small fields. In the
weak-field regime where LB � Lφ = Lx/

√
10, i.e. the upper

four curves, we find that all four curves run in parallel. This is
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because here the signal is proportional to B2. The same parallel
behavior is visible in the upper two curves of Fig. 8(a).

These numerical results may explain why sizable in-plane
signals have been observed repeatedly in TI experiments. Our
results indicate that when Lφ/Lr is small the ratio of in-plane to
perpendicular field signals is roughly Ly/Lx , and in the other
cases the ratio is even larger. When Lφ/Lx is large, i.e. in the
wrapped regime, the ratio of in-plane to perpendicular signals
can be quite large, since the relevant interference diagrams
wrap around the entire TI sample.

Figure 8 also shows dashed lines, which are the sum of
the perpendicular conductivity σperp(B cos θ ) and the in-plane
conductivity σin-plane(B sin θ ). It is experimentally quite feasi-
ble to measure the perpendicular and in-plane conductivities
and then compare σperp(B cos θ ) + σin-plane(B sin θ ) to the tilted
magnetoconductivity σ (B,θ ). When there is little coupling
between the TI’s four faces, the two curves should agree.
Figure 8(a) shows generally good agreement, with significant
discrepancies only when the coherence length Lφ is compara-
ble to or larger than the sample size, precisely because in this
case all four sides are coupled to each other. The maximum
discrepancy at L2

φ = 0.01L2
x is 1.6%, at L2

φ = 0.1L2
x it grows

to 12%, and at L2
φ = 10L2

x it reaches 45%. These discrepancies
are small compared to σ ’s overall variation with θ . Figure 8(b)
also shows small discrepancies, less than 1% at L2

B � L2
x ,

and growing to 13% at L2
B = 0.01L2

x . We conclude that
σperp(B cos θ ) + σin-plane(B sin θ ) is a good predictor of the
tilted magnetoconductivity, with almost perfect agreement
when Lφ is small or LB is large.

V. CONCLUSIONS

In this paper we have made a comprehensive exploration
of topological effects on the weak antilocalization signal in
TI samples with perpendicular, in-plane, and tilted magnetic
fields. These results are of interest because they bring to light
an interesting experimentally accessible signal of topological
transport. They are also practically useful to experimentalists.
Our results will affect interpretation of the magnetoconductiv-
ity’s magnitude, which is often used to estimate the coupling
between a TI’s top and bottom surfaces. We also showed that
TI sidewalls produce an in-plane magnetoconductivity which
may account for experimental observations, and we gave both
analytical and numerical predictions for tilted samples that
explain experimental observations with in-plane fields.
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APPENDIX: ANALYTICAL CALCULATION
OF THE MAGNETOCONDUCTIVITY

In this Appendix we analytically calculate the magneto-
conductivity. In the first section we calculate the conductivity
from wrapped Cooperon states, which is the full result at small
fields. In our finite system the weak-field result is necessarily
analytic and even in B2, as we discuss in the next section.
Lastly we calculate the contribution from harmonic oscillator
Cooperon states, which becomes important at stronger fields.

We begin by discussing the relevant length scales and
expected results. As discussed earlier, our numerical results
show that any features scaling with Lφ are strongly suppressed
or nonexistent in the small samples of interest to us, where
wrapping is important. This is because the wrapping effect
requires that Lφ be larger than the sample perimeter. As
described earlier, we adopt the following prescription for small
samples: we replace L2

φ with a new length scale L2
φr , given by

L−2
φr = L−2

φ + (Lr/2π )−2. This has two main results. Firstly,
in small Lr � Lφ samples the Lφ length scale is replaced by
the sample size Lr/2π . Secondly, in small samples the mag-
netoconductivity’s dependence on temperature disappears.

1. The conductivity from wrapped states – equal to the total
conductivity in weak fields

As shown in Eq. (5), our calculation of the magnetoconduc-
tivity reduces to a study of the eigenstates and eigenvalues of
the Cooperon diffusion operator A which includes a potential
representing the magnetic field:

〈σWAL(B)〉 = G0

4π
2L2

φr

∫
dkz

Lr

Ei<El∑
i

E−1
i ,

Ei |i〉 = A|i〉,
A = V (r,Rg) − L2

φr (∂/∂r )2 + 1,

V (r,Rg) = (
L2

φr

/
L4

B

)(
R(r) + L2

Bkz

)2
. (A1)

The function R(r) figuring in the potential was specified
earlier. The average value of V (r,Rg) is 〈V 〉 = L2

φrk
2
z +

γ, γ = L2
φr〈R2(r)〉/L4

B . 〈R2(r)〉 is the second moment of
R(r), scales quadratically with the perimeter Lr , and is given
in Eq. (6).

In this section we concentrate on the contribution from
wrapped Cooperon states, which can be analytically continued
to B = 0 where they are plane waves. In general, the
conductivity includes contributions from wrapped, sidewall,
edge, and harmonic oscillator states. However at weak enough
field strength the potential is not strong enough to generate
any bound states, and all eigenstates and eigenvalues can be
analytically continued to B = 0; all Cooperon eigenstates are
wrapped states. (This is not true in an infinite system, where at
any B �= 0 the spectrum is broken into equally spaced Landau
levels.) In other words, at weak enough fields the potential
V (r,Rg) is not strong enough to create any bound states;
therefore there is no contribution to the conductivity from
sidewall, edge, or harmonic oscillator states.

The most obvious approximation for calculating the
wrapped Cooperon state contribution is the Virtual Crystal
Approximation [48,49], which simply takes the average of the
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FIG. 9. (Color online) Analytical theory of the wrapped magnetoconductivity. For easy comparison with Fig. 4, here all parameters and
scales are identical to those used in Fig. 4. Panel (a) shows the contribution from harmonic oscillator bound states. Inside the wrapping
transition this contribution increases with B because B causes more bound states. At the wrapping transition this trend reverses as the
increasing bound-state energies begin to cross the high-energy cutoff associated with the scattering length l. The logarithmic decrease seen
here at large fields is responsible for the identical feature in the HLN formula. Panel (b) shows the contribution from wrapped states. At small
fields we find the usual quadratic behavior, with a transition to logarithmic growth when LB is proportional to the sample size.

potential and obtains

Ei = 1 + L2
φrk

2
r + 〈V 〉. (A2)

kr = nr2π/Lr is the wave number of the plane wave. This
approximation simply shifts the plane-wave eigenvalues by a
dimensionless constant γ = L2

φr〈R2(r)〉/L4
B , and the magnetic

field’s effect is controlled completely by this constant. This
approximation is closely linked to the magnetic phase relax-
ation approximation, which estimates the lowest excitation
energy δE of the Cooperon’s ground state, and adds this
Ei [50,51]. The 〈V 〉 term appearing in Eq. (A2) is the VCA
approximation’s estimate of the shift δE of the Cooperon’s
lowest excitation energy.

The remaining integral is easy because we have preserved
rotational symmetry; we obtain

〈σWAL(B)〉 = G0

4π
(ln |El| − ln |1 + γ |),

〈�σWAL(B)〉 = −G0

4π
ln |1 + γ |, (A3)

γ = L2
φr〈R2(r)〉/L4

B.

This formula is illustrated in Fig. 9(b), which uses identical
parameters to those used in Fig. 4. In the wrapped regime
where the coherence length is much larger than the sample
size Lφ � Lr , the γ parameter scales with (Lr/LB)4. In
this regime the magnetoconductivity is quadratic at small
fields and transitions to logarithmic behavior at LB ∝ Lr .
Qualitatively this is the correct behavior. However comparison
with Fig. 4 shows that at small fields the Virtual Crystal
Approximation systematically overestimates the magnetocon-
ductivity. Moreover it does not capture the correct physics
at field strengths which are intermediate between LB ∝ Lr

and the wrapping transition which occurs at much bigger
fields where LB ∝ √

lLr . In this transition region the Virtual
Crystal Approximation predicts logarithmic growth, while our
numerical results show much faster growth, closer to a power
law. The reason for this discrepancy is that the Virtual Crystal

Approximation neglects the conversion from wrapped states
to bound states, i.e., to sidewall and harmonic oscillator states.

Derivation of the Virtual Crystal Approximation
from perturbation theory

Here we do a correct perturbative expansion to second
order in the magnetic field B ∝ x ∝ 1/L2

B . At zeroth order
we have V (r,Rg) = L2

φrk
2
z , and added to this is the perturba-

tion δV = 2(L2
φr/L

2
B)kzR(r) + L2

φrR
2(r)/L4

B . Perturbation
theory states that at second order in V the energy is

Ei = 1 + L2
φrk

2
z + L2

φrk
2
r + 〈kr |δV |kr〉 +

∑
j �=nr

|〈kr |δV |kj 〉|2
L2

φr

(
k2
r − k2

j

) .

(A4)

If we omit the last term we obtain the virtual Virtual Crystal
Approximation, because 〈nr |δV |nr〉 = γ . Keeping only terms
of order O(B2) and simplifying produces the following result:

Ei = 1 + L2
φrk

2
z

(
1 + L−4

B λ4(kr )
) + L2

φrk
2
r + γ,

λ4(kr ,Lx,Ly,l) = 4
∑
kj �=nr

|〈kr |R(r)|kj 〉|2
k2
r − k2

j

. (A5)

This result is exact up to second order in B, as long as the
sample is finite. Its most interesting feature is the emergence
of a new dimensionless parameter, λ4/L4

B , which is completely
independent of the dephasing length Lφr and of temperature.
λ4 cannot be larger than O(L4

r ), and may be as small as
O(L2

r a
2). We should note that the sign of λ4 is not fixed a

priori, and is guaranteed to be negative when kr = 0; we used
this notation only to point out the emergence of a new length
scale.

This result leads us to expect that at small B the magne-
toconductivity is subject to competition between on one hand
L2

φrL
2
r /L

4
B and on the other hand the temperature-independent

ratio λ4/L4
B . In small samples the former scales with L4

r /L
4
B .

The latter is bounded above by the same quantity, but may be
as small as L2

r a
2/L4

B .

235148-13



SACKSTEDER IV, ARNARDOTTIR, KETTEMANN, AND SHELYKH PHYSICAL REVIEW B 90, 235148 (2014)

In the wrapped regime γ ∝ L4
r . The λ4 term cannot scale

faster than this and may have a much slower scaling, which
justifies its omission and the use of the Virtual Crystal
Approximation.

2. Can the magnetoconductivity contain terms
that are odd in B?

It is of considerable interest to understand whether the
magnetoconductivity may have terms that are linear in B ∝ x

at small B. In our Eq. (5) for the magnetoconductivity the
integration x dRg is independent of B, and x figures only in
the potential V (r,Rg). Within the potential, the linear part is
−2(x2/4L2

φr )Rg R(r) = xR(r) kz. We will now show that if
we do perturbation theory in this linear part, every term which
is odd in B ∝ x will be exactly zero.

We obtain this result by noticing that the potential for our
square TI sample shows a discrete symmetry: it is unchanged
if it reverses sign and is shifted by r → r + Lx + Ly . Another
way of saying this is that the xR(r) kz term mirrors itself – with
opposite sign—under translation by Lx + Ly . Since neither
copy is preferred, odd powers of xR(r) kz must integrate to
zero, and the magnetoconductivity cannot contain odd powers
of B.

More generally, in the original formulation with �∇ −
ı2e �A/�, if the geometry (without a magnetic field) retains
symmetry under �x → −�x then odd powers of B ∝ x are
prohibited.

This argument does not exclude the possibility of nonana-
lytic terms which are linear in B, associated with a failure of
perturbation theory. Such terms could appear if an infinitely
small linear term generates new bound states that cannot be
analytically continued to B = 0, or if the density of states
changes discontinuously at B = 0. In our problem with a
simple magnetic field this can occur only if the system is
infinite. In that case the eigenvalues En = |x|(n + 1/2) are
those of the simple harmonic oscillator; they are linear in B,
and are nonanalytic when B changes sign.

3. The harmonic oscillator conductivity

In the following we estimate the contribution from har-
monic oscillator Cooperon states. We assume that the magnetic
field is perpendicular to the TI. If the energy En is small
enough that the eigenfunction is trapped on one face of the TI,
i.e., both turning points lie on that face, then the bound-state
eigenvalues coincide with those of the harmonic oscillator:
EHO

n = 1 + (n + 1/2)x| dR(r)
dr

|. Therefore the conductivity is

〈σWAL(B)〉 = 2×G0
L2

φr

2πx

∫ Lx/2L2
B

−Lx/2L2
B

dkz

Lr

1+(n+1/2)x<min(El,1+ξ 2(1−|r|)2/4)∑
n=0

(1/x + (n + 1/2))−1

= G0
1

4π

2Lx

Lr

∫ 1

0
dr

1+(n+1/2)x<min(El,1+ξ 2(1−r)2/4)∑
n=0

(1/x + (n + 1/2))−1

= G0
1

4π

2Lx

Lr

1+(n+1/2)x<min(El,1+ξ 2/4)∑
n=0

∫ 1−2
√

(n+1/2)x/ξ

0
dr (1/x + (n + 1/2))−1

= G0
1

4π

2Lx

Lr

1+(n+1/2)x<min(El,1+ξ 2/4)∑
n=0

1 − 2
√

(n + 1/2)x/ξ

1/x + n + 1/2
,

r = −2kzL
2
B

/
Lx, ξ = LφrLx

/
L2

B = xLx/2Lφr . (A6)

The factor of 2 in the initial formula occurs because we are
counting states from both the top and bottom faces of the TI.
The limits of integration ±Lx/2L2

B are the values of kz where
the quadratic sections of the potential V (Rg,r) cease to have
minima. The factor of ξ 2(1 − |r|)2/4 in the sum’s upper limit
is the lower of V (Rg,r)’s two values at the sidewalls where
±Lx/2.

This formula is plotted in Fig. 9(a), with the same
parameters used in our numerical calculations shown in Fig. 4.
At large fields, i.e. outside the wrapping transition, all states
are harmonic oscillator and sidewall bound states, and in thin
samples the harmonic oscillator states are dominant. Therefore
our harmonic oscillator formula is nearly exact at large fields,
and in particular reproduces the correct logarithmic decrease.
At smaller fields below the wrapping transition at LB ∝ √

Lrl

the potential becomes too weak to trap any bound states, and
the harmonic oscillator contribution disappears, as shown in

Fig. 9(a). Our formula also shows the position of the wrapping
transition.

The physics at smaller fields inside the wrapping transition
involves a nonperturbative transformation of the states and
their spectrum from harmonic oscillator states, to sidewall
bound states, to finally unbound wrapped states which can
be analytically continued to plane waves. Our formula omits
all details of this process, so our formula is inaccurate
inside the wrapping transition. Neither the Virtual Crystal
Approximation nor the harmonic oscillator contribution, nor
their combination, is able to give a qualitatively adequate
picture of intermediate-field strengths between LB ∝ Lr and
LB ∝ √

LφLr .

4. Summary of our analytical results

In this Appendix we have calculated the contributions
from wrapped and harmonic oscillator Cooperon states to the
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quantum conductivity 〈σWAL(B)〉. The harmonic oscillator
formula shows the wrapping transition and gives the correct
strong-field logarithmic behavior. At small fields the wrapped
contribution is equal to the total signal. We developed the Vir-
tual Crystal Approximation which gives a qualitatively correct

picture of the weak-field quadratic region, and of the transition
at stronger fields L2

B < L2
x/2. It also informed us of the signal’s

dependence on γ = L2
φr〈R2(r)〉/L4

B , which this paper’s main
body showed is important for understanding the effects of
changing the sample height, and of changing the temperature.
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