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It is well known that (1 + 1)-dimensional [(1 + 1)-D] bosonic symmetry-protected topological (SPT) phases
with symmetry group G can be identified by the projective representation of the symmetry at the edge. Here we
generalize this result to higher dimensions. We assume that the representation of the symmetry on the spatial edge
of a (d + 1)-D SPT is local but not necessarily on site, such that there is an obstruction to its implementation on a
region with a boundary. We show that such obstructions are classified by the cohomology group Hd+1(G,U(1)),
in agreement with the classification of bosonic SPT phases proposed in Chen et al. [Science 338, 1604 (2012)].
Our analysis allows for a straightforward calculation of the element of Hd+1(G,U(1)) corresponding to physically
meaningful models such as nonlinear σ models with a θ term in the action. SPT phases outside the classification of
Chen et al. are those in which the symmetry cannot be represented locally on the edge. With some modifications,
our framework can also be applied to fermionic systems in (2 + 1)-D.
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The classification of phases of matter in quantum systems at
zero temperature has proven to be much richer than in classical
statistical mechanical systems. For many such phases, the
feature which distinguishes them from other phases is quantum
mechanical and not related to the spontaneous breaking of a
symmetry. One such family of quantum phases which has
been much studied in recent years is the symmetry-protected
topological (SPT) phases [1–43]. A system with a symmetry
is considered to lie in a SPT phase if (a) the symmetry
is not spontaneously broken and (b) the system can be
connected to one whose ground state is a trivial product
state without a phase transition, but only if we allow the
symmetry to be broken explicitly. In some sense, SPT phases
are “trivial” in the bulk, but boundaries between different SPT
phases are nontrivial and must either be gapless, break the
symmetry (explicitly or spontaneously), or be topologically
ordered.

The central problem in the study of SPT phases is
classifying the different phases that can occur for a given
symmetry. In bosonic systems with an internal symmetry
group G, an early result was that in (1 + 1)-dimensional [(1 +
1)-D] systems, the possible SPT phases are classified [9,10]
by the second cohomology group H 2(G,U(1)). This result
has a natural interpretation [11] in terms of the symmetry
transformation properties of an edge between the SPT and
vacuum (or equivalently, of the entanglement spectrum [12]).
Such an edge will, in general, transform projectively under
the symmetry. The second cohomology group arises naturally
from a consideration of these projective representations.

It has been argued [13] that, more generally, the SPT phases
in d spatial dimensions are classified by the cohomology
group Hd+1(G,U(1)). This result was based on an explicit
construction of field theories in discrete space-time which are
believed to be representative of each SPT phase. However,
making a definitive identification between these lattice field
theories and other, more physically motivated, descriptions of
the corresponding SPT phases [14–16,22] has proved difficult.
In this paper, therefore, we propose to recast the cohomological

classification in a different, hopefully more intuitive viewpoint,
inspired by the original (1 + 1)-D treatment. The central idea is
that, just as in the (1 + 1)-D case, the symmetry transformation
on the edge of a (d + 1)-D system will be, in some sense,
anomalous [44–47]. Specifically, if we have a system defined
on a d-dimensional spatial manifold Mbulk with a boundary,
the edge symmetry acts on the boundary ∂Mbulk, which itself
has no boundary [∂(∂Mbulk) = 0]. Therefore, there might be an
obstruction to implementing the edge symmetry in a consistent
way on a (d − 1)-dimensional manifold M with boundary
∂M �= 0. We argue that this obstruction is indeed classified
by the cohomology group Hd+1(G,U(1)). [For (2 + 1)-D
systems, our approach is related to, though more general
than, that of Ref. [44], which was based on a tensor-network
representation for the edge symmetry.] In fact, in (2 + 1)-D
our approach also leads to a classification of SPT phases in
interacting fermion systems, as we show.

The remainder of this paper is organized as follows. In
Sec. I, we give the general demonstration that the obstruction
is classified by Hd+1(G,U(1)). For (2 + 1)-D SPTs, this
argument can be given in full generality (assuming only that the
symmetry acts locally on the edge), but in higher dimensions
we need to make additional assumptions about the form of
the symmetry. In Sec. II, we discuss, by way of illustration,
a simple example of an anomalous symmetry that appears on
the edge of a (2 + 1)-D SPT. In Sec. III, we use the ideas of
this paper to prove that (2 + 1)-D SPT phases characterized
by different elements of H 3(G,U(1)) are necessarily separated
by a phase transition unless the symmetry is broken explicitly.
In Sec. IV, we show how to use our approach to derive the
element of the cohomology group corresponding to nonlinear
σ models containing a topological term. In Sec. V, we make
explicit the connection between our work and the original
classification of Ref. [13]. In Sec. VI, we explain why, in the
presence of antiunitary symmetries, there exist bosonic SPT
phases not captured by our arguments. In Sec. VII, we show
how our ideas can be applied also to fermionic systems in
(2 + 1)-D.
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I. THE GENERAL FORMALISM

Consider a system in a bosonic SPT phase. By definition,
this means it is gapped and nondegenerate in the bulk and
(disregarding symmetry considerations) can be continuously
connected to a product state without a phase transition.
However, in a system with a boundary, we can define an
effective low-energy theory for the boundary, which may
be gapless notwithstanding the gap in the bulk. A key
property of SPT phases is that the boundary theory of an
SPT phase in d spatial dimensions can always be realized at
the microscopic level in a strictly (d − 1)-dimensional system
(see Appendix A for a careful proof of this well-known fact).
This is in contrast to, for example, integer quantum Hall states
in which the boundary is chiral and cannot be realized as
a stand-alone system [48]. For SPT phases, the anomalous
nature of the edge arises not from the boundary theory itself
but from the way it is acted upon by the symmetry.

We assume that the symmetry in the bulk is unitary
and on site; that is, for a lattice system with N sites, the
symmetry group G is is represented as a unitary tensor product
U (g) = [u(g)]⊗N of operators acting on each site. (We may
need to group several sites together into a single effective
site in order to satisfy this condition.) We now consider
the low-energy Hilbert space of states with energies below
some cutoff that is less than the bulk gap; these states are
edge excitations. Projecting the unitary representation of the
symmetry group onto this low-energy Hilbert space, we obtain
a unitary representation, acting only on the boundary degrees
of freedom, that may not be on site. On the contrary, it
appears to be a characteristic of nontrivial SPT phases that
the symmetry is realized on the boundary in a fundamentally
non-on-site way [13,44,45]. Nevertheless, the key assumption
that we make in this paper is that the boundary symmetry, albeit
not on site, is nevertheless still local in the sense of Ref. [8]
(e.g., it can be represented as a finite-depth quantum circuit.)
This seems to be a natural assumption, but we expect it to be
violated by SPT phases not captured by the cohomological
classification (see Sec. VI for further discussion).

For a non-on-site symmetry, there is the possibility that
there is an obstruction to implementing the symmetry on a
manifold with boundary in a consistent way. We intend to
show that, by classifying these obstructions, one recovers
the cohomological classification of SPT phases. A simple
example of this idea is the well-known connection between
(1+1)-D SPTs and the projective symmetry transformation of
the edge [9–11], which we now review.

A. (1 + 1)-D SPTs

The boundary of a 1D system simply comprises a pair of
points a and b (see Fig. 1). Let U (g) be the representation
of the symmetry group G on this boundary. Assuming that
we chose the system size such that the end points a and b

are well separated (i.e., by a distance large compared to all
intrinsic length scales), the locality of U (g) simply implies
that it must act on a and b separately; that is, it must be
a tensor product U (g) = Ua(g) ⊗ Ub(g). We can think of
Ua(g) as the restriction of U (g) to the point a. Importantly,
however, this restriction is uniquely defined only modulo

U(g)

Restrict

Ua(g)Ua(g)

ω(g1, g2) ∈ U(1)

FIG. 1. (Color online) Obtaining a 2-cocycle on the (0 + 1)-D
edge of a (1 + 1)-D SPT.

phase factors. Indeed, U (g) is left invariant under Ua(g) →
β(g)Ua(g),Ub(g) → β(g)−1Ub(g) for any U(1)-valued func-
tion β(g). Thus, while U (g) is always a representation of
the symmetry group G, that is, U (g1)U (g2) = U (g1g2), the
nonuniqueness of the restriction procedure implies that Ua(g)
need only be a projective representation of G, which is to say
that Ua(g1)Ua(g2) = ω(g1,g2)Ua(g1g2) for some U(1)-valued
function ω(g1,g2). The function ω describes the obstruction to
consistently (i.e., nonprojectively) implementing the symme-
try on the point a.

Since multiplication of the Ua’s must be associative,
one can derive a consistency condition on ω by evaluating
Ua(g1)Ua(g2)Ua(g3) in two different ways, namely,

ω(g1,g2)ω(g1g2,g3) = ω(g2,g3)ω(g1,g2g3). (1)

A function ω satisfying Eq. (1) is known as a 2-cocycle.
Furthermore, due to the fact that Ua(g) is only defined up
to a g-dependent phase factor β(g), it follows that we have an
equivalence relation on 2-cocycles:

ω(g1,g2) ∼ ω(g1,g2)β(g1)β(g2)β(g1g2)−1. (2)

The group of 2-cocycles quotiented by the above equivalence
relation is, by definition, the second cohomology group
H 2(G,U(1)). One can then show that two models are in the
same SPT phase if and only if they correspond to the same
element of H 2(G,U(1)). Therefore, SPT phases in (1+1)-D
are classified by H 2(G,U(1)).

B. (2 + 1)-D SPTs

When presented as it was above, the (1 + 1)-D case suggests
an obvious generalization to higher dimensions: We consider
the symmetry U (g) acting on the boundary C, then restrict it to
a subregion M , which in general is a manifold with boundary
(C itself has no boundary as it is the boundary of a higher-
dimensional manifold), to see if the symmetry is implemented
consistently or not.
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· · · · · ·
U(g)

Restrict

· · · · · ·
UM (g)

· · · · · ·
Ω(g1, g2)

Restrict

· · · · · ·
Ωa(g1, g2)

ω(g1, g2, g3) ∈ U(1)

FIG. 2. (Color online) Obtaining a 3-cocycle on the (1 + 1)-D
edge of a (2 + 1)-D system.

First, we need to give a more general definition of what it
means to restrict a local unitary U acting on a spatial manifold
C to a submanifold M , which for the case discussed above
was obvious due to the tensor-product structure. Specifically,
we say that a local unitary UM acting on the region M is the
restriction of U to the region M if it acts the same as U in the
interior of M , well away from the boundary ∂M . We observe
two properties about this restriction.

(a) It always exists for any local unitary. This can easily be
seen from, for example, the quantum circuit description.

(b) It is defined modulo local unitaries acting in the vicinity
of the boundary ∂M .

The second property is the higher-dimensional generaliza-
tion of the restriction being defined only up to phase factors.
Thus, in general, if U (g) is a representation of the symmetry
group G, then UM (g) need only satisfy

UM (g1)UM (g2) = �(g1,g2)UM (g1g2), (3)

where �(g1,g2) is a local unitary acting in the vicinity of ∂M ,
which represents the obstruction to a consistent representation
on M due to the fact that it is a manifold with a boundary.
Thus, we have reduced the problem of classifying local unitary
representations U (g) on a d-dimensional manifold to that of
classifying local unitary obstructions �(g1,g2) on a (d − 1)-
dimensional manifold. The idea now is to perform more such
reductions, each time reducing by 1 the dimensionality of the
manifold acted upon, until we get down to the simplest case
of 0 dimensions (i.e., points).

For (2 + 1)-D SPTs, this reduction can be completed as
follows (see Fig. 2). In this case the boundary has only

one spatial dimension, and so �(g1,g2) as constructed above
already acts on just a pair of points a and b. We observe that
Eq. (3), together with the associativity of the operators UM (g),
implies that � must satisfy

�(g1,g2)�(g1g2,g3) = UM (g1)�(g2,g3)�(g1,g2g3), (4)

which is a non-Abelian analog of Eq. (1) and where we have
introduced the conjugation notation xy = xyx−1. Now we per-
form a second restriction, from ∂M = {a,b} to the single point
a. The restriction � → �a is defined only up to phase factors,
and so we conclude that �a satisfies Eq. (4) only up to phase
factors

�a(g1,g2)�a(g1g2,g3) = ω(g1,g2,g3) UM (g1)�a(g2,g3)

×�a(g1,g2g3), (5)

where ω(g1,g2,g3) ∈ U(1). We show in Appendix B that ω

must satisfy the 3-cocycle condition

ω(g1,g2,g3)ω(g1g2,g3,g4)−1ω(g1,g2g3,g4)ω(g1,g2,g3g4)−1

×ω(g2,g3,g4) = 1. (6)

Furthermore, as �a(g,g′) is only defined up to phase factors
β(g,g′), we must identify

ω(g1,g2,g3) ∼ ω(g1,g2,g3) β(g1,g2)β(g1g2,g3)

×β(g2,g3)−1β(g1,g2g3)−1. (7)

We show in Appendix B that, up to equivalence, the choice
of restriction U (g) → UM (g) does not affect the 3-cocycle.
The group of 3-cocycles quotiented by the equivalence
relation Eq. (7) is, by definition, the third cohomology
group H 3(G,U(1)). Hence, we recover the cohomological
classification of (2 + 1)-D SPTs.

C. Higher dimensions

In higher dimensions it is not clear whether we can still do
the reduction procedure in complete generality as in the (2 +
1)-D case. Nevertheless, we can still perform the reduction if
we make some simplifying assumptions about the action of the
symmetry on the boundary. (The nonlinear σ models discussed
in Sec. IV are a nontrivial example in which the symmetry on
the edge takes the required form.) Specifically, we consider a
symmetry group G acting on a Hilbert space equipped with a
set of basis states labeled by the variables α(x) associated with
each spatial location in a closed (d − 1)-dimensional space
C1. We can take the spatial coordinate x to be either discrete
(i.e., a lattice) or continuous. The class of symmetry actions
that we consider are those that can be written in the form

U (g) = N (g)S(g), (8)

such that
(a) S(g) is the on-site part of the symmetry which can be

written in the form

S(g) =
∑

α

|gα〉〈α|, (9)

where α → gα is some on-site action of the symmetry on the
classical labels α; and
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(.)(g1)

(.)(g1, g2)

(.)(g1, g2, g3)

(.)(g1, g2, g3, g4)

N (1)
˜N (1)Restrict

0 δ1
˜N (1)

δ1 δ1

N (2)
˜N (2)Restrict

0 δ2
˜N (2)

δ2 δ2

N (3)
˜N (3)Restrict

0 δ3
˜N (3)

δ3 δ3

=

=

= ω

C0 M0

C1 M1

C2

M2

FIG. 3. (Color online) The reduction process to obtain a 4-cocycle ω on the (2 + 1)-D edge of a (3 + 1)-D system, assuming a symmetry
representation on the edge of the form Eq. (8).

(b) in the same basis, the non-on-site part N (g) is diagonal,
namely,

N (g) =
∑

α

eiN (1)(g)[α]|α〉〈α|, (10)

where N (g) are functionals of the configuration α. We require
these functionals to be sufficiently local that N (g), and hence
U (g), are local unitaries.

The requirement that U (g) be a representation,
U (g1)U (g2) = U (g1g2), can be written in terms of the func-
tionals N (g) as

g1N (1)(g2) + N (1)(g1) − N (1)(g1g2) = 0 (mod 2π ),

(11)

where we have defined the action of group elements on func-
tionals in the obvious way: (gF)[α] = F[g−1α]. Henceforth,
we take the (mod 2π ) to be implied, or, in other words, we
consider the functionals to take values in R/(2πZ).

Now as before, we can restrict U (g) to a subregion M1

with a boundary, which [since S(g) can be trivially restricted]
amounts to restricting the functionals N (1)(g). Then Eq. (11)
need be satisfied by the restricted functionals Ñ (1)(g) only up
to boundary terms,

g1Ñ (1)(g2) + Ñ (1)(g1) − Ñ (1)(g1g2) = N (2)(g1,g2), (12)

where the N (2)(g1,g2) are functionals which depend only
on the value of α near the boundary ∂M1 and describe the
obstruction. This corresponds to Eq. (3).

In order to continue the reduction process, we find it
useful to define the group coboundary operators δk which map
functionals depending on k group elements into functionals

depending on k + 1 group elements, as follows:

(δkN (k))(g1, . . . ,gk+1)

= g1N (k)(g2, . . . ,gn) + (−1)k+1N (k)(g1, . . . ,gk)

+
k∑

i=1

(−1)iN (k)(g1, . . . ,gi−1,gigi+1,gi+2, . . . ,gk+1).

(13)

In particular, (δ1N (1))(g1,g2) corresponds to the left-hand side
of Eq. (11). The important property which the coboundary
operators satisfy is that they form a chain complex, i.e., δk+1 ◦
δk = 0.

We can now formulate the reduction process for symmetries
acting on a manifold of spatial dimension d (see Fig. 3). At
the kth step of the process, we have a set of functionals N (k)

acting on a closed d − k-dimensional manifold Ck and indexed
by k group elements, satisfying δkN (k) = 0. We then consider
restrictions Ñ (k) of these functionals onto the manifold Mk ,
where Mk is a submanifold of Ck with boundary. As Ñ (k)

must act the same as N (k) in the interior of Mk , it follows
that N (k+1) ≡ δkÑ (k) acts on the boundary ∂Mk ≡ Ck+1.
Furthermore, as δk+1 ◦ δk = 0, it follows that δk+1N (k+1) = 0.
Thus, we just iterate these reduction steps, terminating when
we reach ω = N (d+1), which is simply a mapping from
d + 1 group elements to U(1) satisfying δd+1N (d+1); this the
definition of a U(1)(d + 1)-cocycle. Due to the ambiguity in
the choice of restrictions, it follows that ω is only defined up
to

ω ∼ ω + δd+1λ, (14)
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where λ is some element of U(1) depending on d + 1 group
elements. The group of (d + 1)-cocycles quotiented by the
equivalence relation Eq. (14) is, by definition, the cohomology
group Hd+1(G,U(1)). Thus, we recover the cohomological
classification of SPT phases in arbitrary dimensions.

Finally, let us discuss the case of symmetry groups that
contain antiunitary operations. It is perhaps unclear, in general,
what is meant by restriction of an antiunitary operation
(although see Ref. [49]). Nevertheless, if we consider only
symmetries that can be represented as a suitable generalization
of Eq. (8), the same arguments as above can be applied
with only minor modifications. Specifically, we consider
symmetries of the form

U (g) = N (g)S(g)Kn(g), (15)

where N (g) and S(g) are as before, K is complex conjugation
in the {|α〉} basis, and n(g) is 0 for unitary elements of G

and 1 for antiunitary elements. If we define the action of
G on functionals as gF[α] = (−1)n(g)F[g−1α], all of the
steps in the above derivation can be carried through without
change, except that there is a residual nontrivial action of G

on U(1). Thus, the classification is Hd+1(G,U(1)), but with
U(1) considered as a nontrivial G module, with antiunitary
elements acting by complex conjugation.

II. EXAMPLE: “CHIRAL” SYMMETRY ON THE
EDGE OF A (2 + 1)-D SPT

It was shown in Ref. [50] that the action of the symmetry on
the gapless edge of some nontrivial (2 + 1)-D SPTs is “chiral,”
as expressed (for example) in the fact that it acts differently
on the left- and right-moving fields. Let us show how this
corresponds to a local but not on-site symmetry and calculate
the corresponding 3-cocycle. We focus on the simplest case
where the symmetry is just Z2, but similar arguments can be
made for Zn or U(1) symmetries.

We assume the low-energy theory of the (1 + 1)-D edge is
described by a massless boson field ϕ with compactification
radius 2π , i.e., a bosonic Luttinger liquid, with Lagrangian
density

L = g

2π

[
1

v
(∂tϕ)2 − v(∂xϕ)2

]
. (16)

We introduce the dual boson field θ according to ∂xθ = 2π,
where  is the canonical momentum conjugate to ϕ. The
commutation relation for θ and ϕ is, therefore,

[ϕ(x),θ (x ′)] = −2πi�(x − x ′), (17)

where �(x) is the unit step function. Note that this definition,
together with the fact that total angular momentum is quantized
to integers, implies that θ is also an angular variable defined
modulo 2π .

Now, suppose that the fields ϕ and θ transform under Z2

according to

ϕ → ϕ + nπ, θ → θ + mπ. (18)

Here (n,m) = (1,0) corresponds to a normal on-site π rotation
of the boson field. On the other hand, as we shall see, (n,m) =
(1,1) is the non-on-site symmetry that we would expect at
the edge of a nontrivial Z2 SPT. Also, m �= 0 corresponds to

a superficially “chiral” symmetry in the sense that the left-
and right-moving fields φL,R = ϕ ± θ transform differently
under Z2, but in the Z2 case [though not for Zn or U(1)] this
chirality is not physically meaningful because θ ∼ θ + 2π so
m is actually only defined modulo 2.

From the commutation relations (17), one can show that
Eq. (18) is effected by the unitary operator U = (−1)nL+mW =
NmSn, where L is the total angular momentum and W is the
total winding number, and we define

N = exp

(
− i

2

∫
∂xϕ dx

)
, (19)

S = exp

(
− i

2

∫
∂xθdx

)
. (20)

We now define the restriction U[a,b] = Nm
[a,b]S

n
[a,b] to a finite

interval [a,b], where

N[a,b] = exp

(
− i

2

∫ b

a

∂xϕ dx

)
, (21)

S[a,b] = exp

(
− i

2

∫ b+ε

a−ε

∂xθ dx

)
, (22)

where we have made use of our freedom to redefine the
restriction near the boundary of [a,b] to shift the end points
of the second integral by some small ε > 0. This ensures
that N[a,b] and S[a,b] commute. Hence, we find that U 2

[a,b] =
N2m

[a,b]S
2n
[a,b], where

N2
[a,b] = exp

(
−i

∫ b

a

∂xϕdx

)
(23)

= eiϕ(a)e−iϕ(b), (24)

S2
[a,b] = exp

(
−i

∫ b+ε

a−ε

∂xθdx

)
(25)

= eiθ(a−ε)e−iθ(b+ε). (26)

Thus, as expected, we find that � ≡ U 2
[a,b] =

[einθ(a−ε)eimϕ(a)][e−inθ(b+ε)e−imϕ(b)] ≡ �a�b still acts
nontrivially at the end points a and b even though U 2 = 1.

In the present example, Eq. (4) takes the form

U[a,b]�U−1
[a,b] = �, (27)

and this equality can readily be verified directly from the forms
of U[a,b] and � given above. On the other hand, the restriction
�a satisfies this equation, in general, only up to a phase factor.
Indeed, we find

U[a,b]�aU
−1
[a,b] = e−inθ(a−ε)e−imϕ(a)−imnπ = (−1)mn�a. (28)

Hence, we find that the 3-cocycle associated with the realiza-
tion ofZ2 is given by ω(X,X,X) = (−1)mn and ω(g1,g2,g3) =
1 for (g1,g2,g3) �= (X,X,X), where X is the generator of Z2.
For m = n = 1 this corresponds to a nontrivial 3-cocycle, and
the corresponding representation of Z2 would appear at the
boundary of a nontrivial (2 + 1)-D Z2 SPT.
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III. PROOF OF SEPARATION OF PHASES IN (2 + 1)-D

In this section, we outline how one can use the ideas
given above to prove for (2 + 1)-D systems that systems
characterized by different elements of the cohomology group
H 3(G,U(1)) must be separated by a bulk phase transition; the
details are left to the appendixes. (Unfortunately, the proof
cannot be applied in higher dimensions due to the lack of a
completely general characterization of anomalous symmetry.)

First, as we want to make statements about bulk properties,
we need to reformulate the ideas of Sec. I in a slightly
different way, in terms of properties of the ground state in
the bulk rather than the low-energy physics at the edge. We
show in Appendix C that, given a general ground state |�〉
in some SPT phase in d spatial dimensions (d � 2), and a
region A in the bulk, one can find a representation V∂A(g)
of the symmetry group, which acts inside A, but only near
the boundary ∂A, such that UA(g)|�〉 = V∂A(g)|�〉. Here
UA(g) is the restriction of the symmetry onto the region A

(which can be defined consistently since we are assuming the
symmetry is represented on-site in the bulk.) The physical
interpretation of this result is simply that, as |�〉 is invariant
under U (g); therefore, UA(g)|�〉 can differ from |�〉 only near
the boundary ∂A. This representation V∂A(g) can be anomalous
in the same way as the representation of the symmetry on a
physical edge, and the anomaly can be classified using the
method of Sec. I.

The final result that we need is that the element of
H 3(G,U(1)) is independent of the choice of region A, even
in the presence of spatial inhomogeneity; this is also proved in
Appendix C . (Actually, as discussed in that appendix, we only
prove this for certain regions A, but that is sufficient for the
following discussion.) This allows us to prove that two systems
S and S ′ characterized by different elements of Hd+1(G,U(1))
must be separated by a phase transition [51]. Indeed, consider
two systems connected without a phase transition. Then,
without closing the gap, one can create an interpolated system
that looks like S on some region A and like S ′ on another
region A′ (see Appendix C for a careful proof of this fact).
It therefore follows that the same element of Hd+1(G,U(1))
must be obtained in both cases. By a similar argument, one
also finds that a spatial boundary between two different SPT
phases must either be gapless or break the symmetry.

IV. NONLINEAR σ MODELS

It has been found [14,15,52,53] that a quite general way
to reproduce the essential features of various SPT phases
is through the field theory of a quantum nonlinear σ model
(NLσM), where topological properties of the SPT phase arise
out of the bulk θ term included in the action. Here we show
in such models, the presence of the θ term indeed leads to
an obstruction to on-site representation of the symmetry on
a spatial edge, in such a way as to allow a straightforward
calculation of the corresponding element of the cohomology
group.

For example, consider in D space-time dimensions (i.e.,
D = d + 1) a NLσM for the (D + 1) component vector
field n, constrained to have unit norm; i.e., n lies on a
unit D sphere. The (Euclidean) action can be written as

the sum of a dynamical contribution Sdyn and a topological
contribution Stop,

Sbulk = Sbulk
dyn + Sbulk

top , (29)

Sbulk
dyn = 1

g

∫
dDx ∂μn · ∂μn, (30)

Sbulk
top = i�

1

VD

∫
n∗(ωV ), (31)

where VD is the volume of the unit D sphere and n∗(ωV ) is the
pullback through the map n of the volume form on the unit D

sphere. Written componentwise, this amounts to

Sbulk
top = i�

1

VD

∫
dDx εa1,...,aD+2na1∂0n

a2∂1n
a2 · · · ∂D−1n

aD ,

(32)

where εa1,...,aD+1 is the (D + 1)-dimensional Levi-Civita sym-
bol. The θ term Sbulk

top measures a topologically invariant
“generalized winding number” in πD(SD) ∼= Z and for space-
times without a boundary is quantized to integer multiples of
i�. Hence, we implement the requirement that SPT phases be
trivial in the bulk by setting � to be an integer multiple of 2π ,
thus ensuring that Sbulk

top makes no contribution to the partition
function

∫
D[n]e−S . In fact, although we have given a specific

form of Sbulk
dyn for concreteness, it will not be important for our

analysis as the topological features of the system are entirely
captured by Sbulk

top .
Although the inclusion of Sbulk

top has no effect on the partition
function in the bulk, it does play a crucial role once we
introduce a spatial edge. In that case Sbulk

top depends (mod 2πi)
only on the values of n on the boundary (to see this, note
that any two extensions into the bulk can be connected at the
boundary to give a closed surface, on which e−Stop = 1); the
action on the boundary is referred to as the Wess-Zumino-
Witten action SWZW. Thus, we can integrate out the gapped
bulk to give an effective action for the low-energy excitations
on the edge of the form

exp(−Sedge) = exp
(−S

edge
dyn − SWZW

)
, (33)

where S
edge
dyn = ∫

ddxLedge
dyn is some unimportant dynamical

term derived from Sbulk
dyn . Note that one can then write SWZW =∫

ddxLWZW for some local Lagrangian density LWZW defined
on the edge. However, there is no canonical way to do so.

Now let us consider the symmetry group G in the bulk
corresponding to some invertible action n → gn for g ∈ G.
We demand that Sbulk

dyn and Stop be locally invariant under the
symmetry, i.e., that the integrands in Eqs. (30) and (31) must
be invariant, not just the integral. Then we expect that S

edge
dyn

is also locally invariant under the symmetry. SWZW must also
be globally invariant (at least, modulo 2πi), but, in general,
we do not expect it to be locally invariant. Indeed, because
there is no canonical choice for LWZW, one expects that the
symmetry will transform LWZW to a different Lagrangian that
nevertheless integrates to the same action (modulo 2πi) in a
space-time without boundary.

We now show that, after quantization, the lack of local
invariance of SWZW implies the non-on-site nature of the
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unitary representation of the symmetry on the edge. We assume
that after quantization the Hilbert space is spanned by a basis
of states labeled by spatial configurations of n at a fixed
time. We can calculate the imaginary-time propagator e−βH

(or equivalently, the Hamiltonian H ) by a path integral

〈n′|e−βH |n〉 =
∫

D[n(τ )]e−Sedge{0,β}, (34)

where

Sedge{0,β} =
∫

dD−2x

∫ β

0
dτ

(
Ledge

dyn + LWZW
)

(35)

is the action evaluated on a space-time with temporal bound-
aries at τ = 0 and τ = β. Now so far we only know that SWZW

is globally invariant (modulo 2πi) on a space-time manifold
without boundary. Since SWZW is not locally invariant, in
the presence of a temporal boundary we can only conclude
that it will transform as SWZW{0,β} → gSWZW{0,β} (g ∈ G),
where the difference can be expressed in terms of the field
configurations at the temporal boundaries,

gSWZW{0,β} − SWZW{0,β}
= iN (g)[n(τ )] − iN (g)[n(0)] (mod 2πi), (36)

where N (g) is a functional of the field configuration at a fixed
time.

Equation (36) implies that the edge Hamiltonian is not
invariant under the naive on-site implementation of the symme-
try, S(g) = ∫

D[n] |gn〉〈n|. Indeed, combined with Eq. (34),
we find

〈n′|S(g)†e−βH S(g)|n〉 = eiN (g)[n′]−iN (g)[n]〈n′|e−βH |n〉 (37)

= 〈n′|N (g)†e−βH N (g)|n〉, (38)

where

N (g) =
∫

D[n]eiN (g)[n]|n〉〈n|. (39)

Hence, we see that the correct implementation of the symmetry
on the edge, which does commute with the Hamiltonian, is
U (g) = N (g)S(g). In general, there is no reason to expect
N (g) to be on-site, as we shall see. However, as we show
in Sec. IV A, it is necessarily local. Thus, the symmetry
on the edge is a local but non-on-site symmetry precisely
of the form considered in Sec. I C, and we can calculate
the appropriate element of the cohomology group using the
reduction procedure of that section.

We can also consider antiunitary symmetries by a straight-
forward extension of the above considerations. Specifically, an
antiunitary symmetry is implemented in the action by n → gn,
i → (−1)n(g)i. Then we find that the representation of the
symmetry on the edge is U (g) = N (g)S(g)Kn(g), with N (g)
and S(g) as before and K complex conjugation in the n basis.

A. Calculating the cocycle in nonlinear σ models using U(1)
cochains on the target manifold

A particularly compact and elegant way of calculating the
cocycle for NLσMs is by interpreting the θ term in terms of
a U(1) cochain defined on the target manifold T = SD . First
we need to state some definitions. We refer to k-dimensional
oriented integration domains on a manifold T as k chains.

Given a k chain A, we denote the opposite orientation by −A,
and we can also define a sum operation on k chains in the
natural way, so that the k chains can be viewed as an additive
group. (If one wanted to be rigorous, one would define k chains
as formal linear combinations of oriented k simplices with
integer coefficients.) A U(1) k cochain is a linear mapping from
k chains to U(1) [which we here write additively as R/(2πZ)].
(Note that we are here referring to topological cochains on
a manifold; these should be distinguished from the group
cochains that are used to construct the group cohomology
of some group G.) In particular, each differential k-form ω

induces a U(1) k cochain by integration,

ω(A) =
(∫

A

ω

)
mod 2π, (40)

where in an abuse of notation we denote the k form and the
U(1) k cochain by the same symbol. Any U(1) k cochain ω

on the target manifold T can be used to define a local U(1)-
valued functional Fω for a T -valued field n on a k-dimensional
space(-time) manifold M via

Fω[n] = ω(n(M)), (41)

where n(M) is the image of M , viewed as a chain, under the
mapping n. If ω is derived from a differential k form, this
is equivalent to defining Fω as the integral of the pullback,
Fω[n] = [

∫
M

n∗(ω)] mod 2π . In particular, the topological θ

term action of Eq. (31) is a special case of Eq. (41).
We define the coboundary operator d which maps k

cochains to (k + 1) cochains according to

(dω)(A) = ω(∂A), (42)

where ∂A is the boundary of A. We call a k cochain ω exact if
it can be written as ω = dκ for some (k − 1) cochain κ . Our
central tool is the following result.

Lemma 1. A U(1) k cochain ω on a manifold T is exact
if and only if ω(C) = 0 for all closed (i.e., boundaryless) k

chains C.
Proof. See Appendix D.
The property that ω(C) = 0 for closed C, in turn, is

equivalent to requiring of the induced functional Fω that it
vanish on all closed space-time manifolds. If this is satisfied,
then one expects that for a space-time manifold M with
boundary, Fω[n] should depend only on the values of n on
the boundary ∂M . Indeed, given ω = dκ , one finds that

Fω[n] = (dκ)(n(M)) (43)

= κ(∂n(M)) (44)

= κ(n(∂M)) (45)

≡ Fκ [n(∂M)]. (46)

Given the above considerations, one can show that the
procedure for obtaining the edge symmetry from the θ term,
and then the cocycle from the edge symmetry, can be reduced
to a simple prescription in terms of the U(1) cochains defined
on the target manifold, with no reference to the space-time
manifold at all, which we now describe (see Table I).

We start from a topological action Stop on a space-time-
manifold M with d-dimensional target manifold T , written as
Stop[n] = Fω(0) [n] = ω(0)(n(M)), where ω(0) is an exact U(1)
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TABLE I. A tabular representation of the reduction process to
extract a U(1) group 3-cocycle ν = ω(3) starting from a symmetric
topological term in (2 + 1)-D represented by a topological U(1)
cochain ω(0). Each cell in the table is specified by a row label l and
a column label k and corresponds to a set of k cochains labeled by l

group elements. Going left in the table corresponds to applying the
topological coboundary operator d , whereas going down corresponds
to applying the group coboundary operator δ defined by Eq. (47).
These two operations commute, so the table can be interpreted as a
commutative diagram.

d
3 2 1 0

0 ω(0) (0)

1 0 ω(1) (1)

2 0 ω(2) (2)

3 0 ω(3)

4 0

d cochain on T , which is invariant under the action of the
symmetry, gω(0) = ω(0). Here we defined the action of the
symmetry on a cochain by gω(A) = (−1)n(g)ω(gA), where
n(g) is 1 for antiunitary elements and 0 for unitary elements,
and the action of g on chains is derived from its action on
n. Hence, we have δ0ω

(0) = gω(0) − ω(0) = 0, where we have
introduced the group coboundary operators δk (not the same
as the topological coboundary operator d defined above) in the
same way as Eq. (13) above, namely,

(δkω
(k))(g1, . . . ,gk+1)

= g1ω
(k)(g2, . . . gn) + (−1)k+1ω(k)(g1, . . . ,gk)

+
k∑

i=1

(−1)iω(k)(g1, . . . ,gi−1,gigi+1,gi+2, . . . ,gk+1).

(47)

Given a set of exact (d − k) cochains ω(k) indexed by
k group elements which satisfy δkω

(k) = 0, we can write
ω(k) = dκ (k) for some set of (d − k − 1) cochains κ (k). Now
δkω

(k) = 0 implies that, for closed chains C, (δkκ
(k))(C) =

(δkω
(k))(∂C) = 0. Hence, we can define ω(k+1) = δkκ

(k) which
is exact and satisfies δk+1ω

(k+1) = 0. The sequence terminates
when we reach ω(D), which is a set of 0 cochains indexed by
k group elements. Now a 0 cochain is essentially just a scalar
U(1) function defined on the target manifold T . However, the
fact that ω(D) evaluates to zero for the closed 0 chain a − b

(where a and b are any two points) implies that the ω(D) are
constant U(1) functions. Thus, ω(D) defines a mapping from D

group elements to U(1) satisfying δDω(D) = 0, which defines
an element of the group cohomology group HD(G,U(1)).

B. Examples

The possible symmetry transformations that leave the
Lagrangian of Eq. (29) invariant in space-time dimensions
D = 2,3,4 were constructed in Ref. [53] for a variety of dif-
ferent symmetry groups. Our framework allows, in principle,

for the element of the cohomology group HD(G,U (1)) to be
calculated in all of these cases. Let us consider a few examples.

1. ZT
2 in (1+1)-D

We write the symmetry group as ZT
2 = {1,T}. The target

manifold is S2 and we work in spherical coordinates n =
(cos θ, sin θ cos ϕ, sin θ sin ϕ). The action of T on n is Tn =
−n, or in terms of the spherical coordinates, θ → π − θ,ϕ →
ϕ + π . The initial U(1) cochain can be written in terms of a 2
form

ω(0) = �
1

4π
sin θ (dθ ∧ dϕ). (48)

As ω(0) integrates to 0 (mod 2π ) over the whole 2 sphere, it
follows that it can be written as ω(0) = dκ (0) for some U(1)1
cochain κ (0). We can write κ (0) explicitly as

κ (0) = �
1

4π
(1 − cos θ )dϕ. (49)

Treating κ (0) as a differential 1 form and taking the exterior
derivative, one recovers Eq. (48). When written as a 1 form,
κ (0) appears to have a singularity at θ = π . To show that, as
a U(1) 1 cochain, κ (0) is actually well defined and satisfies
dκ (0) = ω(0) globally, it is sufficient to check that

∫
C

κ (0) = 0
(mod 2π ) for a loop C of infinitesimal size encircling the
apparent singularity at θ = π , which is indeed the case.

Now, following the general prescription of Sec. IV A, we
define ω(1) = δ0κ

(0). The only nontrivial component is

ω(1)(T) = Tκ (0) − κ (0) (50)

= − �

4π
(1 + cos θ ) − �

4π
(1 − cos θ ) (51)

= − �

2π
dϕ, (52)

from which we immediately read off that ω(1) = dκ (1), where
κ (1) = − �

2π
ϕ [which is well defined as a U(1) 0 cochain

because ϕ is defined modulo 2π ]. Thus, we can define the
cocycle ν = δ1κ

(1), and the only nonzero component is

ν(T,T) = Tκ (1) + κ (1) (53)

= �

2π
{ϕ + π − ϕ} (54)

= �

2
. (55)

Thus, if � is an odd multiple of 2π , this 2-cocycle corresponds
to a nontrivial SPT phase, with the zero-dimensional boundary
transforming projectively under the symmetry, i.e., as a
Kramers doublet with T2 = −1. On the other hand, if � is
an even multiple of 2π , we have a trivial SPT phase with
the edge transforming as T2 = 1. Thus, by different choices
of � one recovers both elements of the cohomology group
H 2(ZT

2 ,U(1)) ∼= Z2.

2. Z2 in (2+1)-D

We write the symmetry group as Z2 = {1,X}. The tar-
get manifold is S3 and we work in generalized spherical
coordinates n = (cos θ, sin θn2), where n2 ∈ S2. The action
of X on n is Xn = −n, or in terms of the generalized
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spherical coordinates θ → π − θ,n2 → −n2. The initial U(1)
cochain is

ω(0) = �
1

V3
sin2 θ (dθ ∧ ωV,2), (56)

where V3 is the volume of the 3 sphere, and ωV,2 is the volume
form for n2. We then find that ω(0) = dκ (0), where

κ (0) = �
1

V3

(∫ θ

0
sin2 x dx

)
ωV,2. (57)

We observe that V3 can be expressed as (V2 = 4π ),

V3 = V2

∫ π

0
sin2 θ dθ. (58)

From this one can show that κ (0) is well defined despite the
apparent singularity at θ = π . Now the only nontrivial element
of ω(1) = dκ (1) is

ω(1)(X) = Xκ (0) − κ (0) (59)

= �
1

V3
ωV,2

∫ π

0
sin2 xdx (60)

= �
1

4π
ωV,2 (61)

[here we used Eq. (58) and the fact that ωV,2 is odd under
n2 → −n2]. In fact, this is identical to Eq. (48). The reduction
process then proceeds nearly identically to that in Sec. IV B
1 above and one finds that the only nonzero component of the
3-cocycle is

ν(X,X,X) = �

2
. (62)

Thus, one recovers both elements of H 3(Z2,U (1)) ∼= Z2 for
� an odd or even multiple of 2π , respectively.

V. LATTICE MODELS OF SPT PHASES

In Ref. [13], the classification of SPT phases in d spatial
dimensions was based on an explicit construction of a field
theory for a (d + 1)-dimensional discrete space-time for each
element of the cohomology group Hd+1(G,U(1)). Although a
discrete space-time is perhaps hard to interpret physically, the
construction of Ref. [13] can also be used to derive a ground-
state wave function on a spatial lattice; a gapped Hamiltonian
with this wave function as its ground state constitutes an
(albeit unrealistic) lattice Hamiltonian realizing the SPT phase.
Hence, it is worthwhile to show that the symmetry on the
edge of such of a lattice model is indeed classified under
our scheme by the same element of the cohomology group
that was used to construct the wave function. We do this in
Appendix E . In particular, this shows that every element of
the cohomology group Hd+1(G,U(1)) can be realized in an
explicit lattice model.

VI. BEYOND THE COHOMOLOGICAL CLASSIFICATION

It is now well established [15,26,28,54,55] that in (3 + 1)-D
there exists an SPT phase with respect to time-reversal symme-
try that is beyond the standard cohomological classification.
The reason why this phase is outside the cohomological
classification can be readily understood, as follows. Deriving

the cohomological classification using arguments such as
those presented in this paper requires at the very least the
assumption that the symmetry can be implemented locally on
a stand-alone realization of the edge. We now argue that the
beyond-cohomology phase violates this assumption.

Indeed, one possible surface termination for the beyond-
cohomology phase is a gapped “three-fermion” topological
phase F in which all three nontrivial particle sectors are
fermions. Any purely (2 + 1)-D realization of this phase is
necessarily chiral; that is, its conjugate F under time reversal
cannot be connected to F without a phase transition. (One
way to see this is to note that F and F have opposite edge
chiral central charges c− = ±4 and hence a spatial boundary
between them must be gapless. If we make the spatial variation
from F to F sufficiently slow, this gapless spatial boundary
must be interpreted as a bulk phase transition [56]. Suppose
that a state |�〉 within the phase F could be invariant under
a local antiunitary operation T . Then one can always write
T = UT, where T is the normal on-site representation of time
reversal, and U is a local unitary. However, then, since T|�〉
is in the conjugate phase F , we see that U is a local unitary
connecting F and F , which is a contradiction.

VII. FERMIONIC SYSTEMS

The restriction arguments given in Sec. I are quite general
and therefore can be equally well applied to fermionic systems,
at least in (2 + 1)-D. (Generalizing to higher dimensions
would require one to find an appropriate fermionic equivalent
of the special form of the symmetry considered in Sec. I C.)
Here we discuss, in general terms, the issues arising which
result in the fermionic classification differing from the bosonic
one, with reference to a particular example of a Fermion SPT
protected by a Z2 symmetry. As the general classification is
somewhat complicated, we we leave the details to Appendix F
. It would be interesting to see whether it can be related to the
“supercohomology” classification proposed in Ref. [27]. We
consider only cases in which the symmetry is unitary and on-
site. Thus, our classification will not include the well-known
cases of topological insulators and superconductors [4–6],
which are protected by nonunitary symmetries.

The first issue that needs to be considered is the privileged
role of fermion parity. Any local fermionic system must be
invariant under the fermion parity (−1)F , where F is the total
fermion number. Therefore, the fermionic symmetry group Gf

characterizing a fermion SPT always contains fermion parity.
This must commute with all the other elements of Gf if they
describe local symmetries. If we now consider the (1 + 1)-D
edge of a (2 + 1)-D SPT, by assumption it is realizable as
a strictly (1 + 1)-D local fermion system. As this (1 + 1)-D
system must always be invariant under the fermion parity of the
edge, we expect that, in the realization of Gf on the (1 + 1)-D
edge, the parity element is represented as the actual fermion
parity of the edge. (This can be verified by using the techniques
of Appendix A to construct the edge representation.) That is,
by contrast to the bosonic case, the fermionic symmetry group
contains an element that is always realized on site on the
boundary. Furthermore, even when we restrict and consider
the action of the symmetry on a finite interval, the restricted
operations must be local and therefore must still commute with
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the fermion parity (whereas there is no analogous requirement
in the bosonic case.)

The other main difference from the fermionic case occurs
when defining the restriction of the obstruction operator
�(g1,g2), which acts on a pair of points a and b, to a single
point a. At this point, one encounters a subtlety that was
glossed over in the bosonic treatment. �(g1,g2) is clearly local
in the sense (“locality preserving”) that it maps local operators
(including fermion creation and annihilation operators) to local
operators under Heisenberg evolution. [We can deduce this
from the fact that it is true for the UM (g)s and that the locality
preserving property is invariant under multiplication.] This
does not necessarily imply [57,58] that it is a local unitary in
the sense (“locally generated”) that it can be written as the
time evolution of a local fermionic Hamiltonian in a domain
containing only the two points a and b. In other words, we
might not be able to write �(g1,g2) = �a(g1,g2)�b(g1,g2),
where �a and �b are fermionic local unitaries acting only
near the points a and b. For example, the following unitary is
locality preserving but not locally generated,

� = (ca + c†a)(cb + c
†
b), (63)

where ca,b are the annihilation operators for fermions at
points a and b, respectively. If � is not locally generated,
this presents an obstacle for defining the restriction � → �a .
This problem was not present in the bosonic case because
for bosonic systems locality preserving actually does imply
locally generated for unitaries acting on a pair of points
(for unitaries acting on higher-dimensional regions this is no
longer the case [57,58].) Nevertheless, it is clear that, for
the � given by Eq. (63) there is still a natural definition of
“restriction” �a = (ca + c

†
a), even though �a is not really

local. More generally, it is always true that �(g1,g2) =
�a(g1,g2)�b(g1,g2), where �a(g1,g2) is either a fermionic
local unitary acting near the point a, or it is such a local unitary
multiplied by ca + c

†
a (and similarly for �b). In the latter case,

however, the restricted operations �a(g1,g2) and �b(g1,g2)
will anticommute rather than commute. This anticommutation
leads to fermionic corrections to the 3-cocycle condition
[Eq. (6)], to the the equivalence relation [Eq. (7)], and to the
product rule for “stacking” SPT phases; see Appendix F for
more details.

Example: Fermionic SPT with Z2 symmetry

In order to illustrate the ideas discussed above, let us
consider a (1 + 1)-D field theory which we expect to describe
the edge of a (2 + 1)-D fermionic SPT protected by a Z2

symmetry. (This Z2 is in addition to the always-present
fermion parity; thus, the full fermionic symmetry group is
Gf = Z2 × Z

f

2 .) This theory is the fermionic analog of the
bosonic edge we considered in Sec. II. The low-energy
physics is described by a gapless Dirac point (which can
emerge, for example, from a microscopic lattice model of
noninteracting electrons with a Fermi surface.) Thus, we define
the fermionic fields �R(x) and �L(x), corresponding to left-
and right-moving fermions (in terms of the original lattice
operators, these will be local on a length scale set by the energy
cutoff). We can define the corresponding number operators

NL,R = ∫
�

†
L,R�L,Rdx. The Hamiltonian is

H = J (NL + NR). (64)

The fermion parity is (−1)NR+NL and sends �L →
−�L,�R → −�R . We assume that the additional Z2 sym-
metry is given by U = (−1)NR ; thus, it acts only on the
right movers and sends �L → �L,�R → −�R . This forbids
perturbations like �

†
L�R , which would open up a gap,

suggesting that the gapless edge is protected by the symmetry.
Indeed, we show that the symmetry corresponds to a nontrivial
fermionic cocycle.

We can define the restriction of the Z2 symmetry to a finite
interval [a,b] according to

U[a,b] = exp

(
−iπ

∫ b

a

�
†
R�Rdx

)
. (65)

If we invoke the bosonization correspondences �
†
R�R ∼

∂xφR(x)/(2π ), �R(x) ∼ eiφR , we see that � ≡ U 2
[a,b] ∼

�R(a)�†
R(b) ≡ �a�b. Thus, U 2

[a,b] acts only on the end points
as expected. However, this is an example of the possibility
discussed above, of the operators �a carrying nontrivial
fermion parity.

The parity of �a , which we call σ (σ = −1 in the
current calculation) constitutes one aspect of the nontrivial
fermionic cocycle. The other aspect comes from the relation
U[a,b]�U

†
[a,b] = �. The restricted operations �a satisfy this

relation only up to a phase factor ω. To calculate this
phase factor, we need to regularize the integral Eq. (65) by
introducing a soft cutoff; that is, we replace Eq. (65) with

U[a,b] = exp

(
−iπ

∫ ∞

−∞
f (x)�†

R�Rdx

)
, (66)

where f is a smooth function such that f (x) = 1 for x ∈
[a + ε,b − ε], and f (x) = 0 for x < (a − ε) or x > (b + ε).
Using the bosonization correspondence to express U 2

[a,b] in
terms of ∂xφR and integrating by parts gives

�a ∼ exp

[
i

∫ a+ε

a−ε

f ′(x)φRdx

]
. (67)

Using the fact that φR → φR + f (x)π under U[a,b] gives

ω ≡ U[a,b]�aU
†
[a,b]�

†
a = exp

[
iπ

∫ a+ε

a−ε

f ′(x)f (x)dx

]
(68)

= exp

{
iπ

2

∫ a+ε

a−ε

d

dx
[f (x)]2

}
(69)

= i. (70)

The numbers (ω,σ ) = (i, − 1) constitute the fermionic
3-cocycle for the Z2 symmetry. We see that taking four
copies of the same edge leads to a trivial fermionic 3-cocycle
(in agreement with the results of Ref. [16] showing that
four copies of the theory under consideration can be gapped
out without breaking the symmetry). Furthermore, if one
applies the fermionic 3-cocycle condition (see Appendix F
), one sees that the only allowable values of the fermionic
3-cocycle are the ones obtained by taking copies in this
way, namely, (1,1), (i, − 1), (−1,1), and (−i, − 1). Thus,
we have recovered all the elements of a Z4 classification
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for fermionic SPTs with Gf = Z2 × Z
f

2 (which is the same
result obtained from supercohomology [27]). By contrast,
Refs. [38–40,59] obtained a Z8 classification for the same
Gf . The odd-numbered phases in this classification have an
odd number of gapless Majorana modes at the edge, each of
which is “half” of the gapless Dirac mode considered here. The
explanation for the discrepancy in the classification is that the
symmetry in these odd-numbered phases does not act locally
on the edge, and hence they are not captured by our approach.

VIII. CONCLUSIONS

Suppose we have a system whose bulk ground state is
invariant under a group G of symmetries that commute with
the Hamiltonian. Let us further suppose that there is an
energy gap to all bulk excitations and a concomitant finite
correlation length and that we can solve the Hamiltonian (with
a sufficiently powerful computer, for instance) for systems
much larger than the correlation length. Armed with this
information, we wish to determine if the system is in a SPT
phase and, if so, which one. In a 1D system on a finite interval,
we can identify an SPT phase by the presence of gapless
excitations at the ends of the system that transform under a
projective representation of the symmetry (or, alternatively,
the presence of such states in the bipartite entanglement
spectrum) [9–11,36]. However, how do we identify an SPT
phase in higher dimensions? One approach is to gauge the
symmetry G [25,30,60,61]. In 2D, the resulting theory has
anyonic excitations in the bulk [25]. By determining the
statistics of these excitations, one can deduce the SPT phase
of the ungauged system. In 3D, the gauged theory has anyonic
excitations on its surface [61] and extended excitations (e.g.,
vortex lines) in its bulk [30]. The topological properties of
surface and bulk excitations of the gauged model can be used
to identify the underlying SPT phase. However, this approach
involves modifying the system drastically, and it cannot be
used if all that we are given are the low-energy eigenstates of
the original Hamiltonian. Moreover, it may be more difficult,
as a practical matter, to solve the gauged model and deduce
its quasiparticles’ topological properties than it is to solve the
original Hamiltonian.

Here we take a different approach, which identifies an SPT
directly from the realization of the symmetry group G on its
boundary states. We consider d-dimensional SPTs for which
the restriction of G to the low-energy Hilbert space has a local
action on the (d − 1)-dimensional boundary of the system.
In such a phase, there may be an obstruction to restricting
the action of the symmetry to a (d − 1)-dimensional proper
submanifold of the boundary. To analyze such an obstruction,
we construct a new functional of two group elements by taking
a suitably defined coboundary of the restriction. This localizes
the obstruction to the (d − 2)-dimensional boundary of the
(d − 1)-dimensional proper submanifold of the boundary. We
then continue in the same fashion, either restricting a functional
of k group elements on a closed (d − k)-dimensional manifold
to a (d − k)-dimensional submanifold with boundary or
constructing the coboundary of a functional of k group ele-
ments on a (d − k)-dimensional submanifold with boundary,
thereby obtaining a functional of k + 1 group elements on a

(d − k − 1)-dimensional closed manifold. These functionals
are operators that act on the local Hilbert spaces of the
corresponding submanifolds. The resulting sequence of maps
between functionals terminates after we reach functionals of
d group elements acting on a single point; the coboundary
of such a functional must be an ordinary phase. Equivalence
classes of such sequences are classified by the cohomology
group Hd+1(G,U (1)) in d = 1,2 and, with an additional
assumption, in d � 3. Consequently, given the low-energy
states of the boundary (or large eigenvalue eigenstates of
the reduced density matrix for a bipartition of a system
without a real boundary), we can, in principle, determine the
corresponding element of Hd+1(G,U (1)). The Hamiltonian
need not take any special form; in fact, it is not even necessary
to know the Hamiltonian. As we have shown, this procedure
gives the expected results when applied to discrete [13] and
continuous [14,15,52,53] nonlinear σ models.

The obstructions classified by these arguments prevent
a model from being continuously deformed into a model
in which the symmetry is realized on the boundary in an
on-site manner. (By assumption, the symmetry can be realized
in an on-site manner in the full bulk theory, by grouping
multiple sites into a single site, for instance.) As a result
of the incorrigibly non-on-site nature of the symmetry, if
we try to gauge it, the resulting gauge theory will be
anomalous [28,45–47,62,63]. Only the action of the symmetry
on the whole system, bulk and edge together, can be gauged in
an anomaly-free fashion. A simple example is a (2 + 1)-D U(1)
SPT, which is very similar to the Z2 case discussed in Sec. II.
Such a state is a bosonic integer quantum Hall state [52]. If the
theory is gauged, the edge effective Lagrangian takes the form
Ledge = g

2π
(∂μϕ − nAμ)2 + m

2π
Aμεμν∂νϕ. Charge is no longer

conserved at the edge since an electric field along the edge
will cause charge to flow from the bulk to the edge. Following
Laughlin [64], we can understand this in an annular geometry.
By adiabatically increasing the flux through the center of the
annulus by 2π , the charge at the outer edge is increased by
2nm, the integer (necessarily even in a bosonic SPT) that
characterizes the Hall conductance. The 3-cocycle obtained
by our construction reflects this charge pumped to the edge,
as may be seen by noting that a U(1) transformation applied
to a finite interval along the edge is equivalent to applying
equal and opposite gauge fields at the ends of the interval [65].
Since they are equal and opposite, such gauge fields cannot
increase the total charge on the edge, but if we focus on the
charge to the left of an arbitrary point in the middle of the
interval, then this increases by 2nm when the gauge field
winds by 2π . The restriction �a defined in Eq. (3) measures
such a charge [66]. Meanwhile, UM applies gauge fields at
the ends of the interval. Then, according to the definition (5),
the cocycle measures accumulated charge in response to this
change in gauge field. We expect that similar reasoning can
relate our constructions to anomalies in higher dimensions and
for discrete symmetries.

In this paper, we have confined our attention to “internal”
symmetries. It would be interesting to extend them to space-
group symmetries. States of free fermions protected by in-
version symmetry [67,68], time-reversal symmetry combined
with a point group symmetry [69], or a rotational symmetry
alone have been classified [70]. With the methods described
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here, it might be possible to extend these ideas to interacting
fermion systems and to bosonic systems in which a space
group symmetry, projected to the low-energy boundary theory,
maps sites to sites and then has an additional “internal” action
that is non-on-site. However, care must be taken to consider
a boundary that respects the space group symmetry and to
consider a sequence of submanifolds (which are, presumably,
not connected manifolds) that also respects the symmetry.

We have given a prescription that, in principle, allows one
to identify an SPT phase, given its ground-state wave function,
and we have shown how to apply it to some long-wavelength
effective field theories and exactly soluble lattice models.
However, how useful can this prescription be in practice, given
an arbitrary, perhaps experimentally motivated, model? This
remains to be seen. However, ground-state wave functions
with tensor-network descriptions are natural candidates for the
reduction procedure [44]. A numerical implementation would
open an important avenue for future research.

Conversely, we have shown in Sec. V and Appendix E
that each SPT phase in the cohomological classification has
a representative wave function which is the ground state
of some lattice Hamiltonian. However, these Hamiltonians
are certainly not expected to describe any experimentally
realizable systems; finding more realistic Hamiltonians giving
rise to SPT phases is an important open problem.

As noted above, our construction leads to Hd+1(G,U (1))
in d � 3 provided we make an additional assumption: There
exists a local basis for the Hilbert space of the (d − 1)-
dimensional boundary in which the symmetry acts on the
boundary in an on-site manner, except for a diagonal part which
cannot be made on site. This assumption holds in a system that
is described by a d-dimensional nonlinear σ model with a θ

term at long wavelengths [14,15,52,53] since the symmetry
acts in an on-site manner on all gradient energy terms in the
(d − 1)-dimensional boundary effective action and non-on-site
only on the Wess-Zumino term, which only enters the phase
of the ground-state wave function. However, it remains an
interesting open question whether there are SPT phases in three
dimensions that violate this assumption and, consequently,
realize the aforementioned nontrivial sequence but in a manner
that is not classified by group cohomology. Such an exception
to a cohomological classification, if it exists, would be distinct
from the so-called “beyond cohomology” SPT phases [15],
which occur due to the violation of a different assumption, that
the symmetry is realized locally (but not necessarily on-site)
at the boundary of the system. In beyond-cohomology SPT
phases, the symmetry is realized in an inherently nonlocal
manner at the boundary of the system. Our methods do not
enable us to classify such phases; once the condition of locality
is relaxed, a very different approach may be necessary.

This comment also applies to the most famous SPT phase,
the 3D time-reversal-invariant topological insulator [71–73],
where time reversal acts in an inherently nonlocal manner at
a 2D surface. However, there are fermionic SPT phases in
which the symmetry is realized locally on the boundary, and
these can be classified along the lines discussed in Sec. VII.
Carrying out this classification to completion and relating it
to the notion of “supercohomology” [27] is an important goal
for future work. We remark that dimensional reductions have
previously been employed in the classification of fermionic

SPT phases [33,74], and it would be interesting if a connection
could be drawn with the reduction procedure described here.

Finally, we note that symmetry-enriched topological (SET)
phases [60,75–79] generalize SPT phases to systems with
topological order. In SET phases, symmetry realization in-
teracts nontrivially with the fusion and braiding properties of
anyons, as already occurs in topological phases at the (2 + 1)-
D boundary of a (3 + 1)-D SPT. The possible symmetry
fractionalization patterns in (2 + 1)-D correspond to different
projective representations of the anyons and are classified
by H 2(G,A), where A is the group of Abelian anyons. It is
possible that an extension of our methods can also be applied to
the analysis of symmetry fractionalization in (3 + 1)-D SET
phases which have topological excitations occupying closed
loops.
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APPENDIX A: EXPLICIT CONSTRUCTION
OF THE EDGE THEORY

In this appendix we give an explicit proof of the property
that the edge theory of an SPT in d spatial dimensions can
always be realized in a strictly (d − 1)-dimensional system
and show, given certain assumptions, how to construct the
representation of the symmetry in this realization.

By definition, the ground state of an SPT phase is gapped
and not topologically ordered, which means it can be connected
to a product state by a local unitary. Indeed, let D be the
local unitary which turns the bulk ground state |�gr〉 on a
boundaryless spatial region product state |φ〉⊗N , and let D̃ be
the restriction of D to a spatial region with boundary. Any
low-energy state |�〉 associated with the boundary must be
identical to |�gr〉 far from the boundary. It follows that D̃|�〉
must be identical to |φ〉⊗N far from the boundary. Hence, D̃|�〉
is simply a direct product with copies of |φ〉 in the bulk of some
state |�〉B defined on a strip B near the boundary,

D̃|�〉 = |�〉B ⊗ |�〉Bc , (A1)

where Bc is the complement of B and |�〉Bc is a prod-
uct state of |φ〉 on every site in Bc. Thus, the states
{|�〉B : |�〉 a low-energy boundary state} constitute a (d −
1)-dimensional realization of the boundary theory. One can
also apply the mapping D̃ to the original Hamiltonian for the
system with boundary in order to obtain a Hamiltonian for this
realization of the boundary theory.

Now suppose that the bulk ground state is invariant under
an on-site representation U (g) of the symmetry. As the local
unitary D is not required to have any particular properties
with respect to the symmetry, in general, it might not be easy
to determine how the symmetry acts on the boundary theory.
However, the task becomes easier if we make the following
simplifying assumption: We assume that D can be chosen to
commute with U (g) in the absence of boundary. (We empha-
size that this does not necessarily imply that we are considering
a trivial SPT phase. That would be only be true if we made the
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stronger assumption that D can be continuously connected to
the identity by a path which everywhere commutes with the
symmetry.) In fact, this assumption is always true in any SPT
phase described by the cohomological classification, because,
in particular, it is true for the ground states constructed via
the discrete topological term construction of Ref. [13] (see
Sec. V above.) This implies that it is also true for any other
ground state in the same SPT phase, since, by definition, any
two ground states in the same SPT phase can be related by a
symmetry-respecting local unitary.

Given this assumption, one can explicitly construct the
realization of the symmetry on the edge, as follows. That U (g)
and D commute in the absence of a boundary implies that
their restrictions Ũ (g) and D̃ to a region with a boundary
must commute up to boundary terms. Thus, D̃Ũ (g)D̃† =
WB(g)UBc (g), where WB(g) acts only in the strip B, and
UBc (g) is simply the restriction of U (g) into the complement
Bc. Hence, we find that

D̃{Ũ (g)|�〉} = D̃Ũ (g)D̃†D̃|�〉 (A2)

= WB(g)UBc (g)(|�〉B ⊗ |�〉Bc ) (A3)

= {WB(g)|�〉B} ⊗ |�〉Bc . (A4)

To get to the last line, we used the fact that UBc (g)|�〉Bc =
|�〉Bc . This follows from the fact that, without boundary, |φ〉⊗N

is invariant under U (g), since it is obtained from |�gr〉 [which
is certainly invariant under U (g)] by D which by assumption
commutes with U (g). Comparing Eq. (A4) with Eq. (A1), we
see that WB(g) is the representation of the symmetry on the
stand-alone realization of the boundary.

APPENDIX B: THE (2 + 1)-D REDUCTION PROCEDURE

Here we prove the two key properties of ω(g1,g2,g3) defined
by Eq. (5) in Sec. I B: first, that it must be a 3-cocycle, and
second, that up to equivalence it is independent of the choice
of restriction U (g) → UM (g).

We first make a general remark: The structure described in
Sec. I B is known in the mathematics literature as a crossed
module extension. Recall that a projective representation of a
group G corresponds to a central extension, which is an exact
sequence,

1 → U(1) → H → G → 1, (B1)

such that the image of U(1) is in the center of H . Similarly, a
crossed module extension is an exact sequence,

1 → U(1) → K
ϕ−→ H → G → 1, (B2)

along with a left action of H on K , represented by k �→ hk,
such that ϕ(k)k′ = kk′k−1 for all k,k′ ∈ K . It is a well-known
theorem in the mathematics literature [80–83] that the crossed
module extensions of G by U(1) are classified by H 3(G,U(1)).
The procedure described in Sec. I B for obtaining the 3-cocycle
ω(g1,g2,g3), as well as the proofs of the properties of ω

given below, are adapted from the proof of this classification
theorem given in Ref. [83]; however, the reader does not need
to understand the connection to crossed module extensions in
order to follow these proofs.

To prove that ω is a 3-cocycle, we calculate
�a(g1,g2)�a(g1g2,g3)�a(g1g2g3,g4) in two different ways.
First,

�a(g1,g2)�a(g1g2,g3)�a(g1g2g3,g4) (B3)

= ω(g1g2,g3,g4) × �a(g1,g2)UM (g1g2)�a(g3,g4)�a(g1g2,g3g4) (B4)

= ω(g1g2,g3,g4) × �a (g1,g2)UM (g1g2)�a(g3,g4)�a(g1,g2)�a(g1g2,g3g4) (B5)

= ω(g1g2,g3g4) × �(g1,g2)UM (g1g2)�a(g3,g4)�a(g1,g2)�a(g1g2,g3g4) (B6)

= ω(g1g2,g3,g4) × UM (g1)UM (g2)�a(g3,g4)�a(g1,g2)�a(g1g2,g3g4) (B7)

= ω(g1g2,g3,g4)ω(g1,g2,g3g4) × UM (g1)UM (g2)�a(g3,g4)UM (g1)�a(g2,g3g4)�a(g1,g2g3g4), (B8)

where we applied Eq. (5) twice. To get from Eq. (B6) to Eq. (B7) we used Eq. (3). To get from Eq. (B5) to Eq. (B6), we used the
fact that �(g,g′) can be written as a product of a contributions near a and contributions near b, which commute; it follows that
for any operator Xa localized near a,

�(g1,g2)Xa = �a (g1,g2)Xa. (B9)

Proceeding in a different way, we also have

�a(g1,g2)�a(g1g2,g3)�a(g1g2g3,g4) (B10)

= ω(g1,g2,g3) × UM (g1)�a(g2,g3)�a(g1,g2g3)�a(g1g2g3,g4) (B11)

= ω(g1,g2,g3)ω(g1,g2g3,g4) × UM (g1)�a(g2,g3)UM (g1)�a(g2g3,g4)�a(g1,g2g3g4) (B12)

= ω(g1,g2,g3)ω(g1,g2g3,g4)UM (g1){�a(g2,g3)�a(g2g3,g4)}�a(g1,g2g3g4) (B13)

= ω(g1,g2,g3)ω(g1,g2g3,g4)ω(g2,g3,g4) × UM (g1){UM (g2)�a(g3,g4)�a(g2,g3g4)}�a(g1,g2g3g4) (B14)

= ω(g1,g2,g3)ω(g1,g2g3,g4)ω(g2,g3,g4) × UM (g1)UM (g2)�a(g3,g4)UM (g1)�a(g2,g3g4)�a(g1,g2g3g4). (B15)

Comparing Eq. (B15) with Eq. (B8) we see that ω must obey the 3-cocycle condition

ω(g1g2,g3,g4)ω(g1,g2,g3g4) = ω(g1,g2,g3)ω(g1,g2g3,g4)ω(g2,g3,g4). (B16)

235137-13



DOMINIC V. ELSE AND CHETAN NAYAK PHYSICAL REVIEW B 90, 235137 (2014)

Next we prove independence from the choice of restriction U (g) → UM (g). Indeed, consider two restrictions, UM (g) and
ŨM (g) = �(g)UM (g), where �(g) is a local unitary acting near ∂M = {a,b}. Then we find that

ŨM (g)ŨM (g′) = �̃(g,g′)ŨM (gg′), (B17)

where

�̃(g,g′) = �(g)UM (g)�(g′)�(g,g′)�(gg′)−1. (B18)

It is obvious that the equivalence class of the 3-cocycle is independent of the choice of restriction � → �a , so we are free to
choose a restriction of �̃ such that

�̃a(g,g′) = �a(g)UM (g)�a(g′)�a(g,g′)�a(gg′)−1, (B19)

where �a(g) is the restriction of �(g) to the point a. Now we calculate

�̃a(g1,g2)�̃a(g1g2,g3)�a(g1g2g3) (B20)

= �̃a(g1,g2)�a(g1g2)UM (g1g2)�a(g3)�(g1g2,g3) (B21)

= �a(g1)UM (g1)�a(g2)�a(g1,g2)UM (g1g2)�a(g3)�a(g1,g2)�a(g1g2,g3) (B22)

= �a(g1)UM (g1)�a(g2)�a (g1,g2)UM (g1g2)�a(g3)�a(g1,g2)�a(g1g2,g3) (B23)

= �a(g1)UM (g1)�a(g2)�(g1,g2)UM (g1g2)�a(g3)�a(g1,g2)�a(g1g2,g3) (B24)

= �a(g1)UM (g1)�a(g2)UM (g1)UM (g2)�a(g3)�a(g1,g2)�a(g1g2,g3), (B25)

where we applied Eq. (B19) several times, and we also used, again, Eq. (B9) to go from Eq. (B23) to Eq. (B24). The final line
used the definition of ω, Eq. (5). On the other hand,

ŨM (g1)�̃a(g2,g3)�̃a(g1,g2g3)�a(g1g2g3) (B26)

= �a(g1)UM (g1)�̃a(g2,g3)�a(g1)−1�̃a(g1,g2g3)�(g1g2g3) (B27)

= �a(g1)UM (g1)�̃a(g2,g3)UM (g1)�a(g2g3)�a(g1,g2g3) (B28)

= �a(g1) UM (g1){�̃a(g2,g3)�a(g2g3)}�a(g1,g2g3) (B29)

= �a(g1) UM (g1){�a(g2)UM (g2)�a(g3)�a(g2,g3)}�a(g1,g2g3) (B30)

= �a(g1) UM (g1)�a(g2)UM (g1)UM (g2)�a(g3)UM (g1)�a(g2,g3)�a(g1,g2g3) (B31)

= ω(g1,g2,g3)�a(g1) UM (g1)�a(g2)UM (g1)UM (g2)�a(g3)�a(g1,g2)�a(g1g2,g3). (B32)

Comparing Eqs. (B32) and (B25), we find that

ŨM (g1)�̃a(g2,g3)�̃a(g1,g2g3) = ω(g1,g2,g3)�̃a(g1,g2)�̃a(g1g2,g3). (B33)

On the other hand, by definition, ω also satisfies Eq. (B33) with �̃a and ŨM replaced by �a and UM . Thus, it does not matter
whether we use the restriction UM or ŨM ; one obtains the same 3-cocycle ω.

APPENDIX C: COMPLETING THE PROOF OF
SEPARATION OF PHASES IN (2 + 1)-D

In this section, we fill in the details of the proof outlined
in Sec. III showing that (2 + 1)-D SPT phases corresponding
to different elements of the cohomology group H 3(G,U(1))
are necessarily separated by a phase transition. Although we
write the arguments in lemma-proof form, we emphasize that
we do not aim for mathematical rigor in our treatment of
locality; rigorous proofs could potentially be constructed based
on the arguments sketched here, but would require much more
careful estimates of how relevant quantities decay at large
distances.

The first result that needed to be proved was as follows.
Lemma 2. Let |�〉 be the ground state of an SPT phase in d

spatial dimensions captured by the cohomological classifica-
tion, and let U (g) be a local unitary representation of a group
G which leaves |�〉 invariant. Let UA(g) be the restriction of
U (g) to a region A. Then there exists a representation V∂A(g)

acting only in a strip near the boundary ∂A (and only within
the region A) such that UA(g)|�〉 = V∂A(g)|�〉.

Proof. We use the fact, discussed in Appendix A above,
that the state |�〉 can be transformed into a product state
|�〉 = |φ〉⊗N through a local unitary D that commutes with
U (g). Hence, as in Appendix A, if we define the restrictionDA,
it follows that DAUA(g)D†

A = WB(g)UA\B(g), where WB(g)
acts within a strip B near the boundary, and UA(g) and UA\B(g)
are the restriction of U (g) to the respective regions (and A \ B

is the region A with the strip B excluded.) It is clear (by a
similar argument to the one given above in Appendix A ) that
UA\B(g)|�〉 = |�〉, and hence we find that

UA(g)|�〉 = D†
ADAUA(g)D†

ADA|�〉 (C1)

= D†
AWB(g)UA\B(g)DA|�〉 (C2)

= D†
AWB(g)DA|�〉, (C3)
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where in going from Eq. (C2) to Eq. (C3) we used the
fact that DA|�〉 looks like |�〉 on A \ B, and there-
fore UA\B(g)DA|�〉 = DA|�〉. Hence, defining V∂A(g) =
D†

AWB(g)DA, we have the desired result. �
To proceed further, we also require the following lemma,

which states that a “trivial” state cannot be invariant under an
“anomalous” symmetry representation.

Lemma 3. Let |�〉 be some short-ranged entangled state, and
let U (g) be some local unitary representation of a symmetry
group G on a closed 1D subregion C of the space on which
|�〉 is defined, such that U (g)|�〉 = |�〉. Then the element of
the cohomology group H 3(G,U(1)) obtained via the reduction
procedure of Sec. I B is necessarily trivial.

Proof. Consider the restriction UM (g) to a subregion M

of C with boundary. Then UM (g)|�〉 looks like |�〉 away
from the boundary ∂M . This implies that, for short-ranged
entangled states |�〉 it must be the case that UM (g)|�〉 =
�∂M (g)|�〉 for some set of local unitaries �∂M (g) acting near
the boundary [25]. (To show this, one first establishes it for
a product state, from which one can show that it must also
apply for any state that can be turned into a product state by
a local unitary.) However, the restriction U (g) → UM (g) was
only defined up to unitaries at the boundary anyway, so we are
free to set UM (g)|�〉 = |�〉. Then, defining �(g1,g2) via

UM (g1)UM (g2) = �(g1,g2)UM (g1g2), (C4)

we can deduce that �(g1,g2)|�〉 = |�〉. Assuming that ∂M =
{a,b} where a and b are two points, we can choose the
restriction �a(g1,g2) such that �a(g1,g2)|�〉 = |�〉. Then,
given the definition [Eq. (5) in Sec. I B] of the 3-cocycle
ω(g1,g2,g3), one finds that ω(g1,g2,g3)|�〉 = |�〉, and hence
ω(g1,g2,g3) = 1. �

Now, let us consider a (possibly spatially inhomogeneous)
ground state |�〉 in an SPT phase, invariant under an on-site
symmetry representation U (g) of G. We choose two regions, A
and A′, separated by a quasi-1D buffer region K , as depicted
in Fig. 4. We assume that the combined region A ∪ K ∪ A′
has no boundary. We define V∂A(g) and V∂A′(g) according to
UA(g)|�〉 = V∂A|�〉 as per Lemma 2, and denote the corre-
sponding classes of 3-cocycles as [ω],[ω′] ∈ H 3(G,U(1)). We
want to show that [ω] = [ω′].

A

K

A′

FIG. 4. The regions A and A′ on which we can prove that the
anomalous symmetry on the boundary is classified by the same
element of H 3(G,U(1)). The orientations of the boundaries ∂A and
∂A′ are depicted with arrows.

First we need to discuss an important subtlety involved
in the definitions of [ω] and [ω′]. Specifically, the reduction
procedure of Sec. I implicitly depends on an orientation for
the 1D space in which the local unitaries act, in order to
provide a consistent convention for reducing from ∂M = {a,b}
to a single point a. Opposite orientations give rise to inverse
cocycles. We take the orientations of ∂A and ∂A′ to be derived
from that of A and A′; if we choose A and A′ to have the same
orientation (e.g., both specified by normal vectors pointing out
of the page), then ∂A and ∂A′ have opposite orientations, as
depicted by the arrows in Fig. 4.

We now observe that |�〉 is invariant under Vsum(g) =
UK (g)V∂A(g)V∂A′(g). Now it can readily be verified [using the
fact that the three components of Vsum(g) all commute with
each other] that the element of H 3(G,U(1)) characterizing
Vsum(g) is equal to [ω][ω′]−1. (The inverse comes from the
fact that we have defined the orientations of ∂A and ∂A′ to be
opposite.) On the other hand, by Lemma 3, this product must
be trivial; hence, we have established that [ω] = [ω′].

Finally, let us justify the following claim we made in
Sec. III.

Lemma 4. Consider two gapped systems, S and S ′,
connected without a phase transition and two well-separated
regions, A and A′. Then one can construct an interpolating
system such that the ground state looks like that of S on A and
like that of S ′ on A′.

Proof. Let |�〉 and |� ′〉 be the corresponding ground states.
Then there must exist a local unitaryD such thatD|�〉 = |� ′〉.
Define the restriction DÃ′ of D to some region Ã′ that contains
A′ well inside, but is also well separated from A. Then applying
DÃ′ to S gives a system with the desired properties. �

APPENDIX D: PROOF OF LEMMA 1

Here we give a proof of Lemma 1, which we stated in
Sec. IV A. The proof is based on a result called the universal
coefficient theorem [84]. Let us first state some definitions.
For a manifold T , we define Ck(T ,U(1)) to be the group
of closed U(1) k cochains, i.e., those cochains ω for which
dω = 0, and Bk(T ,U(1)) to be the group of exact cochains, i.e.,
those which can be written as ω = dκ for some κ . We define the
cohomology group Hk(T ,U(1)) ≡ Ck(T ,U(1))/Bk(T ,U(1)).
Similarly, we define Ck(T ) and Mk(T ) to be the group of
closed (i.e., boundaryless) and exact (can be expressed as a
boundary) k chains, respectively; and the homology group
Hk(T ) = Ck(T )/Mk(T ).

We observe that there is a natural homomorphism
γ : Hk(T ,U(1)) → hom(Hk(T ),U(1)) defined according to
[ω] �→ ([σ ] �→ ω(σ )) (where [· · · ] denotes equivalence
classes in cohomology or homology.) The universal coefficient
theorem states that γ is in fact an isomorphism. [In general,
replacing U(1) with an arbitrary Abelian group A, the universal
coefficient theorem states that the homomorphism is surjective
and its kernel is isomorphic to ext(G,A). However, U(1) is
divisible and it follows that ext(G,U(1)) = 0.]

Hence, we can prove the following.
Lemma 1. A U(1) k cochain ω on a manifold T is exact

if and only if ω(C) = 0 for all closed (i.e., boundaryless) k

chains C.
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Proof. If ω is exact, then ω = dκ , and hence ω(C) =
κ(∂C) = 0 for any closed k chain C.

Conversely, let ω be some k cochain such that ω(C) = 0 for
all closed A. Then ω is closed because (dω)(A) = ω(∂A) = 0.
Also, γ ([ω]) = 0. Since γ is an isomorphism, it follows that
the equivalence class [ω] = 0. Hence, ω is exact. �

APPENDIX E: CALCULATING THE ELEMENT OF THE
COHOMOLOGY GROUP FOR DISCRETE

NONLINEAR σ MODELS

The action for the field theories of Ref. [13] is a discrete
analog of the topological θ term that appeared in the continuous
NLσMs in Sec. IV. Recall from Sec. IV A that the θ term is
derived from a U(1) cochain defined on the target manifold T .
The same is true in the discrete case, except that the target space
T is now discrete, and so the interpretation of the “chains”
which are the arguments of the cochains needs to be revised.
Specifically, we define a k chain on T to be a formal linear
combination (with integer coefficients) of “k simplices,” which
are simply ordered k-tuples � = (�1, . . . ,�k) ∈ T ×k . Then
we can define the “boundary” operator ∂ acting linearly on k

chains by specifying its action on k simplices:

∂(�1, . . . ,�k) =
k∑

j=1

(−1)j−1(�1, . . . ,�j−1,�j+1, . . . ,�k).

(E1)

To construct the discrete topological term corresponding
to a U(1) cochain on T , one considers a triangulation of a
D-dimensional space time manifold M; that is, we build M up
out of D simplices. The degrees of freedom of the field theory
will live on the vertices of the simplices. We can represent the
D simplices in space time in terms of their vertices (x1, . . . ,xD)
[the abstract definition of boundary given in Eq. (E1) then
agrees with the geometrical definition]. Thus, we interpret
the manifold M as a formal D chain M = ∑

�(�1, . . . ,�D).
Given a U(1) D cochain ω on M , and a function α assigning a
value of the target space to each vertex, we can define the action

Stop = ω(α(M)) (E2)

≡
∑
�

ω(α(�1), . . . ,α(�D)). (E3)

We ensure that this action will vanish for closed space-time
manifolds M by requiring that ω(C) = 0 for any closed chain
C. By Lemma 1 in Sec. IV A above (which holds equally well
for discrete cochains), this is equivalent to requiring that ω be
exact.

If we have an action of a group G on the target space T , then
for each symmetric D cochain ω one can derive an element of
the group cohomology group HD(G,U(1)) by following the
exact same reduction procedure as we did in the continuous
case in Sec. IV A. One might, however, object that the physical
significance of this is not clear unless we specify some way
to quantize a field theory defined in discrete time. For this
reason, we want to reinterpret discrete field theories like those
of Sec. IV A as prescriptions for constructing lattice models.

Specifically, consider a triangulation of a closed d-
dimensional spatial manifold M (d = D − 1). At each vertex,
we put a quantum particle whose basis states are labeled by

the elements of the target space T . (Hence, each basis state of
the whole system is labeled by a function α mapping vertices
into T .) We can define a quantum state for the system by
“imaginary-time evolution” of a (d + 1)-dimensional discrete
topological action derived from an exact U(1) (d + 1) cochain
on T . This state is given by

|�〉 =
∑

α

�(α)|α〉, (E4)

�(α) = exp[iκ(α(M))], (E5)

where κ is a U(1) d cochain such that dκ = ω, and we define
κ(α(M)) in the analogous way to Eq. (E2) above. This wave
function is invariant under the on-site representation of the
symmetry,

S(g) =
∑

α

|gα〉〈α|. (E6)

Once we have the wave function, it is easy to construct a
corresponding local Hamiltonian for which it is the gapped
ground state. For example, if we let V = ∑

α �(α)|α〉〈α|
be the local unitary which creates |�〉 from the trivial
product state |�prod〉 = ∑

α |α〉, then, starting from a local
Hamiltonian Hprod which has |�prod〉 as its gapped ground
state, we can define H = VHprodV†.

In Appendix A, we give a general discussion of how to
decouple a bulk theory from its boundary in order to find
the form of the edge symmetry. Applying the method of
Appendix A to the situation at hand, one finds that the edge
symmetry takes the form Uedge(g) = N (g)S(g), where S(g) is
as in Eq. (E6) (but acting only on the degrees of freedom at
the edge), and

N (g) =
∑

α

exp
{
iκ (2)

g (α(∂M))
}|α〉〈α|, (E7)

where κ (2)
g is the U(1) d − 1 cochain such that dκ (2)

g = gκ − κ .
This is precisely the discrete version of Eq. (39). It is now easy
to see that the general reduction procedure of Sec. I C will
produce the same result as naively applying the method of
Sec. IV A for the discrete case.

It turns out that the reduction procedure can actually be done
explicitly starting from an arbitrary exact U(1) (d + 1) cochain
ω on a target space T symmetric under the action of a group
G. To see this, choose some arbitrary fixed t∗ ∈ T , and define

κ (k)(g1, . . . ,gk)(�1, . . . ,�d−k)

= ω
(
g−1

k . . . g−1
1 t∗, . . . ,g−1

1 t∗,t∗,�1, . . . ,�d−k

)
(E8)

and ω(k) = dκ (k). Using the fact that ω is invariant under
the symmetry and ω(C) = 0 for closed chains C, one
can show that (a) ω(0) = ω; and (b) δkκ

(k) = ω(k+1). Thus,
we have explicitly constructed the reduction sequence of
Sec. IV A, and we find that the resulting element of the group
cohomology group Hd+1(G,U(1)) is the equivalence class of
the following U(1) (d + 1) (group cocycle):

ν(g1, . . . ,gd+1) = ω
(
g−1

d+1 . . . g−1
1 t∗, . . . ,g−1

1 t∗,t∗
)
. (E9)

In particular, following Ref. [13], we can consider the case
where the target space T is the symmetry group G itself,
with G acting on itself by left multiplication. In that case,
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it is easy to see that Eq. (E9) actually defines a one-to-one
mapping between symmetric exact “topological” cochains
on the right-hand side and group cocycles on the left-hand
side. Thus, for every element of the group cohomology group
Hd+1(G,U(1)), one can construct a discrete topological term
in d + 1 space-time dimensions via Eq. (E9), and applying
our general reduction procedure returns the same element of
Hd+1(G,U(1)).

APPENDIX F: CLASSIFICATION OF (2 + 1)-D
FERMIONIC SPTS

Here we implement the ideas discussed in Sec. VII in
order to give a classification of (2 + 1)-D fermion SPT’s.
Consider a (2 + 1)-D fermionic SPT with fermionic symmetry
group Gf (represented on site), including an element π

corresponding to the fermion parity. All the symmetries
are assumed to be local, so π must commute with all the
elements of Gf . The fermion parity plays a such a key role in
the following argument that we find it convenient to write
elements of Gf in the form � (g)πm, where m = 0 or 1,
g ∈ Gb ≡ Gf /Z

f

2 , and � is an arbitrary identification of
elements of Gb with coset representatives in Gf , such that
� (g1)� (g2) = πλ(g1,g2)� (g1,g2). Here λ(g1,g2) takes values
0 or 1, and associativity implies that it must be a Z2 2-cocycle,
i.e., δλ = 0 [mod 2], where δ is the coboundary operator,

(δλ)(g1,g2) = λ(g1,g2) + λ(g1g2,g3) + λ(g2,g3)

+ λ(g1,g2g3). (F1)

Now we assume that the edge of this SPT can be realized
in a strictly (1 + 1)-D local fermionic system and be invariant
under a local unitary (but not necessarily on site) representation
of Gf . The fermion parity is still represented as  ≡ (−1)F

on the edge. We write the fermionic local unitary operator
implementing � (g)πm on the edge as U (g)m. Then U (g)
must satisfy

U (g1)U (g2) = λ(g1,g2)U (g1g2). (F2)

If we restrict the symmetry action to an interval M = [a,b],
then the restricted unitaries must satisfy Eq. (F2) up to a

boundary term �(g1,g2):

UM (g1)UM (g2) = �(g1,g2)λ(g1,g2)UM (g1g2). (F3)

Using the associativity of the UM ’s, combined with δλ = 0
and the fact that the UM ’s commute with , we see that the
�’s must satisfy an identical equation to the bosonic case:

�(g1,g2)�(g1g2,g3) = UM (g1)�(g2,g3)�(g1,g2g3). (F4)

As discussed in Sec. VII, in defining the restriction � → �a

we might obtain an operator carrying nontrivial charge under
fermion parity. We define the function σ (g1,g2) to be 0 if �a

is a fermionic local unitary (no charge under fermion parity)
acting at the point a, and 1 if it is equal to such a local unitary,
multiplied by (ca + c

†
a).

The restriction �a(g1,g2) must satisfy Eq. (F4) up to a phase
factor

UM (g1)�a(g2,g3)�a(g1,g2g3)

= ω(g1,g2,g3)�a(g1,g2)�a(g1g2,g3), (F5)

where ω is a U(1)-valued function. The pair of functions
(ω,σ ) constitutes the fermionic 3-cocycle. From Eq. (F5) we
immediately see that σ must be a Z2 cocycle, i.e.,

δσ = 0. (F6)

Following a similar derivation to the one in Appendix B that
gave the bosonic 3-cocycle condition [85], we also also find
that ω must obey

(δω)(g1,g2,g3,g4) = (−1)[σ (g1,g2)+λ(g1,g2)]σ (g3,g4), (F7)

where

(δω)(g1,g2,g3,g4) = ω(g1,g2,g3)ω(g1g2,g3,g4)−1

×ω(g1,g2g3,g4)ω(g1,g2,g3g4)−1

×ω(g2,g3,g4). (F8)

Equations (F6) and (F7) constitute the condition for (ω,σ ) to
be a fermionic 3-cocycle.

Furthermore, the freedom to redefine the restriction U →
UM and � → �a implies (again following similar arguments
as in Appendix B ) that we must identify fermionic 3-cocycles
that differ by the transformation

σ (g1,g2) → σ (g1,g2) + (δμ)(g1,g2) [mod 2], (F9)

ω(g1,g2,g3) → ω(g1,g2,g3)(−1)[σ (g1,g2)+λ(g1,g2)]μ(g3)+μ(g1)[σ (g2,g3)+(dμ)(g2,g3)](δβ)(g1,g2,g3), (F10)

where

(δβ)(g1,g2,g3) = β(g1,g2)β(g1g2,g3)β(g2,g3)−1β(g1,g2g3)−1, (F11)

(δμ)(g1,g2) = μ(g1) + μ(g2) + μ(g1g2), (F12)

and β and μ take values in U(1) and {0,1}, respectively.
[The numbers μ(g) correspond to the fermion parity of the
restriction �a(g) of the operator �(g) that implements the
redefinition UM (g) → �(g)UM (g).] If (ω,σ ) is not equivalent
to the trivial fermionic 3-cocycle according to the above
equivalence relation, then we expect that the edge must

correspond to the boundary of a nontrivial SPT phase. This
is because such an anomalous nontrivial symmetry precludes
a gapped ground state unless the symmetry is spontaneously
broken. (This can be derived in a similar way to the equivalent
bosonic result, Lemma 3 in Appendix C .) Similarly, two SPT
phases characterized by fermionic 3-cocycles not related by
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the above equivalence relation must be separated by a phase
transition.

We also can define a product rule for fermionic 3-cocycles.
Physically, the product rule corresponds to “stacking” two SPT
phases on top of each other. If the edges of the two systems
are characterized by (σ,ω) and (σ ′,ω′), then one can show
that the edge of the combined system will be described by the
fermionic 3-cocycle (σprod,ωprod), where

σprod = σ + σ ′, (F13)

ωprod(g1,g2,g3) = (−1)σ
′(g2,g3)σ (g1,g2g3)+σ ′(g1,g2)σ (g1g2,g3)

×ω(g1,g2,g3)ω′(g1,g2,g3). (F14)

Finally, let us remark that if we set σ = 0, then the
fermionic 3-cocycles reduce to ordinary 3-cocycles for the
“bosonic” symmetry group Gb = Gf /Z

f

2 . This reflects the
fact that bosonic SPTs can be realized in a fermion system
by pairing fermions to form bosons. However, according
to the equivalence relation Eq. (F9), when λ �= 0 (i.e., the
fermionic symmetry group is not simply a direct product Gf =
Gb × Z

f

2 ), a nontrivial bosonic 3-cocycle might still be trivial
as a fermionic 3-cocycle. Thus, there is the possibility that a
bosonic SPT phase could become trivial in the presence of
fermions. Examples of this phenomenon (albeit for symmetry
groups including antiunitary symmetries, which we have not
considered here) can be found in Ref. [16].

[1] F. D. M. Haldane, Phys. Lett. A 93, 464 (1983); ,Phys. Rev. Lett.
50, 1153 (1983).

[2] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Commun.
Math. Phys. 115, 477 (1988); ,Phys. Rev. Lett. 59, 799 (1987).

[3] F. Verstraete, M. A. Martı́n-Delgado, and J. I. Cirac, Phys. Rev.
Lett. 92, 087201 (2004).

[4] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[5] J. E. Moore, Nature (London) 464, 194 (2010).
[6] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[7] Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009).
[8] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 82, 155138

(2010).
[9] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83, 035107

(2011).
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