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We theoretically analyze the process of charge recombination in the planar Mott-Hubbard insulators with
the aim to explain the short picosecond-range lifetimes of photoexcited carriers, experimentally studied via
pump-probe experiments on the undoped cuprates. The recombination mechanism consists of two essential
ingredients: the formation of a metastable s-type bound holon-doublon pair, i.e., the Mott exciton, and the decay
of such an excitonic state via the multimagnon emission. In spite of the large gap that requires many bosons
to be emitted, the latter process is fast due to a large exchange scale and strong charge-spin coupling in planar
systems. As the starting microscopic model we consider the single-band Hubbard model and then a more realistic
three-band model for cuprates, both leading to the same minimal one. The decay rate of the exciton is evaluated
numerically via the Fermi golden rule, having consistency also with the direct time-evolution calculation. The
decay rate reveals exponential dependence on the ratio of the Mott-Hubbard gap and the exchange coupling, the
result qualitatively reproduced also within a toy exciton-boson model.
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I. INTRODUCTION

Nonequilibrium properties and dynamics of strongly corre-
lated electron systems are one of the central theoretical chal-
lenges, stimulated by the advances of ultrafast spectroscopy
techniques and novel results in materials with correlated mate-
rials, as well as by the experiments on the fermionic cold atoms.
One of the evident questions is the explanation of ultrafast
recombination of photoinduced charges, as established in the
pump-probe experiments on various materials belonging to the
class of Mott-Hubbard (MH) insulators. The prominent exam-
ples are undoped two-dimensional (2D) cuprates La2CuO4

(LCO) and Nd2CuO4 (NCO), representing the reference
substances for the hole-doped and electron-doped high-Tc

superconductors, respectively. The femtosecond pump-probe
spectroscopy [1–3] reveals that pump pulses with photon
energies above the MH gap � generate mobile charges,
recombining in the picosecond range. This scale is many orders
of magnitude shorter than in clean band insulators and semi-
conductors with similar gaps [4]. Photoexcited carriers in the
MH insulator are, in comparison to bosonic spin and phonon
excitations, a high-energy excitation far from equilibrium.
Therefore, the charge recombination process in a clean system
requires an instantaneous emission of the energy ω > �,
which demands creation of many low-energy excitations,
limiting the decay rate. The evident low-energy candidates
in 2D cuprates are spin excitations with the characteristic
spin exchange scale J , since as the consequence of strong
correlations the effective charge-spin coupling is inherently
strong and also larger than the characteristic phonon energies
ω0. Similar questions extend to other MH materials, e.g., to
the class of one-dimensional (1D) organic insulators where
an ultrafast decay of photoinduced carriers was observed as
well [5–8]. Closely related is the challenge of fermionic cold
atoms in optical lattices where near the half-filled case the
double-occupancy decay is somewhat faster [9,10], yet still
requires many scattering processes.

Theoretical analysis of strongly correlated electron systems
far from equilibrium requires novel concepts and methods
due to the failure of quasiparticle picture and Boltzmann-
type approaches standard for metals and semiconductors.
The relevant charge excitations in MH insulators, at least
within the simplest prototype single-band Hubbard model, are
empty sites (holons) and doubly occupied sites (doublons).
At low holon-doublon densities, latter excitations bear some
resemblance to the holes and electron quasiparticles in
semiconductors: (a) they are oppositely charged relative to the
reference insulator, (b) they are well mobile with an effective
band dispersion within the lower and upper Hubbard band,
respectively, and (c) they can form a bound excitoniclike state,
i.e., a holon-doublon (HD) exciton. On the other hand, unlike in
a pure semiconductor a single HD pair (neglecting the coupling
to phonon degrees of freedom) is not an eigenstate and has an
intrinsic recombination rate �.

The problem of doublon decay has been addressed in the
Bose-Hubbard [11] and Fermi-Hubbard model in connection
with ultracold fermions in optical lattices [9,10] using the
diagrammatic approach revealing an exponential dependence
of the decay rate on the MH onsite repulsion U . Since in
the latter case charge densities are quite high, the dominant
mechanism relies on energy transfer to the kinetic energy of
other fermions. The decay of double occupancy was consid-
ered also within the excited half-filled Hubbard model via
the time-dependent single-site dynamical mean-field theory
(DMFT) [12,13]; for review, see [14], confirming similar �(U )
dependence that suggests the same recombination mechanism.
One should note that besides being at rather high effective
temperatures T , by construction the DMFT method does
not incorporate nonlocal spin fluctuations. Recombination of
HD pair into spin excitations at low and high temperatures
has already been addressed within the nth-order perturbation
theory [15]. However, possible correlations between holon and
doublon, i.e., the HD binding (an essential ingredient of our
work) were neglected, since the prime interest was actually
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the decay of unpaired fermions in an attractive Hubbard
model.

Considering the case of finite photoexcited HD-pair den-
sities nHD > 0 the recombination processes could be qualita-
tively classified in analogy to semiconductors via the density
dependence of recombination rates �, � ∝ n

γ

HD , into a single
exponential one with γ = 0, bimolecular with γ = 1, and
Auger processes with γ = 2. We elaborate in this paper
the charge-recombination scenario [16] relevant for undoped
cuprates LCO and NCO, but also more generally for 2D MH in-
sulators with a pronounced role of spin-fluctuation excitations.
An important message from pump-probe experiments on those
insulating cuprates [2,3] is that is at least for modest pump
fluences (pump intensity) the photoinduced charges (holons
and doublons), measured via the probe broadband optical
pulse, decay exponentially after a very fast transient in the
femtosecond range. The long-time decay rate in the picosecond
range is fluence independent, i.e., independent on the initial
pump intensity and corresponding initial charge density. This
excludes the interpretations in terms of bimolecular and Auger
processes and leaves the option with an intermediate state of
bound HD pair (exciton), which decay exponentially with a
well-defined rate. Relating back to the experiments, the initial
fast transient should describe the relaxation of highly excited
holons and doublons that end up in a bound HD exciton,
but this is beyond our present study. The existence of a
bound MH exciton has been discussed within the three-band
Hubbard model [17] and shown within the planar Hubbard
model that was for holons and doublons effectively reduced
to 2D t-J model [16,18]. Due to its s-orbital symmetry, an
exciton is not directly observable by optical absorption, but is
consistent with the experimental evidence of nonlinear optical
susceptibility in LCO [19], as well as a large Raman shift
[20].

In a strongly correlated system the MH exciton is not
an eigenstate of the system and can decay (recombine) via
the emission of spin fluctuations [16] with the characteristic
boson scale J . Our first theoretical goal is to derive a
proper perturbation term governing the decay. While in the
initial study we start with the canonical transformation of
the single-band Hubbard model [16], undoped cuprates are
known to be charge-transfer MH insulators. In the following
we show that the effective HD recombination term emerging
from a more complete multiband model of cuprates is even
quantitatively similar to the one derived from the single-band
model.

The HD exciton decay with the emission of a large number
n ∼ �/J � 1 of spin fluctuations is an involved many-body
problem. We calculate the recombination rate � within the
Fermi golden rule (FGR) approach, which still requires a
numerical evaluation on a small-size system. Since our results
are obtained on systems with limited size, this implicitly
shows that long-range antiferromagnetic (AFM) order is not
essential for the decay and that energy can be transmitted
to general paramagnon excitations as long as short-range
AFM spin correlations are present. The FGR result can be
quite well verified via a direct time evolution of the HD
exciton decay when the perturbation term is switched on.
Quite generally, � is well described with an exponential

dependence

� ∼ �0 exp(−α�/J ), (1)

obtained also by nth-order perturbation theory arguments
[9,10,15] when considering the decay of unbound charged
particles. Since α involves parameters of the model it is
crucial for a fast recombination that within a MH insulator
we find α < 1, being a consequence of the strong charge-spin
coupling. While one cannot treat the effective HD model
analytically, we show that there is a very helpful analogy with
an exactly solvable exciton-boson (toy) model which confirms
the form Eq. (1) and moreover allows direct interpretation
of parameters, in particular α. The final goal of this study is
the comparison with experimentally measured recombination
rates in undoped cuprates NCO and LCO, and despite the
fact that we propose only the minimal model for such
process, obtained results are fairly close to the experimentally
established ones [2,3].

The paper is organized as follows. In Sec. II we present the
derivation of the effective model from a single-band Hubbard
model via the canonical transformation. An analogous proce-
dure is applied in Sec. III to the three-band charge-transfer
model as directly relevant for undoped cuprates. Based on the
existence of the bound HD exciton within the 2D effective
model on a square lattice as established earlier [16], we
concentrate in Sec. IV on the calculation of recombination
rate � within the FGR approximation and on the comparison
obtained with the direct time evolution. In Sec. V we present
a toy exciton-boson model within which decay rate � can be
evaluated exactly and even expressed analytically in the form
analogous to Eq. (1).

II. SINGLE-BAND HUBBARD MODEL

We start with the prototype model for the studies of the MH
insulator, the single-band Hubbard model,

H = −t
∑
〈ij〉s

(c†jscis + H.c.) + U
∑

i

ni↑ni↓, (2)

where sum runs over nearest-neighbor (NN) pairs of sites 〈ij 〉.
For the undoped cuprates the relevant lattice is 2D square
lattice, which we consider further on.

We are interested in the half-filled case, n̄ = 1, with a
low density of holons n̄h 	 1 and doublons n̄d 	 1. When
discussing the recombination we would like to work with
operators causing real, not just virtual transitions. To extract
them, we perform the usual canonical transformation of Hub-
bard model [21–23] that in the lowest order decouples sectors
with different numbers of HD pairs, however still relates them
perturbatively. As shown later, the transformed Hamiltonian
in addition to the standard t-J model [24] contains also the
terms causing recombination that were usually neglected in
the studies of doped systems. Such an effective model, on one
hand, serves us to find the initial HD bound state by neglecting
the recombination, and then yields its decay by taking it
into account. One could perform also the transformation that
completely decouples the sectors with different numbers of
HD pairs [23]; however, this would not suit our purposes.
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Hence, we rederive here the effective model employing
Hubbard operators X

pq

i , elaborated in Ref. [25]. If we define
the holon state as |H 〉 = |0〉 and the doublon state as |D〉 =
c
†
i↑c

†
i↓|0〉, operators are expressed as

XsH
i = c

†
is(1 − nis̄), XDs

i = −sc
†
is̄nis , XDH

i = sc
†
isc

†
is̄ ,

Xss̄
i = c

†
iscis̄ , Xss

i = nis(1 − nis̄), (3)

XHH
i = (1 − ni↓)(1 − ni↑), XDD

i = ni↓ni↑,

where s = ±1 stands for the up/down electron spins. Upper
incides pq in X

pq

i encode the initial (q) and final (p)
state after the application of the operator. In terms of the
Hubbard operators, the starting Hubbard model Eq. (2) can
be reexpressed as

H = HU + Ht + Htrc

= U
∑

i

XDD
i − t

∑
ij,s

(
XsH

i XHs
j + XDs̄

i Xs̄D
j

)

− t
∑
ij,s

s
(
XsH

i Xs̄D
j + XDs̄

i XHs
j

)
, (4)

where i,j are NN and HU,Ht ,andHtrc are the on-site-repulsion,
the HD-hopping, and the HD-recombination/creation terms,
respectively.

A. Canonical transformation

The canonical transformation is performed in the standard
way [21,22],

H̃ = eSHe−S = H + [S,H ] + 1
2 [S,[S,H ]] + · · · , (5)

so that Htrc is transformed out, consequently fixing S with the
condition Htrc + [S,HU ] = 0 to

S = t

U

∑
ij,s

s
(
XsH

i Xs̄D
j − XDs̄

i XHs
j

)
(6)

and the transformed Hamiltonian up to second order in t ,

H̃ = HU + Ht + [S,Ht ] + 1
2 [S,Htrc]. (7)

Using the X-operator commutation relations [25], we obtain
several terms,

H̃ = HtJ + Hrc + Hc, (8)

where HtJ conserves the HD number,

HtJ = − t
∑
ij,s

XsH
i XHs

j − t
∑
ijs

XDs̄
i Xs̄D

j + U
∑

i

XDD
i

+ t2

U

∑
ij,s

(
Xss̄

i Xs̄s
j − Xss

i Xs̄s̄
j

)
, (9)

and Hrc is the essential term describing the HD recombina-
tion/creation,

Hrc = t2

U

∑
(ijk),s

s
[
XsH

k

(
Xss

i − Xs̄s̄
i

)
Xs̄D

j

+ 2Xs̄H
k Xss̄

i Xs̄D
j + H.c.

]
, (10)

where j,k are the NN sites to site i and j 
= k. Further terms
Hc = H4 + H5 + H6 within the order t2/U are

H4 = t2

U

∑
(ijk),s

s
[(

XsH
j Xs̄H

k − XDs̄
j XDs

k

)
XHD

i

+ XsH
k Xs̄D

j

(
XHH

i − XDD
i

) + H.c.
]
,

H5 = t2

U

∑
(ijk),s

(−XsH
j XDD

i XHs
k + XDs̄

j XHH
i Xs̄D

k

− XsH
j XHD

i XDs
k + XHs

j XDH
i XsD

k − XsH
j XHs

k Xs̄s̄
i

+ XsH
j XHs̄

k Xs̄s
i + XDs̄

j Xs̄D
k Xss

i − XDs
j Xs̄D

k Xss̄
i

)
,

H6 = t2

U

∑
ij

2
(
XDD

i XHH
j + XDH

i XHD
j

)
. (11)

Within the order t2/U the coupling between sectors with
different numbers of HD pairs is present in the terms Hrc

[Eq. (10)] and H4 [Eq. (11)]. We note that the H4 term could
be relevant for recombination only at higher HD densities,
since it is active only when three charged particles are NN
to each other, being negligible at n̄d ,n̄h 	 1. Therefore, it
should not play a key role in the recombination at low density
of holons and doublons discussed here, and is neglected further
on. However, this term could be necessary for the description
of short-time behavior in experiments where strong excitations
produce an abundance of initially unbounded HD pairs. The
terms H5 and H6 only correct the excitonic wave functions
within the order t2/U and are also neglected in comparison to
the leading HtJ , Eq. (9).

B. Effective model

The effective Hamiltonian that we consider further on
contains terms Eqs. (9) and (10). With the introduction of
holon and doublon creation and annihilation operators

his = c
†
is(1 − nis̄) = XsH

i ,

dis = cis̄nis = −s XsD
i , (12)

it can be written in a more compact and transparently spin-
invariant way,

H = HtJ + Hrc,

HtJ = t
∑
〈ij〉,s

(h†
ishjs − d

†
isdjs + H.c.)

+U
∑

i

ndi + J
∑
〈ij〉

(
Si · Sj − 1

4
δ1,ninj

)
, (13)

Hrc = trc
∑

(ijk),ss ′
(hksdjs ′ �σss̄ ′ · Si + H.c.), (14)

where nd = (1/2)
∑

is d
†
isdis and �σ = {σx,σ y,σ z} is a vector

of Pauli matrices. Again (ijk) signifies that j,k are the NN
sites to site i and j 
= k. From the derivation we obtain that
the recombination term, Eq. (14), has the coupling parameter
trc = 2t2/U = J/2.
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III. CHARGE-TRANSFER HUBBARD MODEL

It is well known that on a microscopic level undoped
and doped cuprates cannot be fully described within the
single-band Hubbard model, since they are undoped or doped
Mott insulators of the charge-transfer type, where more
orbitals have to be included in the starting microscopic model.
Therefore, it is sensible to verify whether the recombina-
tion couplings obtained from the canonical transformation
of the single-band Hubbard model are qualitatively correct
approximations for the description of 2D cuprates. We take
the accepted multiband tight-binding model for electrons on
the 2D CuO2 layers, including 3dx2−y2 orbitals on Cu atoms
and 2px/2py on O atoms [26–31]. In contrast to numerous
theoretical studies and models of hole-doped systems, both
types of charge carriers, positive an negative, have to be
treated on the same level of approximation [17,32–34] in
the present case of an excited MH insulator with holons and
doublons.

A. Multiband model

In the following, states are, as usual (but in contrast to the
previous section), defined relative to the filled 3d orbitals on
copper and 2p orbitals on oxygen [28]. Including the NN Cu-O
and O-O hopping and the Coulomb repulsion on/between
Cu and O orbitals, the three-band p − d model is written
as

H =
∑
is

εinis +
∑
〈ij〉s

tij (c†iscjs + H.c.)

+
∑

i

Uini↑ni↓ +
∑
〈ij〉

Vijninj . (15)

Here ci (with corresponding ni) stands for the annihilation of
holes on different orbitals; therefore, it equals either ci ≡ d̄i for
d orbitals with energy εd on copper at site i or ci ≡ pxi(pyi)
for p orbitals with energy εp on oxygen with positive
displacement x(y) relative to the NN copper at site i. We use
notation d̄ to avoid further confusion with doublon operators.
Hopping parameters equal |tij | = tpd ,tpp for hopping between
NN Cu-O and O-O orbitals, respectively, with sign dependent
on the phases of facing orbitals. Parameters Ui = Ud,Up

take into account the onsite Coulomb repulsion on Cu and
O orbitals, respectively, while Vij = Vpd accounts for the
repulsion between neighboring Cu-O orbitals. Introduced
parameters have been extensively discussed in the literature.
For numerical estimates further on we use the concrete
values εp − εd = 2.7, tpd = 1, tpp = 0.5, Ud = 7, Up = 3,

Vpd = 1, all in units of tpd ≈ 1.3eV, as used by others
[31,32].

In the analysis we retain only a symmetrized oxygen
orbital (1/2)(|px〉 − |py〉 − |p−x〉 + |p−y〉), the one that hy-
bridizes with the dx2−y2 orbitals, leading to a two-band model
[27,28,30]. Furthermore, we introduce their combinations, the
orthonormal Wannier orbitals [27], in the framework of which
the Hamiltonian can be separated into two parts: the local
Hamiltonian H0 describing the noninteracting cells, and the
intercell coupling term Hcc. Each cell contains a Cu orbital
and a Wannier O orbital. Local part of the Hamiltonian
has the form of a sum H0 = ∑

i H0i of local intracell

terms,

H0i = �0

∑
s

n
p

is − t̄pd

∑
σ

(d̄†
ispis + H.c.)

+ Ud nd̄
i↑nd̄

i↓ + Ūp n
p

i↑n
p

i↓ + V̄pd

∑
ss ′

nd̄
isn

p

is ′ , (16)

where p
†
i creates hole in the O Wannier orbital. Within the

Wannier-orbital transformation, parameters equal �0 = εp −
εd − 1.45tpp, t̄pd = 1.92tpd ,Ūp = 0.21Up,V̄pd = 0.92Vpd , as
taken from Ref. [32]. In the intercell part Hcc we retain only
the dominant Cu-O and the O-O hopping,

Hcc = 2tpdμ10

∑
ijs

(d̄†
ispjs + p

†
is d̄js) + 2tppν10

∑
ijs

p
†
ispjs,

(17)
with coefficients μ10 = 0.14,ν10 = 0.27 for NN i and j sites,
as taken from [32,33].

B. Local charge and spin states

To discuss the recombination between holons and doublons,
we first have to identify states that represent them. Using the
hole picture, the doublon is represented by the filled Cu orbital,
hence being the vacuum state |D〉 = |0〉. On the other hand,
the holon is the generalized Zhang-Rice singlet [27,32] |H 〉 =
H †|0〉, obtained as the ground state (g.s.) of local Hamiltonian
H0 in the singlet spin sector spanned by the states

1√
2

(d̄†
↑p

†
↓ − d̄

†
↓p

†
↑)|0〉, d̄

†
↑d̄

†
↓|0〉, p

†
↑p

†
↓|0〉 (18)

and has energy EH . The single-hole state |gs〉 (having cor-
respondence to the spin background states in the single-band
model) is calculated as the g.s. of H0 within the doublet sector
spanned by

d̄†
s |0〉, p†

s |0〉 (19)

and has energy Eg . Besides the latter, we consider also the
triplet states

|T0〉 = 1√
2
(d̄†

↑p
†
↓ + d̄

†
↓p

†
↑)|0〉,

|T−1〉 = d̄
†
↓p

†
↓|0〉, |T1〉 = d̄

†
↑p

†
↑|0〉, (20)

with energy ET . Other states, i.e., excited states within each
sector, which can also be obtained with the diagonalization
of H0, are neglected in our further analysis. Having higher
energies, they might be needed for the proper description of the
early dynamics after the pump excitation, when highly excited
states might be created. However, after the initial relaxation,
we assume that system can be represented by the lowest-lying
states (which still represent also the excitations across the
charge-transfer gap).

Although states |H 〉,|D〉,|gs〉 are a combinations of Wan-
nier orbitals, each of them is attributed to a single cell.
Moreover, the hybridization between copper and oxygen
orbitals, intrinsically present in them (as a consequence of
basis vectors or diagonalization procedure), turns out essential
when addressing the intercell hopping matrix elements of Hcc,
Eq. (17), as discussed in Appendix B. Still, they obviously
bridge the single- and multiband consideration by having
analogs in the single-band picture.
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C. Reduced Hamiltonian

We can now proceed by writing the effective Hamiltonian in
analogy with the single-band one by using the relevant states
introduced in the previous section. It is convenient to write
the Hamiltonian with X operators analogously to those in the
single-band model, Eq. (3),

X̄sD
i = g

†
is

(
1 − nd̄

i

)(
1 − n

p

i

)
,

X̄sH
i = g

†
isHi, X̄

sTs′
i = g

†
isTis ′ ,

(21)
X̄ss

i = g
†
isgis , X̄ss̄

i = g
†
isgis̄ ,

g†
s = cos θ

(
1 − nd

s̄

)
(1 − np)d̄†

s + sin θ
(
1 − n

p
s̄

)
(1 − nd )p†

s ,

where g
†
is ,H

†
i ,T

†
is create the doublet g.s., holon (generalized

Zhang-Rice singlet), and the triplet state, respectively. It still
holds that X̄AB

i = (X̄BA
i )†. Again s = ±1 associated with gis

stands for hole spin, whereas in Tis it can have values s = ±1,0
according to definitions in Eqs. (20). To ensure XAs

i is nonzero
only when applied to doublet g.s., its creation operator is
written out explicitly, using parametrization elaborated in
Appendix A. In terms of such X operators, we can present the
Hamiltonian as the sum H = Ht + Htrc + Hdg , representing
the effective HD hopping (containing possible creation of
triplet states), their recombination and the diagonal part,
respectively,

Ht =
∑

ij,s=±1

(
thX̄Hs

i X̄sH
j + tdX̄sD

i X̄Ds
j

)

+
∑

ij,s=±1

(−s tT0X̄sH
i X̄

T0s
j + s tT1X̄s̄H

i X̄
Tss
j + H.c.

)
,

(22)

Htrc =
∑

ij,s=±1

(−s tr X̄s̄H
i X̄sD

j + t r0X̄
s̄T0
i X̄sD

j

+ t r1X̄
sTs

i X̄sD
j + H.c.

)
, (23)

Hdg =
∑

i

(
εH X̄HH

i + εDX̄DD
i + εT

∑
s=±1,0

X̄
TsTs

i

)
, (24)

where i,j are NN. Values εH = EH − Eg , εD = −Eg , and
εT = ET − Eg are the single-cell energies of holon, doublon,
and triplet relative to the doublet g.s., respectively. Dependence
of the introduced couplings t c,c = h,d,T0,T1,r,r0,r1 and en-
ergies εH ,εD,εT on the parameters of the original Hamiltonian
Eqs. (16) and (17) is presented in Appendix B.

D. Effective Hamiltonian

Similarly to the treatment of the single-band Hubbard
model within the U � t limit in Sec. II, we transform
out the recombination/creation term Htrc with a canonical
transformation eSHe−S . Operator S is determined by the
condition [S,Hdg] + Htrc = 0. After the transformation, HD
recombination/creation term Hrc again acts between the
next-NN cells; however, now one has to distinguish between
channels leading to different configurations of spins in the

doublets of final state, since their amplitudes ri are different,

Hrc = −
∑

(ijk),s

s
[
X̄sH

k

(
rhX̄ss

i − rdX̄s̄s̄
i

)
X̄s̄D

j

+ rhdX̄s̄H
k X̄ss̄

i X̄s̄D
j + H.c.

]
, (25)

rh =
(

tht r

εH + εD

+ tT0 t r0

εT + εD

)
,

rd =
(

td t r

εH + εD

− tT1 t r1

εT + εD

)
, (26)

rhd =
[

(td + th)t r

εH + εD

− tT0 t r0

εT + εD

]
.

Not only different amplitudes of holon and doublon hopping
parameters, but also new processes of recombination via
intermediate triplet states alter the result. To obtain the latter,
hopping terms involving triplet states were included in Ht and
Htrc in the first place. Although they exhibit richer physics of
multiband model, one should be aware that recombination via
triplet state causes only smaller corrections in the coupling
strengths, since εH 	 εT . However, the pure form of Eq. (25)
is very similar to its single-band analog Eq. (10) with an
additional overall minus that is a consequence of transition
from electron to hole picture.

If we calculate all three relevant recombination couplings
2rd,rhd,2rh at realistic parameters, we confirm that they are
not far away from trc = J/2, the value obtained from the
single-band model. Their dependence on �0 is plotted in Fig. 1.
Rescalations are made for clearer comparison with J/2. Using
the same procedure via intracell diagonalization, exchange
coupling plotted is expressed as [32]

J = 4

[
(t r )2

εH + εD

− (t r0 )2

εT + εD

]
. (27)

To exhibit the spin invariance of Hrc we define (as in
the single-band model) d̃is = −sX̄sD

i ,h̃is = X̄sH
i in terms of

which Hrc obtains a form similar to Eq. (14),

Hrc = −
∑

(ijk)ss ′

[
h̃is d̃ks ′ (rhd �σss̄ ′ · Sj + r̄hd1ss̄ ′ ) + H.c.

]
, (28)

2 rd

rhd

2 rh

J 2

3.0 3.5 4.0 4.5 5.0

0.04

0.08

0.12

0.16

0 eV

ri
eV

FIG. 1. (Color online) Comparison of coupling parameters ri =
2rd ,rhd ,2rh for different recombination channels with the (rescaled)
exchange coupling J/2 as a function of charge-transfer energy �0.
For other parameters, standard values are used.
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where we used r̄hd = (rh − rd )/2 and tT1 t r1 = 2tT0 t r0; see
Appendix B.

IV. EXCITON RECOMBINATION RATE

In Secs. II and III it was shown that both the single-
band Hubbard model as well as the three-band model for
cuprates reduce at low HD density to the same effective
model with the only difference being the strengths of the
recombination/creation terms in Hrc.

A. Holon-doublon exciton

In order to explain the experimentally observed indepen-
dence of decay rate � on the pump fluence, i.e., also the
exponential decay of HD density, we first have to determine the
existence of the bound HD pair. This is based on argumentation
that if pairs were not bound, recombination process would
depend on the probability to encounter the oppositely charged
particle, evidently leading to a nonexponential decay (unless
thermal charge density is high). The present problem of HD
binding has analogies with binding of holes in doped cuprates,
also studied within the t-J model [24,35]. Although the origin
of binding is in both cases the same, indistinguishable two
holes Nh = 2 form a d-type bound state, whereas the distin-
guishable doublon and holon form a s-type (A1 symmetry)
bound pair, which is indeed found numerically [16,18]. Since
the latter state has even symmetry, it is not accessible by optical
transition from the insulator AFM state. On the other hand, the
optically active p-type state with binding energy εb � 0 within
our calculation does not seem to be a bound one.

Knowing that at low density of charges coupling between
sectors with different number of HD pairs is weak, we
first neglect the recombination/creation term Hrc that causes
transitions between sectors, and extract the initial HD state
|ψhd

0 〉 from the spectrum of eigenstates of HtJ , Eq. (13), as
the g.s. in the sector with one HD pair. Calculating it in the
single HD-pair sector for system of limited size, we neglect
possible interaction between different pairs, justified for the
cases of low charge density.

Binding properties of the HD state |ψhd
0 〉 were obtained via

exact diagonalization of HtJ using the Lanczos technique on
the square lattices with N � 26 sites and periodic boundary
conditions. Here we skip the detailed analysis and results
presented in Ref. [16]. In short, we calculated the HD binding
energy εb = Ehd

0 − Eh
0 − Ed

0 + E0
0 , where Ehd

0 ,Eh
0 ,Ed

0 ,E0
0

correspond to the HD pair, single hole, single doublon, and
the undoped AFM g.s., respectively. In the regime of interest
for cuprates (J/t = 0.3–0.4) the lowest (s-type) state shows
appreciable binding εb/t ∼ −0.4, quite robust towards the
finite-size effects [16]. It should be pointed out that the
inclusion of longer-range Coulomb repulsion would even
enhance |εb| but is not expected to be the driving or dominant
effect (results presented in Ref. [16]) in the 2D square lattice.
As an additional proof of HD binding we calculate also the
exciton density correlations Dj = 〈ψhd

0 |nhjnd0|ψhd
0 〉 (for the

purpose of presentation the position of doublon is chosen as
the origin). Dj obtained on N = 26 for J = 0.4 are presented
in Fig. 2, showing consistence with the binding since the HD
pair is with the largest probability on a distance d0 = √

2, as

FIG. 2. (Color online) Charge density correlation Dj .

is also the case for the d-wave hole binding within the 2D t-J
model [24,35].

B. Recombination rate via Fermi golden rule

The HD exciton |ψhd
0 〉 is not an eigenstate of the effective

model when perturbation Hrc [Eq. (14)] is included. A standard
approach to evaluate the decay rate into a continuum of states
is the FGR,

� = 2π
∑
m

∣∣〈ψ0
m

∣∣Hrc

∣∣ψhd
0

〉∣∣2
δ
(
E0

m − Ehd
0

)
, (29)

where the matrix elements are highly nontrivial since they
represent the overlap of modified exciton wave function
Hrc|ψhd

0 〉 on highly spin-excited (multimagnon) states |ψ0
m〉,

with energy E0
m within the undoped AFM spin system. Our

application of the FGR approximation has many analogies,
recently employed in the analysis of the decay of excitons via
multiphonon emission in nanotubes [36,37]. For the numerical
consideration it is crucial that Eq. (29) can be represented as a
resolvent � = −2ImC(ω = �), where � = Ehd

0 − E0
0 is the

excitation gap, and

C(ω) = 〈
ψhd

0

∣∣Hrc

1

ω+ + E0
0 − HJ

Hrc

∣∣ψhd
0

〉
, (30)

with ω+ = ω + iδ. In the evaluation only the exchange part
HJ of the HtJ , Eq. (13), is relevant.

Within Lanczos procedure, Eq. (30) can be evaluated
[24,38] on 2D square lattice with up to N = 26 sites [16]. In
Fig. 3 the dependence �(�) for J = 0.3,0.4,0.6 is presented.
Here the energy of HD pair � that has to be transmitted to
the spin excitations, � = E0

m − E0
0 , is taken as a parameter

independent of J . As suggested from Fig. 3 decay rate
� shows approximately exponential dependence on �/J ,
Eq. (1), with effective α in the range 0.3 < α < 0.7 (for chosen
0.3 � J � 0.6). This signals that there is some additional
subtle J dependence, besides the exponential dependence on
the number of spin excitations n ∼ �/J created.

As discussed already in Ref. [16], an essential ingredient
for the substantial decay is dressing of the HD pair with
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FIG. 3. (Color online) Exciton recombination rate � vs �/J for
different J = 0.3,0.4,0.6 as calculated for N = 26 sites.

spin excitations, revealed by deviations in bond energy of the
exciton state relative to the AFM g.s. [16]. In the process
of recombination this local spin perturbation can be even
enhanced, and finally has to disperse into the whole system. An
attempt to relate both aspects is to motivate the dependence
of decay rate on � and J via the construction of sufficient
spin dressing of ca. n spin flips as a n th order perturbation
process [16], as suggested by previous similar considerations
[9,10,15]. According to these arguments, following from the
appropriate matrix element, the decay rate should have the
form

� ∝ exp

[
−α0

�

J
ln

�

et

]
, (31)

with α0 = 2. However, when fitting Eq. (31) to the numer-
ical data, α0 ≈ 0.8 with modest J dependence is obtained
[16]. In Ref. [15] the additional structure of constant α0

was treated with self-avoiding path reasoning, though not
for the bound HD pair. Our more elaborate, however not
necessarily unrelated, consideration of charge-spin coupling
using exciton-boson model is given in the next section.

C. Recombination rate via direct time evolution

In order to validate the approximation using the FGR
[Eq. (29)], we perform also direct time evolution of the same
initial excitonic state |ψhd

0 〉 under the whole Hamiltonian
H = HtJ + Hrc; however, we restrict the Hilbert space only to
the sectors with zero and one HD pair. In Fig. 4 we present the
time evolution of the doublon (also the HD pair) occupation
number,

nd (τ ) = 1

2
〈ψ(τ )|

∑
is

d
†
isdis |ψ(τ )〉. (32)

The evolution of |ψ(τ )〉 is obtained by solving the time-
dependent Schrödinger equation using the Lanczos method
[38,39]. In Fig. 4 we present and compare results for J = 0.4
and different effective gaps � = 4.8,5.2,6.0, as calculated for
the system with N = 26 sites. Effective gap is defined using
|ψgs〉 (g.s. of H within our restricted Hilbert space) as

� = 〈
ψhd

0

∣∣H ∣∣ψhd
0

〉 − 〈ψgs |H |ψgs〉, (33)

since it turns out to be a function of the coupling strength trc due
to adiabatic change of the eigenspectra of H caused by Hrc. By

6.0

5.2

4.8

0 100 200

0.6

0.8

1.0

τ

n d

FIG. 4. (Color online) Doublon (and also HD pair) occupation
number nd (in logarithmic scale) as a function of time τ , calculated
for different gaps � = 4.8,5.2,6.0 and parameters J = 0.4 for a
system of size N = 26.

adiabatic we mean that even though the whole energy of each
eigenstate is shifted, the fraction of spin excitations within it is
preserved, and it is the amount of spin excitations that should
label the final states when discussing the recombination. Rapid
oscillations seen in Fig. 4 emerge due to fast switching of Hrc

and finite-size effects; however, they get evidently reduced
with bigger N . For clarity, averaging over δτ = 3 is used.

From Fig. 4 we can confirm that after an initial tran-
sient an exponential decay is established. When simulating
recombination on a finite system one should be aware that the
finite-size level distance δω limits the long-time evolution to
τ ≈ 2π/δω and is for a system with N = 26 sites of order
δω ≈ 10−1. Using the fit ln nd (τ ) = −�τ + ln nd0, one can
compare the result obtained for � with the one calculated with
FGR. Figure 5 shows this comparison for J = 0.4 and system
sizes N = 20,26. Lines correspond to the result from FGR,
while dots are obtained from the fits to ln nd (τ ) in the span
of interesting �. We obtain a quite good agreement between
the two methods, as shown in Fig. 5. Both methods confirm
the exponential dependence [Eq. (1)]. Somewhat smaller �

obtained with time evolution on N = 20 lattice could be
attributed to the decay into the discrete multimagnon spectra,
which is sparser at smaller lattices.

N 20

N 26

,
,

4 5 6

10 4

10 2

FIG. 5. (Color online) Comparison of the exciton recombination
rate � vs gap � as calculated using the FGR (lines) and time evolution
(dots) for J = 0.4 and systems of size N = 20,26.
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V. COUPLED EXCITON-BOSON MODEL

Our numerical results clearly reveal approximate exponen-
tial dependence of decay rate � [Eqs. (1)] on the number
of bosonic excitations n ∼ �/J created in the recombination
process. As mentioned in the previous section, such depen-
dence has been reproduced qualitatively also via the nth-
order perturbation arguments [9,10,15,16], yet the constant
α0 ≈ 0.8 obtained from fitting Eq. (31) to numerical results
cannot be given a clear origin. It would be desirable to
have a solvable model, which could qualitatively or even
quantitatively simulate the observed physics. Relying on the
interpretation developed in the previous section, suggesting
that in the process of recombination spin excitations dressing
the HD pair are dispersed into the whole system, it seems
plausible to formulate the problem more generally, as a decay
of an excitonic state |e〉 = e†|0〉 due to coupling to bosonic
degrees of freedom. The main physics of such formulation
can be captured with an exciton-boson toy model, used on
a similar problem to interpret the charge recombination in
carbon nanotubes via the multiphonon emission [36,37], here
generalized to dispersive bosons,

H = He + Heb + Hb + Hrc

= Eee
†e + e†e

∑
q

λq(a†
q + a−q)

+
∑

q

ωqa
†
qaq + grc(e + e†), (34)

where a
†
q is creation operator for bosons with momentum q

and energy ωq . The exciton-boson coupling is mediated by
the term Heb, while Hrc represents the simplest form of the
exciton recombination/creation. It is evident that such a model
only indirectly simulates the full physics of exciton coupled to
spin fluctuations [Eqs. (13) and (14)].

The toy model Eq. (34) basically describes the two-level
system coupled to bosons, and was used when discussing
related question of radiationless transitions in large molecules
[40], quantum dissipation [41], and numerous other problems.
It is well analyzed and solvable in several limits, in particular
if Hrc is treated as a perturbation.

Drawing analogies with procedure in the previous section,
we would like to obtain the excitonic wave function dressed
with bosons and get rid of the strong coupling between
exciton and bosons on the level of the unperturbative part of
the Hamiltonian. Therefore, we do the standard Lang-Firsov
transformation H̃ = e−SHeS , which eliminates Heb with

S = −e†e
∑

q

αq(a†
q − a−q), (35)

where αq = λq/ωq and yields the transformed Hamiltonian

H̃ = H̃0 + H̃rc,

H̃0 = (Ee − εeb)e†e +
∑

q

ωqa
†
qaq, (36)

H̃rc = grc exp

[
−

∑
q

αq(a†
q − a−q)

]
e + H.c.

The exciton-boson binding energy εeb = ∑
q |λq |2/ωq that

lowers the exciton’s energy implicitly indicates its bosonic
dressing. However, it is assumed to be modest, i.e., εeb 	 Ee.
As before, the initial wave function is obtained, neglecting H̃rc,
as the g.s. of H̃0 in the sector with an exciton |ψ0〉 = e†|0〉,
having energy Ee − εeb.

Switching on H̃rc the exciton starts to decay and we evaluate
the recombination rate � using the FGR again, now written in
form of an integral,

� = −2Im 〈ψ0|H̃rc

1

ω + E0̃ − H̃0
H̃rc|ψ0〉

= 2Im i 〈ψ0|H̃rc

∫ ∞

0
dteiωt e−i(H̃0−E0̃)t H̃rc|ψ0〉, (37)

where E0̃ is the g.s. energy in the sector without exciton.
Taking into account well-known relations for coherent states
(since H̃rc|ψ0〉 is a coherent state),

〈ψ0|H̃rce
−i(H̃0−E0̃)t H̃rc|ψ0〉

= g2
rc exp

[∑
q

|αq |2(e−iωq t − 1)

]
, (38)

we finally get

� = 2g2
rc Re

∫ ∞

0
dt exp [iωt +

∑
q

|αq |2(e−iωq t − 1)]. (39)

Here � should be evaluated at ω = Ee − εeb, which is the
difference in the g.s. energy of H̃0 in the sector with and
without the exciton.

A. Saddle-point approximation

While Eq. (39) can easily be evaluated numerically for
arbitrary parameters, i.e., the coupling strength grc and
dispersions λq,ωq , it is instructive to get results in a form
that reveals the relevant quantities entering �. For this purpose
we first simplify the general dispersions λq,ωq by assuming
that the boson coupling function g(ω) has mean energy ω0 and
a σ spread around that value, fixing the form

g(ω) =
∑

q

|αq |2 δ(ω − ωq) = ξ√
2πσ

e−(ω−ω0)2/2σ 2
, (40)

with a Gaussian function centered at ω = ω0. The dimension-
less prefactor ξ = ∑

q |αq |2 takes into account the strength
of the coupling. Such approximation is well justified for
bosons with weak dispersion, e.g., the optical phonons;
however, it should be reasonable also for the 2D magnons
under examination with ω0 ≈ J . Nevertheless, the dispersion
σ > 0 is essential for smooth variation of � vs ω and
conceptually crucial for final dispersion of bosons into the
system.

The advantage of the form Eq. (40) is that the integral
Eq. (39) can be analytically evaluated by the saddle-point
method [42], i.e.,

∫ ∞

−∞
ef (t)dt ≈ ef (t0)

√
2π

−f ′′(t0)
, f ′(t)|t0 = 0. (41)
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FIG. 6. (Color online) Comparison of the result for �̃ = �/g2
rc,

if calculated with (a) the numerical evaluation of � from Eq. (39), (b)
the saddle-point result for a numerically (exactly) established saddle,
(c) the saddle-point result for an approximate saddle [Eq. (42)], and
(d) a compact form of Eq. (44). Parameters ω0 = 5,ξ = 3,σ = ω0/4
are used so that numerical integration (a) is well defined.

The function f (t) and its saddle point t0, correct up to
O(σ 4/ω4

0), are, in our case,

f (t) = iωt + ξ e−iω0t−σ 2t2/2,

t0 = i

ω0 + σ̃
ln

[
ω

ξ (ω0 + 2σ̃ )

]
, (42)

where σ̃ = (σ 2/2ω0) ln(ω/ξω0). Then,

f (t0) ≈ − ω

ω0

(
ln

ω

eξω0
− σ 2

2ω2
0

ln2 ω

ξω0

)

f ′′(t0) ≈ −ωω0

(
1 + σ 2

ω2
0

ln
eω

ξω0

)
. (43)

Since energy transmitted to the bosons equals the MH gap,
we insert ω = �. If we neglect also the contributions of order
σ 2/ω2

0, then � has especially compact form,

� ≈ g2
rce

−ξ

√
2π

�ω0
exp

[
− �

ω0
ln

(
�

e ξω0

)]
. (44)

To test the applicability of Eq. (41) for our case, we compare
in Fig. 6 (a) the numerical evaluation of � from Eq. (39), (b)
the saddle-point result for a numerically (exactly) established
saddle, (c) the saddle-point result for an approximate saddle
[Eq. (42)], and (d) a compact form of Eq. (44) with σ = 0.

Let us apply Eq. (44) to the HD exciton recombination
due to the emission of spin excitations studied in the previous
sections. For that case we set ω0 = J and fit Eq. (44) to the
numerically obtained dependence �(�) for various J , with
the dimensionless coupling ξ and prefactor grc as the fitting
parameters. As shown in Fig. 7, formula Eq. (44) captures the
dependence �(�) for ξ that is mildly dependent on J (see
Fig. 8). This result has a fundamental importance since it
signifies that the recombination of HD bound pair via multi-
magnon emission can be described in a much broader frame,
as a decay via many bosons. Besides the exponential form,
the most important message from Fig. 8 is that the effective
exciton-boson coupling is very strong ξ ∼ 3. The dependence
of ξ on J resembles |εb|/J , where εb is numerically established
binding energy of the HD pair, but with a substantially bigger

J 0.5
J 0.4
J 0.3
num

2 4 6 8
10 8

10 6

10 4

10 2

100

FIG. 7. (Color online) Fit of Eq. (44) with ξ,grc as the fitting
parameters to the numerical result (num) for �(�) obtained on 2D
system (as described in previous section) for J = 0.3,0.4,0.5.

prefactor. The latter relation is deduced from Eq. (40) if we
associate the HD-pair binding energy with the exciton-boson
binding energy, which might be oversimplified. On the other
hand, ξ has milder J dependence yet similar strength as t/J ,
which would emerge from the nth-order perturbation theory
[Eq. (31)] taking the charge-spin coupling to be simply the
hopping term in Eq. (13). The prefactor dependence grc ∼ J

is in qualitative agreement with the original model, Eq. (14).
To give a definite comment on which approach, perturbation

expansion or exciton-boson model, gives better description
could be pointless since they must be essentially intertwined.
Still, consideration of exciton coupled to bosons elaborated
in this section seems natural and the interpretation of the
fitting parameters seems rather clear: ξ can be identified as
the exciton-boson coupling strength, whereas deviation of the
value α0 ∼ 0.8 [Eq. (31)] from the expected α0 = 2 could not
be argued properly [16]. However, probably both discrepancy
in α0 and lack of quantitative understanding of coupling ξ orig-
inate in the nonperturbative nature of the charge-spin coupling.

VI. COMPARISON WITH EXPERIMENTS
AND DISCUSSION

Comparison with experiments. When discussing the ap-
plication of the theory to cuprates most parameters are
well established. The t − J model has been used by many

1 3 ξ
1 3 t J∋

b J
grc

0.4 0.6 0.8
0.0

0.5

1.0

J

FIG. 8. (Color online) Values of the fitting parameters ξ (boson
coupling) and grc (recombination prefactor) as a function of J . For
comparison, |εb|/J,t/J are plotted as well. Prefactor 1/3 was used
with ξ and t/J to unify the scales.

235136-9
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authors for the quantitative comparison of experimental results
for various properties. In this sense, quite well-established
parameters are t ≈ 0.35 eV and J/t ≈ 0.4, slightly varying
within the cuprates. Since the MH gap (or more directly the
optical gap) �ct is also determined by optical absorption, the
only undetermined parameter is the prefactor trc [Eq. (14)],
which we fix to the theoretically obtained trc = J/2. It should
be noted that to get � relevant for the s-type bound state, as
defined in Sec. IV, energy difference to the p-type unbound
but optically active state has to be subtracted, � = �ct − |εb|.
Most pump-probe results are so far obtained for two 2D
undoped cuprates: NCO and LCO [3]. The characteristic
microscopic unit time in these systems is given by the
elementary process of intercell hopping, i.e., τ0 = �/t ∼ 2 fs.

NCO. Standard values quoted for NCO are [3] the optical
gap �ct = 1.6 eV and J = 0.155 eV, so that � = 4.1t and
from Eq. (29) � ∼ 2.2×10−2/τ0. Finally, this leads to τ =
�−1 ∼ 0.09 ps, which is fairly close to the experimentally
measured τ ∼ 0.2 ps [3].

LCO. Analogous values for LCO are optical gap �ct = 2 eV
and J = 0.133 eV, so that � = 5.3t and � ∼ 1.3×10−4/τ0,
yielding τ ∼ 15 ps. For this material, detailed analysis was
not performed, yet it is reported to have considerably longer
relaxation [3], consistent with our result. From our theory the
difference is quite evident, appearing due to smaller J and
larger �ct in the case of LCO.

Effective models. The aim of our theoretical consideration
of the problem is to establish the mechanism for the descrip-
tion of the recombination process of photoinduced charged
particles in cuprates, based on a minimal sufficient model.
Rather than performing the calculations with the prototypical
Hubbard model, we canonically transformed it, leading to the
model defined by Eqs. (13) and (14). Its clear advantage is that
by separating sectors with different numbers of HD pairs in
lowest order, as suggested by experimentally measured time
scales of recombination, (a) it assists in extracting the excitonic
state of a bound HD pair from the otherwise complex spectra
of the Hubbard model, and (b) it takes into account that this
state is not an eigenstate (and should therefore decay) in a
transparent way, via the creation/recombination term, which
serves as a perturbation causing the decay. Since undoped
cuprates, being of primary interest in the whole discussion,
are actually Mott insulators of the charge-transfer type, we
derived a similar minimal model also from a more realistic
multiband tight-binding model including relevant Cu and O
orbitals. Contrary to the previous studies of doped cuprates,
hole- and electronlike excitations in this case have to be
addressed on equal footing. As observed before, the hole-
electron (holon-doublon) symmetry is broken in such model
[32]. However, the minimal model describing recombination
has similar form with quantitatively comparable strength
of operators causing decay of HD pairs as its single-band
analog. Only the internal structure of recombination/creation
operators is somewhat richer, allowing new intermediate states.
From this we conclude that the minimal model derived from
the single-band Hubbard is sufficiently good, with a slight
modification of Mott gap being interpreted as the charge-
transfer gap.

Existence of exciton. Our calculation of the recombination
rate relies on the assumption that, after being created, holons

and doublons form a s-type bound state on a time scale
shorter than the recombination one. Besides observations
in nonlinear optical susceptibility in LCO [19], indirect
experimental evidence for the formation of such an exciton
is a fluence (pump intensity)-independent recombination rate
with an exponential decay of charge density. If pairs were not
bound, recombination process would depend on the proba-
bility to encounter the oppositely charged particle, evidently
leading to a nonexponential decay. Since HD pair binds in
order to minimize the distortion of short-range ordered spin
background in its vicinity, the exciton should cease to exist in
experimental conditions when the order is melted, e.g., when
pumping the insulator with high fluence or well above the gap.

Validity of Fermi golden rule. Usage of FGR seems
reasonable since recombination of charged particles is a slow
process as compared to the scale �/t of the time-dependent
simulations. Still, to test how important are the higher order
terms that were neglected, we performed the time-dependent
evolution of initial excitonic state under Hamiltonian contain-
ing the recombination/creation term as well. We observe again
an exponential decay of HD-pair occupation number. One
should beware that such calculation has its limitations too: (a)
Discreteness of spectra sets the upper bound for propagation
due to recurrence of the HD pair; (b) virtual processes cause
short-time oscillations that destabilize the pair yet do not lead
to true recombination; (c) the presence of perturbation alters
the whole spectra, shifting the energies and leading to the
reconsideration of the definition of the gap; (d) we restricted
the Hilbert space to the subspace of one and zero HD pairs.
Still, the recombination rates obtained with both methods are
comparable, and the larger system with N = 26 sites, where
finite system artifacts are less pronounced, shows slightly
faster recombination in time-dependent calculation, as one
would expect from the inclusion of additional processes.

Origin of fast recombination. As a result of our study we can
conclude that emission of spin excitations can be considered
as a plausible mechanism for the nonradiative recombination
of photoinduced charges in a MH insulator, in spite of many
bosons n ∼ �/J � 1 involved in a simultaneous emission.
The feasibility of creation of such a large number of spin
excitations itself has been demonstrated experimentally by
the phonon-assisted multimagnon light absorption [43,44].
The importance of analogous multiphonon processes has been
addressed theoretically as possibly relevant for decay in carbon
nanotubes [36,37]. However, the reason for much faster recom-
bination in MH insulators as compared to the semiconductors
[4] is primarily in strong coupling between charged particles
(holons and doublons) and spin background, in addition to
obviously larger scale of spin excitations J than the typical
phonon energies ω0. According to our understanding, this
strong coupling is manifested in two intertwined observations:
(a) As revealed by the calculation of spin correlations, the
HD exciton involves strong perturbation of the spin AFM
background, which can be in the process of recombination even
further enlarged due to possible additional spin flips caused by
Hrc; (b) on the level of effective exciton-boson Hamiltonian
the relevant exciton-boson coupling turned out to be strong.

Short-range vs long-range order. It should be pointed out
that the existence of the AFM long-range order and standard
magnon excitations is not a necessary precondition for our
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analysis. The relevant excitations that receive the energy of the
HD pair are general multiple spin excitations or paramagnons,
present also in the paramagnetic phase. The only condition on
those excitations is that they should have a dispersive nature
in order to distribute the local spin perturbation. On the other
hand, short-range spin correlations are necessary to provide the
dressing of the HD pair with spin excitations and ensure the
existence of exciton. Another study [15] of decay of unbound
uncorrelated holon and doublon in completely spin-disordered
background revealed very slow recombination, proving the
necessity of at least a short-range correlated spin-background.
After all, our calculations are done in small system which
is big enough to accommodate the dressing of the HD pair,
however does not display long-range order in the strict sense.
The role of the latter is consequently not present in the result
for recombination rate �.

Higher photoexcited charge densities. The mechanism for
recombination via emission of spin excitations should be
relevant for systems with a low density of photoexcited carriers
that in such conditions presumably form HD excitons. In
experiments using high-fluence pump pulses, creating a high
density of photoexcited charge carriers, another mechanism
might become dominant, e.g., the so-called Auger processes
where the energy of the HD pair is transmitted to other charged
carriers created within the pump. When sufficient density
of charges is provided, the dominance of such processes
originates in easier instantaneous energy transmission, simply
raising kinetic energy of remaining charge. Clear experimental
indication for such processes should be the nonexponential
decay of particle density, as long as what is observed is not only
deviation around the thermal density of charges. The role of re-
versed, yet similar processes of HD-pair ionization in the initial
fast relaxation of doublons excited well above the gap has been
established within the DMFT [45]. Moreover, related kinetic-
assisted recombination mechanisms, possibly consisting of
several scattering processes, are dominant in experiments on
fermionic cold atoms [9,10] and in DMFT studies [12,13].

Role of dimension. In the present analysis the crucial
ingredient for the fast recombination is strong charge-spin
coupling. This is inherently present within the 2D (also higher
dimensional) strongly correlated system, as modeled within
the Hubbard model with U � t or the t − J model with J < t ,
where mobile photoexcited or doped charges crucially perturb
and frustrate the spin background. On the other hand, the
physics in 1D correlated system could be quite different due
to the phenomenon of charge-spin separation. It is established
that, e.g., within the 1D t − J model the charge-spin coupling
is quite ineffective and the motion of holes/doublons is nearly
free for J 	 t . Therefore, other mechanisms, both for the
exciton formation as well as for the HD recombination,
have to be invoked to deal with the photoexcited 1D MH
insulators.
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APPENDIX A: INTRASITE DIAGONALIZATION
FOR CHARGE-TRANSFER HUBBARD MODEL

The recombination/creation operator Hrc, Eq. (28), derived
from the original three-band Hamiltonian, Eq. (15), could
have been obtained from higher order perturbative hopping
processes, in a similar manner as the exchange coupling in
Ref. [31]. Instead, our derivation of Hrc is based on the
introduction of states associated with a single cell, where each
cell contains a Cu orbital and a Wannier O orbital. Those
states represent holon and doublon, as well as neutral states
and are calculated as the eigenstates of single-cell Hamiltonian
H0i , Eq. (16). Coupling between cells is then established
by the relevant matrix elements for states on adjacent cells,
nontrivial due to hybridization between Cu and O orbitals in the
single-cell states. The coupling strengths are set by the Hamil-
tonian Eq. (17) with Wannier-orbital transformation inherently
present in the hopping parameters. As originally proposed by
[32], the intracell diagonalization that gives us the single-cell
states has to be performed within each total spin sector. In the
doublet basis, Eq. (19), we diagonalize the Hamiltonian

h1/2 =
(

0 −t̄pd

−t̄pd �0

)
, (A1)

yielding the g.s. |gσ 〉 that represents the charge-neutral (in the
language of single-band Hubbard model spinlike) state with
the energy Eg ,

|gs〉 = cos θ |d̄s〉 + sin θ |ps〉, (A2)

Eg = �0

2
[1 −

√
1 + tan2(2θ )], (A3)

where tan 2θ = 2t̄pd/�0.
Within the singlet subspace, Eq. (18), holon is represented

by the generalized Zhang-Rice singlet, which, in addition to the
dominant Zhang-Rice component (1/

√
2)(d̄†

↑p
†
↓ − d̄

†
↓p

†
↑)|0〉,

contains also some fraction of d̄
†
↓d̄

†
↑|0〉,p†

↓p
†
↑|0〉 states. The

fraction of each basis state is obtained by numerical diagonal-
ization of the 3×3 local Hamiltonian. In the regime of relevant
�0, it turns out satisfactory to use the basis{

|S0〉 = 1√
2

(d̄†
↑p

†
↓ − d̄

†
↓p

†
↑)|0〉,

|S1〉 = 1√
2

(d̄†
↑d̄

†
↓ + p

†
↑p

†
↓)|0〉

}
, (A4)

in which local Hamiltonian is

h0 =
(

�0 + V̄pd −2t̄pd

−2t̄pd
1
2 (Ud + Ūp) + �0.

)
, (A5)

yielding explicit expression for the holon state |H 〉 and its
energy,

|H 〉 = cos φ |S0〉 + sin φ |S1〉,

EH = �0 + V̄pd + Ud + Ūp − 2V̄pd

4
[1 −

√
1 + tan2(2φ)],

(A6)

where tan 2φ = 8t̄pd/(Ud + Ūp − 2V̄pd ). In order to check
how much such approximation effects the recombination
couplings [Eq. (26)] for different channels, we compared
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FIG. 9. The error in recombination coupling parameters,
δr = rnum − rappr, originating in an approximate calculation
[Eq. (A6)] of the holon state |H 〉 and its energy EH as a function
of �0. For other parameters standard values are used.

those values if |H 〉 and EH are calculated accurately by
numerical diagonalization of 3×3 Hamiltonian or within the
latter approximation. The difference in coupling strengths
δr = rnum − rappr is not substantial, as shown in Fig. 9.

The triplet states |Ts〉 within each cell are decoupled and
have energy ET = �0 + V̄pd .

APPENDIX B: EFFECTIVE HOPPING PARAMETERS
FOR CHARGE-TRANSFER HUBBARD MODEL

Hopping parameters that are introduced in the reduced
single-band-like Hamiltonian, Eqs. (22) and (23), are obtained
by evaluation of matrix elements for the intercell Hamiltonian
Hcc, Eq. (17), between the states |H 〉,|D〉,|Ts〉,|gs〉, Eqs. (A6),

TABLE I. Hopping parameters for reduced single-band-like
Hamiltonian, Eqs. (22) and (23), parametrized by θ,φ and τ̃ =
2tpdμ01,τ

′ = 2tppν01.

Holon hopping th = th
d + th

p

th
d = τ̃ (sin 2θ + sin 2φ)/2
th
p = τ ′ cos2(θ − φ)/2

Doublon hopping td = td
d + td

p

td
d = τ̃ sin 2θ, td

p = τ ′ sin2 θ

Triplet hopping tT0 = t
T0
d + tT0

p , tT1 = t
T1
d + tT1

p

t
T0
d = τ̃ cos 2θ sin φ/2
t
T1
d = τ̃ cos 2θ sin φ/

√
2

tT0
p = τ ′ cos θ cos(θ − φ)/2
tT1
p = τ ′ cos θ cos(θ − φ)/

√
2

Holon-doublon t r = t r
d + t r

p

recombination t r
d = τ̃ (cos φ + sin 2θ sin φ)/

√
2

t r
p = τ ′ cos(θ − φ) sin θ/

√
2

Triplet-doublon t r0 = t
r0
d + t r0

p , t r1 = t
r1
d + t r1

p

recombination t
r0
d = τ̃ cos 2θ/

√
2

t
r1
d = τ̃ cos 2θ

tr0
p = τ ′ sin 2θ/2

√
2

t r1
p = τ ′ sin 2θ/2

(20), (A2), on adjacent sites. For example, parameter th

associated with hopping of the holon is calculated from the
matrix element 〈Hi,gjs |Hcc|gis,Hj 〉. Parametrized by θ,φ and
τ̃ = 2tpdμ01,τ

′ = 2tppν01, they are presented in Table I.
These effective hopping parameters are, together with the

relative energies εH = EH − Eg,εD = −Eg,εT = ET − Eg ,
the essential ingredient of recombination coupling strengths,
as explicitly written in Eqs. (26).
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