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Kondo-hole substitution in heavy fermions: Dynamics and transport
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Kondo-hole substitution is a unique probe for exploring the interplay of interactions, f-electron dilution, and
disorder in heavy-fermion materials. Within the diluted periodic Anderson model, we investigate the changes
in single-particle dynamics as well as response functions, as a function of Kondo-hole concentration (x) and
temperature. We show that the spectral weight transfers due to Kondo-hole substitution have characteristics that
are different from those induced by temperature; the dc resistivity crosses over from a highly nonmonotonic
form with a coherence peak in the x → 0 limit to a monotonic single-impurity-like form that saturates at low
temperature. The thermopower exhibits a characteristic maximum as a function of temperature, the value of which
changes sign with increasing x, and its location is shown to correspond to a low energy scale of the system. The
Hall coefficient also changes sign with increasing x at zero temperature and is highly temperature dependent for
all x. As x is increased beyond a certain xc, the Drude peak and the mid-infrared peak in the optical conductivity
vanish almost completely; a peak in the optical scattering rate melts and disappears eventually. We discuss the
above-mentioned changes in the properties in terms of a crossover from coherent, Kondo lattice behavior to
single-impurity-like, incoherent behavior with increasing x. A comparison of theory with experiments carried
out for the dc resistivity and the thermopower of Ce1−xLaxB6 yields good agreement.
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I. INTRODUCTION

Interest in the physics of heavy-fermion materials [1,2]
has been sustained for the past four decades because they
display a rich variety of phenomena such as the lattice Kondo
effect [3], large electron masses, quantum criticality [4,5],
valence-fluctuation-driven Kondo collapse, and unconven-
tional superconductivity [6]. These phenomena arise mainly
due to the presence of an active f orbital which forms a very
narrow band, and thus leads to strong correlations [3,7,8]. The
concentration of f electrons in heavy-fermion alloys can be
tuned by substituting nonmagnetic homologues; for example
lanthanum (La) can be substituted for cerium(Ce). Various ex-
amples of such alloys are Ce1−xLaxCu6 [9], Ce1−xLaxB6 [10],
Ce1−xLaxCu2Si2 [11], and Yb1−xLuxRh2Si2 [12]. Substitution
with nonmagnetic homologues, defined as Kondo-hole (KH)
type substitution, leads to a crossover from coherent lattice
to incoherent single-impurity behavior. Such a crossover is
reflected in dynamics and transport properties. The other kind
of substitution in heavy fermions is ligand field substitution,
as in CeCu6−xAux [13] and UCu5−xPdx [14]. This kind of
doping in the former leads to a quantum critical point, that in
turn manifests in a wide parameter space at finite temperatures
and leads to anomalous properties.

Experimentally, the changes in physical properties due
to Kondo-hole-type substitution are quite well known. With
increasing disorder, the coherence peak in resistivity vanishes
while the high-temperature single-impurity Hammann form
is preserved [9,10]. The magnitude of the characteristic
peak in the thermopower decreases with increasing disorder
strength [10]. In the extreme dilution limit, the peak even
changes sign [10]. However, these features and their detailed
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doping dependence are quite material specific [10]. The Hall
coefficient, RH , which is constant (−1/ne) with temperature
for normal metals, is highly temperature and concentration
dependent for heavy-fermion metals. With increasing con-
centration of Kondo holes, the magnitude of Hall coeffi-
cient extrapolated to zero temperature [RH (T → 0)] changes
sign [15].

In the present paper, our main aim is to explore the
dynamics and transport quantities across the Kondo-hole
doping induced crossover from coherent heavy fermions
to incoherent single-impurity behavior. Theoretical work on
heavy fermions (HFs) with Kondo-hole substitution, modeled
by the periodic Anderson model (PAM), has been extensive.
A standard approach is to embed the coherent potential
approximation (CPA) [16–18] within the dynamical mean field
theory (DMFT) framework which yields a dynamical CPA
(dCPA) [19,20]. The dCPA has been employed in combination
with impurity solvers such as slave-boson (SB) mean-field
theory [21–23], numerical renormalization group (NRG) [19],
and iterative perturbation theory (IPT) [20] to investigate
the diluted PAM. We have derived dCPA equations using a
Feenberg renormalized perturbation series and have employed
the local-moment approach [24] as an impurity solver. The
comprehensive NRG work by Grenzebach et al. [19] focused
on resistivity and thermopower in the Kondo lattice limit.
While our results do concur with Ref. [19], in addition, we
demonstrate the existence of a universal low energy scale
at finite x and the dependence of the crossover on nc in
the resistivity. Substitutional effects on optical conductivity,
optical scattering rate, and Hall coefficient have been studied
in detail.

We conclude that quantitative agreement with experi-
mental results necessitates the introduction of substitution
dependence into the model parameters. Experimentally mea-
sured residual resistivity per unit concentration of magnetic
impurities increases with increasing Kondo-hole concen-
tration [9,10]. However, in previously reported theoretical
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work [19,20,25,26], the residual resistivity peaks at a certain
concentration value and is not monotonic. We have found
that including concentration dependence into the orbital
energy of itinerant electrons correctly reproduces the known
experimental trend in residual resistivity.

The paper is structured as follows: We first discuss the
standard model for heavy fermions, i.e., the periodic Anderson
model, followed by the formalism of CPA+DMFT which is
needed to incorporate disorder due to Kondo-hole substitution.
In Sec. III A, we present results for spectral functions, low
energy scale, and hybridization. In Secs. III B and III C, we
discuss resistivity and thermoelectric behavior. In Sec. III D,
we discuss the effects of disorder on the Hall coefficient
and Hall angle. In Sec. III E, we shift to dynamical transport
quantities, namely optical conductivity and optical scattering
rate. In the final section, Sec. IV, we do a detailed comparison
of theoretical results with the experimental data for resistivity
and thermopower in Ce1−xLaxB6.

II. MODEL AND FORMALISM

A. Periodic Anderson model

The periodic Anderson model (PAM) is the simplest
theoretical model to understand the physics of heavy fermions
in various regimes. In second-quantized notation, the PAM is
expressed as

HPAM = −
∑
〈ij〉σ

tij (c†iσ cjσ + H.c.) +
∑

i

Hii, (1)

where the local part of the Hamiltonian is Hii =
εc

∑
σ c

†
iσ ciσ + εf

∑
σ f

†
iσ fiσ + V (

∑
σ f

†
iσ ciσ + H.c.) +

Unf i↑nf i↓. In this Hamiltonian [Eq. (1)], the first term
represents kinetic energy of conduction electrons in terms of
a hopping amplitude; t ∝ t∗√

Zc
(t∗ ≡ 1 is the unit of energy) in

the limit of large coordination number Zc. We consider the
hypercubic lattice for which D0(ε) = exp[−(ε/t∗)2]/

√
πt∗

is the bare c-electron density of states. The second term
is diagonal in real space, and represents in sequence the
site energy for conduction electrons, localized f electrons,
hybridization of localized and conduction electrons, and the
on-site Coulomb repulsion between two localized opposite-
spin electrons.

In order to handle Kondo-hole substitution and the con-
sequent disorder within DMFT [27], we use the coherent
potential approximation (CPA) which becomes exact in the
limit of infinite dimensions [16]. We outline our method for
incorporating disorder below.

B. Coherent potential approximation
and dynamical mean field theory

We have employed the Feenberg renormalized perturbation
series (FRPS) [28] for binary distribution of disorder, i.e.,
P (εi) = (1 − x)δ(εi − εα) + xδ(εi − εβ) (where εi can be
any model parameter), and derived the averaged conduction
and impurity Green’s function for PAM. The tight-binding
Hamiltonian which is expressed in second-quantized notation
as

Ĥ = −
∑
ijσ

tij c
†
iσ cjσ +

∑
iσ

εcc
†
iσ ciσ (2)

represents kinetic energy and orbital energy of a noninteracting
system. The retarded noninteracting Green’s function in matrix
representation is given by

g = [z + t]−1, (3)

where zij = δij (ω+ − εc). The local Green’s function for the
Hamiltonian using FRPS can be written as [28]

gii = 1

ω − εc − Si[{gjj (ω)}] , (4)

where Si is a Feenberg self-energy and is a functional of local
Green’s functions. Specifically, it is given by the sum of all
self-avoiding graphs on the lattice, where the vertices are the
local (site-excluded) Green’s functions, while the lines are
the hopping amplitudes connecting neighboring sites [28]. In
the limit of infinite dimensions, the restriction of site exclusion
may be relaxed. Thus, for example, for the Bethe lattice, where
the only self-avoiding closed paths would be a single-hop to
a nearest neighbor, the S(ω) would be a functional only of
the nearest-neighbor local (diagonal) Green’s functions. Since
	σ (ω) is diagonal in the local approximation [27], the Green’s
function in matrix representation is given as

Gσ (ω) = [Z̃ + t]−1, (5)

with Z̃ = z − 	σ . The structure of Eqs. (3) and (5) is identical
and thus the Green’s function with diagonal self-energy can
be written as

Gii;σ (ω) = 1

ω − εc − 	i;σ (ω) − Si[{Gjj ;σ (ω)}] , (6)

where Si is exactly the same functional of local interacting
Green’s functions as in the noninteracting case. So far, we
have not invoked any disorder. For a binary alloy, P (ε) =
(1 − x)δ(ε − εα) + xδ(ε − εβ), where every site is surrounded
by a fraction x of α-type sites and 1 − x of β-type sites. Thus in
the Feenberg self-energy, since each vertex has a sum over the
sites, the argument of the functional becomes a self-averaged
quantity

Sσ = S
[
GCPA

σ

]
, (7)

and GCPA
σ is the disordered averaged CPA Green’s function

and given as

GCPA
σ (ω) = (1 − x)Gα

σ (ω) + xGβ
σ (ω). (8)

As discussed in the introduction (Sec. I), our focus is on
substitutional disorder in f sites, and hence we choose
εα = εf ;α and εβ = εf ;β . The local conduction electron (c)
Green’s functions for α-type sites are given by

Gα
σ (ω) = 1

ω − εc − 	α
σ (ω) − S

[
GCPA

σ (ω)
] , (9)

and likewise for β-type sites. Here the 	
α/β
σ =

V 2

ω+−ε
α/β

f −	f ;α/β (ω)
. Using Eq. (9) in Eq. (8) gives the CPA

Green’s function obtained as

GCPA
σ = 1 − x

ω − εc − S
[
GCPA

σ

] − 	α
σ (ω)

+ x

ω − εc − S
[
GCPA

σ

] − 	
β
σ (ω)

. (10)
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Within the LMA [29,30], we have a two-self-energy descrip-
tion corresponding to the two degenerate mean-field broken
symmetry solutions with self-energy 	A and 	B and hence
the corresponding Green’s functions will be GCPA;A

σ (ω) and
GCPA;B

σ (ω). In the paramagnetic regime every site is surrounded
by an equal number of A- and B-type Green’s functions;
hence

GCPA(ω) = 1
2

[
GCPA;A

σ (ω) + GCPA;B
σ (ω)

]
. (11)

With the up/down spin symmetries of the Green’s function,
i.e., GA

σ = GB
−σ , the above equation can be written as

GCPA(ω) = 1
2

[
GCPA

σ (ω) + GCPA
−σ (ω)

]
. (12)

We note that GCPA(ω) is independent of spin and thus the
Feenberg self-energy which is the functional of the nearest-
neighbor CPA Green’s function will be independent of spin
Sσ (ω) = S(ω). Combining Eqs. (10) and (12) and the condition
of Kondo-hole-type of disorder, i.e., 	σ (ω)β = 	−σ (ω)β =
0 (since εf ;β → ∞ for Kondo holes), the averaged c CPA
Green’s function can be written as

GCPA
c (ω) = (1 − x)

2

[
1

ω − εc − S(ω) − 	σ (ω)

+ 1

ω − εc − S(ω) − 	−σ (ω)

]

+
[

x

ω − εc − S(ω)

]
. (13)

The above equations are equivalent to the CPA+DMFT
equations derived previously [19,20]. Since the CPA Green’s
function corresponds to that of a translationally invariant
system, the c CPA Green’s functions can also be calculated
with the following Hilbert transform:

GCPA
c (ω) = H [γ ] =

∫ ∞

−∞

ρ0(ε)

γ (ω) − ε
= 1

γ (ω) − S(ω)
, (14)

where γ (ω) = ω+ − εc − 	CPA
c . Equations (13) and (14) form

a self-consistent set of equations for S(ω) if the self-energies
	σ are known. Since the β type for Kondo-hole substitution
does not have the f electron, GCPA

f (ω) will have a contribution
from α only and is given by

GCPA
f (ω) = (1 − x)

[
ω+ − εf −	f (ω) − V 2

ω+ − εc − S(ω)

]−1

.

(15)

Finally, the local Green’s functions for the α-type f and c

electrons are given as

Gf
σ (ω) =

[
ω+ − εf − 	f

σ (ω) − V 2

ω+ − εc − S(ω)

]−1

, (16)

Gc
σ (ω) =

[
ω+ − εc − S(ω) − V 2

ω+ − εf − 	
f
σ (ω)

]−1

. (17)

The corresponding occupation numbers of f and c electrons
are nf = ∑

σ 〈f †
σ fσ 〉 and nc = ∑

σ 〈c†σ cσ 〉 evaluated from the
local spectral functions. Evaluation of local self-energy 	

f

↑/↓
and the self-consistency of DMFT is carried out in the manner

discussed in detail in previous works [29,30] for the clean case.
For disordered systems, the CPA Green’s functions are used to
evaluate transport properties which are discussed in the next
section.

C. Transport formalism

Since within DMFT, vertex corrections are absent [27], the
single-particle Green’s functions are sufficient within the Kubo
formalism to obtain transport quantities such as dc resistivity
and optical conductivity. The expressions have been derived
previously [29] for the non-disordered case for a hypercubic
lattice. With the inclusion of disorder at the CPA level, the
expressions retain the same form, but the c Green’s function
is replaced by the CPA Green’s function. Thus the expression
for the real part of optical conductivity is

σ (ω; T ) = σ0

2π2

∫ ∞

−∞
ρ0(ε)

∫ ∞

−∞
dω′ nF (ω′) − nF (ω + ω′)

ω

×DCPA
c (ε,ω′)DCPA

c (ε,ω + ω′), (18)

where σ0 = 4πe2a2n/� for a lattice constant a, elec-
tronic charge e, and electron density n and DCPA

c (ε,ω) =
−ImGCPA

c (ε,ω)/π . For lattice constant a in the physically real-
istic regime, i.e., 1–10 Å, σ0 ∼ 104–105 (� cm)−1. By carrying
out a Kramers-Kronig transform σ ′(ω; T ) = P

∫ ∞
−∞ dω′ σ (ω′)

ω−ω′
of the σ (ω; T ) we can get σ ′(ω; T ), and then the complex
optical conductivity, σ̄ (ω; T ), can be obtained as σ (ω; T ) +
iσ ′(ω; T ). The optical scattering rate is defined as [31]
M−1(ω; T ) = Re[1/σ̄ (ω; T )].

The dc conductivity, thermopower, and Hall coefficient can
be expressed in terms of Lorenz numbers as [32]

σDC = L11, S = − 1

eT

L12

L11
, RH = L21

(L11)2
.

The explicit expressions for Lij ’s are [32]

L11 = σ0

2π2

∫ ∞

−∞
ρ0(ε)

∫ ∞

−∞
dω

(
−∂nF

∂ω

)
DCPA

c (ε,ω)
2
,

(19)

L12 = σ0

2π2

∫ ∞

−∞
ρ0(ε)

∫ ∞

−∞
dω ω

(
−∂nF

∂ω

)
DCPA

c (ε,ω)
2
,

(20)

and

L21 =R0
σ0

2π2

∫ ∞

−∞
ε ρ0(ε)

∫ ∞

−∞
dω

(
−∂nF

∂ω

)
DCPA

c (ε,ω)
3
,

(21)

where R0 = 2
3πe2.

III. RESULTS AND DISCUSSION

As mentioned in the introduction, our main objective in
this work is to elucidate the emergence of incoherence in
heavy fermions through the introduction of Kondo holes. The
focal theme throughout this section will be the crossover
from coherent lattice behavior to incoherent single-impurity
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behavior as a function of the concentration of Kondo holes.
The manifestation of this crossover will be examined in
single-particle quantities such as spectral functions and two-
particle quantities such as dc conductivity, optical conductivity,
optical scattering rate, thermopower, and Hall coefficient. It
is well known [29,33] that heavy-fermion systems display
such a crossover even in the clean limit with an increase
in temperature from T = 0 to beyond the lattice coherence
temperature. We will examine the interplay of disorder and
temperature in inducing the incoherence. The conduction band
center is fixed at εc = 0.5. We begin with single-particle
dynamics, i.e., with the density of states and low energy scale.
Next, we explore two-particle static quantities and finally, we
will discuss two-particle dynamical quantities.

A. Density of states and low energy scale

The clean limit of the PAM has been studied exten-
sively [29,33–39]. It has been found [29,38,39] that the spectral
functions, optical conductivity, and resistivity in the strong-
coupling regime are universal functions of (T/ωL,ω/ωL). The
low energy scale, which is given by ωL � ZV 2/t∗ where
Z = (1 − ∂	/∂ω|ω=0)−1, is an exponentially decreasing func-
tion [24,39] of U/V 2 (for η = 1 + 2εf /U = 0, U/V 2 � 1).
Substituting f electrons with Kondo holes should give rise
to significant changes in the local f -electron spectrum and
the low-energy Kondo scale. In a recent work [40], we have
shown that the CPA self-energy develops a finite linear in
frequency imaginary part; thus a definition of quasiparticle
weight using the CPA self-energy is not possible. However,
the local self-energy does have adiabatic continuity to the
noninteracting limit, and hence may be used to define a low
energy scale, which would naturally depend on the Kondo-hole
concentration, x. We define a low energy scale, ωL(x), as
Z(x)V 2/t∗, where Z(x) is the quasiparticle weight of the
local self-energy for a given x. For Kondo-hole substituted
systems in the strong-coupling limit, the low energy scale
ωL(x) is exponentially small, which is a prerequisite for the

5 6 7 8
U/t*

-7.5

-7

-6.5

-6

-5.5

-5

lo
g(

ω
L
(x

))

x=0.3
x=0.5
x=0.9

FIG. 1. (Color online) Low energy scale ωL(x) varying with
Coulomb interaction U for different substitution values of x. The
hybridization is chosen to be V 2 = 0.4, and the conduction band
center is at εc = 0.5.

0
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0.8
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D
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ω/ωL(x)

0.1
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0.4

0.5

0.6

D
f (ω

)
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0.2
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0.6
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0
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0.5
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(a) (b)

(c) (d)

x=0.3 x=0.5

x=0.9 x=0.95

FIG. 2. (Color online) Local f spectral function varying with
scaled frequency ω/ωL(x) for substitution values x = 0.3, x = 0.5,
x = 0.9, and x = 0.95. The model parameters are the same as in
Fig. 1.

scaling consideration of spectral quantities. In Fig. 1, we
show ωL(x), which is indeed exponentially decreasing with
increasing Coulomb interaction U for different concentrations.
Further, in Fig. 2, we show the universal behavior of the local
f spectral function Df (ω) for different substitution values. In
panel (a) of Fig. 2, we show the local f spectral functions versus
scaled frequency ω/ωL(x) for different Coulomb interactions
U = 6.2 (solid line), 7.2 (dotted line), 8.2 (dashed line)
for substitution value x = 0.3. The f spectral functions for
different U collapse onto a universal form. Similarly in panels
(b), (c), and (d) the scaling of f spectral functions is shown for
x = 0.5, x = 0.9, and x = 0.95, respectively. Such universal
behavior of the local f spectral functions for a wide range of
substitution values leads to the conclusion of the presence of a
low energy scale for Kondo-hole substituted heavy fermions.
Nevertheless, it is important to note that such universal scaling
is not obtained for the disorder averaged, i.e., the CPA,
Green’s functions. This naturally implies that transport or other
quantities that depend on the CPA Green’s functions will not
exhibit a scaling collapse as a function of varying interaction
strength.

The hybridization function, �(ω) = −Im[S(ω)], [where
the S(ω) is the Feenberg self-energy] depends, naturally, on
Kondo-hole concentration. This �(ω) may be found through
the imaginary part of the inverse of the host Green’s function,
which is determined self-consistently within DMFT [27]. We
show the �(ω) in Fig. 3. It is seen that for small values of con-
centrations, the hybridization function has a Gaussian envelope
with spectral weight carved around εf ∗ = Z[εf + 	(0)]. With
increasing concentration, the hybridization gap fills up and
in the single-impurity limit (x � 1), we see a featureless
Gaussian. This is expected, because in the dilute limit, the
impurities should have a negligible effect on the host, hence
the hybridization assumes a simple form that is proportional
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FIG. 3. (Color online) Hybridization as a function of absolute
frequency ω/t∗ for various substitution (x) values. The parameters
are U = 5.23,V 2 = 0.4,nf = 0.98,nc = 0.53.

to the noninteracting density of states, which has been chosen
to be a Gaussian in our work.

One important inference can be made here about the
difference between the influence of Kondo-hole disorder
versus temperature. The spectral weight transfer into the
hybridization gap is seen to arise from high energy scales,
even from the Hubbard bands (Fig. 3). Thus, disorder is
seen to affect all energy scales. Temperature, in contrast,
affects the spectrum only on energy scales that are comparable
to the thermal energy scale [29]. Hence the incoherence
effects induced by disorder are quite distinct from those by
temperature. In Fig. 4, we show the low-frequency region of the
local f DOS, Df (ω) = −ImGf (ω)/π [Eq. (16)] as a function
of “bare” frequency, ω/t∗, for various values of the Kondo-hole
concentration, x. It is easy to see that a redistribution of
spectral weight has occurred with the increase in x, and the
hybridization gap flanking the Kondo resonance fills up giving
rise to a broad resonance in the single-impurity limit. The
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FIG. 4. (Color online) Expanded view of the low-frequency re-
gion of the local f DOS. Inset: Variation of low energy scale with
Kondo-hole concentration.
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FIG. 5. (Color online) Main panel: Resistivity per f site as
a function of scaled temperature, T/ωL (model parameters are
U � 5.11,V 2 = 0.6,nf � 0.98,nc � 0.59). Inset: The strong-
coupling single-impurity Anderson model (SIAM) resistivity
compared with concentration value x = 0.95. Model parameters for
SIAM are U = 5.11,V 2 = 0.2,εc = 0.5.

full width at half maximum of the resonance is expected to be
proportional to the low energy scale. And given the broadening
of the resonance, we must expect that the ωL should increase
with increasing x. Indeed, as the inset shows, the ωL rises
almost linearly, and saturates in the single-impurity limit.

Next, we will discuss the effect of disorder on finite-
temperature static response functions, i.e., resistivity, ther-
mopower, Hall coefficient, and Hall angle.

B. dc resistivity

In the main panel of Fig. 5, the effects of Kondo-hole substi-
tution on dc resistivity versus scaled temperature T/ωL, where
ωL is the low energy scale for x = 0, have been shown. For
zero concentration, resistivity is zero at T = 0 and follows T 2

behavior (Fermi liquid) at low temperatures. As temperature
is increased, a crossover from coherent to incoherent behavior
in resistivity takes place. At high temperatures (T � ωL),
the resistivity shows the asymptotic single-impurity Hamann
form [ρ(T ) = 3π2

16 ln2 (T/ωL)
] as discussed in detail in previous

work [29]. The presence of a coherence peak signifies the
crossover at low temperatures to coherent lattice behavior.
The coherence peak shifts to lower temperature value with
increasing Kondo-hole concentration. Since the resistivity
decreases monotonically with increasing temperature for
x � 0.4, lattice coherent behavior never sets in for the higher
concentration values. At T/ωL � 1, the resistivity for all x

collapses onto a single universal form, which is simply the
resistivity for a single-impurity Anderson model (see inset
of Fig. 5 [41]). The residual resistivity (not shown) does
not follow Nordheim’s rule [ρ(T = 0) ∝ x(1 − x)], which is
consistent with previous work [19] and experiments [10].

In a few recent works, the authors [22,23] used CPA
combined with slave-boson mean field to show that a “critical”
concentration of x ∼ (1 − nc) is required to induce a crossover
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FIG. 6. (Color online) Resistivity as a function of temperature
for three conduction electron occupancies and various concentration
values. The coherence peak is seen to disappear beyond x � 1 − nc,
which is roughly 0.7,0.4, and 0.2 for nc ∼ 0.30 (top panel), nc ∼
0.60 (middle panel), and nc ∼ 0.83 (bottom panel), respectively. The
model parameters are V 2 = 0.6, U ∼ 5.20.

from lattice coherent behavior to single-impurity incoherent
behavior. This implies that the crossover to incoherence
is dependent on the conduction electron concentration. For
symmetric Kondo insulators, since nc = 1, this crossover
would occur for an infinitesimal concentration of Kondo holes,
while in the exhaustion regime [42], the crossover would
require a high substitution of the nonmagnetic homologue.
We investigate this conduction electron dependence in the
crossover through a study of the coherence peak in the
resistivity shown in Fig. 6.

In the top panel (a) of Fig. 6, we show the dc resistivity for
nc ∼ 0.3. The coherence peak is present up to x ∼ 0.65 and
resistivity follows single-impurity behavior beyond. Similarly
in the middle panel (b) and the bottom panel (c) of Fig. 6,
crossover from lattice coherent to single-impurity incoherent
behavior takes place at x ∼ 0.4 and x ∼ 0.17 for nc ∼ 0.6 and
nc ∼ 0.83, respectively. Thus, our results are consistent with
the finding in Ref. [33], mentioned in the above paragraph.

C. Thermopower

The effect of Kondo-hole substitution on thermopower for
different temperatures is shown in the upper panel of Fig. 7.
Like resistivity, temperature has been scaled by the low energy
scale of x = 0. In the clean case, the thermopower rises from
zero, reaches a maximum at a universal temperature, T ∼ ωL,
and subsequently decreases monotonically, with a change of
sign at nonuniversal temperatures. This functional form is

0.01 1 100
T/ωL

0

0.5

1

1.5

2

Q
(T

)/Q
0

10-4 10-3 10-2 10-1

T/t*

-0.1

0

0.1

Q
(T

)/Q
0

FIG. 7. (Color online) Upper panel: Thermopower vs T/ωL

(model parameters are U ∼ 5.23,V 2 = 0.4,nf ∼ 0.98,nc ∼ 0.53).
Lower panel: Thermopower vs T/t∗ in dilute limit, i.e., x = 0.99
with U ∼ 7.17,V 2 = 0.4,nf ∼ 0.97,nc ∼ 0.52. Inset: Thermopower
of SIAM for U ∼ 5.80,V 2 = 0.4.

preserved for almost all x, with a distinct form arising only
in the extreme dilution limit (x → 1). However, the position
of the “coherence peak” exhibits an interesting feature with
varying x that is related to the “critical” x at which the
crossover from coherent lattice to single-impurity incoherent
behavior occurs in the resistivity. For x � 0.5, the position of
the maximum in thermopower redshifts monotonically with
increasing concentration of Kondo holes, and for higher x,
begins to blueshift (upper panel of Fig. 7). The magnitude of
this peak however decreases monotonically with increase in
x and changes sign in the single-impurity limit. Sign of the
thermopower is associated with the integrated particle-hole
asymmetry [19], which changes sign in accordance with the
sign of the thermopower. In the extreme dilution limit shown in
the lower panel of Fig. 7, the thermopower looks qualitatively
similar to that of SIAM [41] (inset of lower panel), i.e., one
peak at low temperature and the other peak with opposite sign
at large temperature.
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FIG. 8. (Color online) Hall coefficient RH (T ) vs temperature T

scaled by low energy scale ωL(x = 0). The model parameters are U ∼
5.35,V 2 = 0.6, and εc = 0.5 for which the occupancies are nf = 1.0
and nc = 0.55.

D. Hall coefficients and Hall angle

The Hall coefficient, RH , in conventional metals is tem-
perature independent, and a simple measure of the carrier
type and density. Heavy-fermion metals, on the other hand,
exhibit a highly temperature-dependent and material-specific
Hall coefficient RH [15]. Various theoretical explanations for
anomalous Hall effect have been discussed in detail in the
recent review by Nair et al. [43]. In Fig. 8, we show the
Hall coefficient (scaled by the RH at T = 0 of the single
impurity) versus scaled temperature (T/ωL), where ωL is low
energy scale for zero Kondo-hole concentration, for various
values of the Kondo-hole concentration, x. In the clean Kondo
lattice limit (x → 0), the Hall coefficient has a finite positive
value, which increases with increase in temperature, peaks
around T ∼ 0.5ωL, and then decreases monotonically with a
change of sign at higher nonuniversal temperatures. At zero
temperature, the RH decreases in magnitude and eventually
as x → 1− changes sign with increasing x. In parallel to the
behavior in resistivity, a collapse of RH versus T is found at
higher temperatures (T � ωL) for all x reflecting a crossover
from lattice coherent behavior to single-impurity behavior, as
a function of T and x. Since we have computed the resistivity
and the Hall coefficient, it is straightforward to explore the
Hall angle, which is defined as θH = cot−1[ρ(T )/RH (T )], as a
function of x and T . Since the RH changes sign with increasing
T for x � 0.4, we expect, in this range of x, the Hall angle to
show sign change with increase in temperature.

In Fig. 9, the variation of the Hall angle with temperature has
been shown for different concentrations of Kondo holes. In the
concentrated limit (below x � 0.4), the Hall angle has finite
positive value at low temperature and changes sign sharply
at large nonuniversal temperatures. The sign change occurs
only for x � 1 − nc and beyond that, the sign of the Hall
angle does not change. An important fact to be noticed here
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FIG. 9. (Color online) Hall angle vs temperature T scaled by low
energy scales ωL at x = 0 (model parameters are same as for Fig. 8).

is that the sign change in Hall angle occurs almost like a first-
order transition, which is in complete contrast to the smooth
crossover seen in resistivity and Hall coefficient, which are
numerator and denominator, respectively, of the Hall angle
(θH = cot−1[ρ(T )/RH (T )]).

In the next subsection, we discuss the effects of Kondo-hole
substitution on dynamical response functions. We consider
optics first.

E. Optical conductivity and optical scattering rate

In the top panel of Fig. 10, we show the T = 0 optical
conductivity computed using Eq. (21) for different values of
x. With increasing x, the Drude peak at ω = 0 melts rapidly
and the low-frequency region appears flat and featureless.
The dc value of the optical conductivity represents static
effects of impurity scattering. The mid-infrared (MIR) [29]
peak moves to lower frequencies with increase in Kondo-
hole concentration. This is counterintuitive if we invoke the
renormalized noninteracting picture, which says that the MIR
peak is positioned at ∼

√
ZV 2. The scale increases with x,

so if the MIR were to be proportional to
√

ωL, then the MIR
would experience a blueshift. So how does one explain the
redshift? The answer is provided by the dispersion ω(εk)
found by locus of zeros of the Re[GCPA

c (εk,ω)−1]. This is
shown in the bottom panel of Fig. 10. It is seen that for
low concentration, there is a clean minimum direct gap, that
is indeed proportional to

√
ωL. With increasing Kondo-hole

concentration, the direct gap fills up with mid-gap states, which
causes the gap to direct excitation to decrease. Eventually, for
x � 0.7, there is almost no gap. Thus, the theory predicts that
with increasing substitutional disorder, the MIR absorption
peak should experience a strong redshift. The imaginary part
of the self-energy represents the damping of the quasiparticles,
and the band structure shown in Fig. 10 does not fully capture
this aspect, since only the real part of the denominator of the
CPA Green’s function is used. To remedy this, we also show
the full band structure by plotting εk and frequency-dependent
−ImGCPA(ω,εk)/π as a two-dimensional contour plot (with
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FIG. 10. (Color online) Top panel: Zero-temperature optical con-
ductivity as a function of ω/t∗ for various Kondo-hole concentra-
tions. Bottom panel: Band dispersion for various x values. The model
parameters are U = 5.11,V 2 = 0.6,nf � 0.98, and nc � 0.59.

false colors) in Fig. 11 for four x values. We observe that,
at x = 0.1, there is almost no spectral weight in the region
between the two bands, implying that the MIR peak would be
a prominent high-energy feature. With increasing x, the two
bands come closer and appreciable spectral weight appears in
the form of mid-gap states arising due to Kondo holes. This
indeed implies that the MIR peak will redshift and simultane-
ously, the absorption will be finite all the way from the peak
down to ω = 0. Thus, the incoherent scattering by random
Kondo-hole substitution is responsible for the redshift of the
MIR peak and the concomitant destruction of the Drude peak.

The optical scattering rate, M−1(ω), defined in Sec. II as
M−1 = Re[1/σ̄ (ω)], is shown in Fig. 12. In the concentrated
regime (x → 0), a characteristic peak is visible in the optical
scattering rate at low frequencies. This is also observed in
experiments [44–46] on heavy-fermion systems. This peak is
narrow and centered at ωL for small x. As x increases, the
peak broadens, experiences a redshift, and ultimately vanishes
in the dilute limit. It is precisely around x ∼ 0.6 that this
peak structure vanishes, which is attributed to crossover from

FIG. 11. (Color online) False-color contour plot of the single-
particle dispersion, DCPA(εk,ω) = −ImGCPA

c (εk,ω)/π for concentra-
tion values x = 0.1, x = 0.34, x = 0.5, and x = 0.7 (from top to
bottom). The model parameters are same as Fig. 10.

heavy-fermion to single-impurity regime. The high-frequency
tail is seen to be universal for all x. We further investigate
the effect of temperature on the optical scattering rate for
finite value of Kondo-hole concentration and temperature.
In the main panel of Fig. 13, the optical scattering rate is
shown for x = 0.45 versus scaled frequency ω/ωL. The peak
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FIG. 12. (Color online) Zero-temperature optical scattering rate
as a function of ω

ωL
(ωL is low energy scale at x = 0) for various

disorder strengths. The model parameters are U = 5.32,V 2 = 0.6,

nf � 0.97, and nc � 0.43.

in optical scattering rate corrodes slowly with increasing
temperature, and finally vanishes for T � 0.5ωL for the
parameters mentioned in Fig. 13. In the inset of Fig. 13,
the dc resistivity versus temperature is shown for the same
parameter regime. It is seen that the coherence peak appears
at the same value of temperature i.e., T ∼ 0.5ωL, where the
peak in scattering rate vanishes (main panel) and for all higher
temperatures, the resistivity follows single-impurity behavior.
Thus, the behavior of the optical scattering rate is consistent
with resistivity in terms of predicting the crossover from Kondo
lattice (KL) to single impurity.
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FIG. 13. (Color online) Main panel: Optical scattering rate for
x = 0.45 and various temperatures, shown as fractions of the low
energy scale. In the inset, the resistivity vs scaled temperature is
shown, also for x = 0.45. The other model parameters are V 2 = 0.6,

εc = 0.7,η � 0, U � 5.32, nf = 0.97, and nc = 0.43.

IV. COMPARISON TO EXPERIMENT

A. Resistivity

In previous work [47], DMFT+LMA has been employed
to compare theory with experiments for a few heavy-fermion
metals in the clean case. Theoretical comparisons with
experiment for the disordered case has several complications.
Substitutional disorder may change lattice constants which
effectively can change the hopping parameters, site energies,
and hybridization amplitudes. A precise estimation of model
parameters for different values of concentration is next to
impossible and thus only qualitative comparison is possible. In
Fig. 14, we have compared concentration-dependent resistivity
of CexLa1−xB6 by Sato et al. [10] with our theory. In the top
panel, we present theoretical data where nf = 0.98, nc = 0.53,
and U/V 2 ∼ 6.0. The bottom panel reproduces the (phonon
subtracted) experimental data of Sato et al. [10]. With the
above choice of parameters and appropriate scaling (men-
tioned in previous work [47]), the theoretical data matches
excellently with experimental data (right panel of Fig. 14) for
the clean case (x = 0). If we compute resistivities for finite
x without changing the model parameters, we find that the
residual resistivity peaks at a finite x, which contradicts the
experimental observation that the residual resistivity increases
monotonically with increasing x and saturates in the dilute
limit. Hence, in order to get correct trend in residual resistivity
with increasing disorder, we introduce a minimal dependence
of a single model parameter with x. Our choice is the linear
dependence of x for the conduction orbital site energy [εc(x) =
εc(0) + αx, with α = 0.5], which effectively determines the
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FIG. 14. (Color online) Comparison of theory with experiment
for CexLa1−x . Left panel: Theoretically computed resistivity vs T for
various x. In right panel, experimental data for CexLa1−xB6 by Sato
et al. [10].
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FIG. 15. (Color online) Comparison of experiment with theory.
Top panel: Experimental data for CexLa1−xB6 by Kim et al. [49].
Lower panel: Theoretically computed thermopower for various x.

hybridization (V 2/[ω − εc(x) − S(ω)]) of f electrons with the
conduction bath. The argument behind such a choice is that
the larger atomic size of the doped lanthanum atom changes
the effective hybridization. The argument is consistent with
experimentally found increase in lattice constant upon Ce
substitution with La [48]. Further, the x axis is scaled by the
ratio of coherence peak position in theory to the experiment for
zero disorder. The agreement between theory and experiment
is seen to be qualitatively good. Such a dependence on x for εc

amounts to carrying out a kind of virtual crystal approximation
for the c electrons, while the f electrons are treated through
CPA. A consistent way would be to choose an ε′

c �= εc, which
amounts to choosing a different conduction band level for the
Kondo holes. We have, in fact, implemented this choice and
varied ε′

c over a wide range. Although a monotonic residual
resistivity is indeed obtained for ε′

c = −0.2, the temperature
dependence of resistivity for various x values does not at all
resemble experiments. Thus, we stick to the linear dependence
of εc(x), and hope that future first-principles calculations will
be able to justify our choice.

B. Thermopower

In the upper panel of Fig. 15, thermopower measurement by
Kim et al. [49] of CexLa1−xB6 for varying concentrations of

cerium is shown (note that the x used in experiment is 1 − x

in our theory). The experimentally measured thermopower
includes electronic (f ) and lattice contributions. It is important
to extract the electronic contribution in thermopower coeffi-
cient, since our calculation does not include phonons. For
the case of dc resistivity, Mattheissen’s rule was employed
to extract the electronic contribution. For thermopower, the
Nordheim-Gorter rule S ρ = SLaρLa + SCeρCe is commonly
employed. The contribution from the first term is small and
can be neglected (as argued in experimental work [49]); thus
SCe = S. It is observed that the peak position in thermopower
shifts to lower temperatures with increasing x. In the lower
panel of Fig. 15, the theoretically computed thermopower is
shown for the same parameter values as in Fig. 14. The x axis of
theoretical data has been scaled uniformly for all x by the ratio
of the peak position in thermopower in theory to experiment
for x = 0. The theory does agree reasonably with experiments.
Indeed it is gratifying to note that the theoretically computed
dc resistivity and thermopower agree with experiments on
La-substituted CeB6 for the same set of parameters.

V. CONCLUSIONS

In this paper, we have investigated Kondo-hole-type sub-
stitution in heavy fermions using the coherent potential
approximation combined with dynamical mean field theory
and the local-moment approach. The physics issue in focus is
the crossover from heavy fermions to single-impurity behavior
in physical properties such as resistivity and thermopower. The
approach used here does capture the crossover from Kondo
lattice to single-impurity behavior as reflected in spectral func-
tions, optics, resistivity, thermopower, Hall coefficient, and
optical scattering rate. The coherence peak in resistivity which
is inherent to heavy-fermion systems vanishes beyond a certain
value of Kondo-hole concentration. This value of concentra-
tion is dependent on conduction electron (nc) filling. In the
dilute limit, there is a sign change in thermopower. The zero-
temperature Hall coefficient and Hall angle also change sign at
xc. In the optical conductivity, the Drude peak vanishes beyond
the xc. The peak structure in optical scattering rate and the
coherence peak in resistivity have a one-to-one correspondence
and are the measure of the coherence in the system. Compari-
son of our theoretical results with experimental data for resis-
tivity and thermopower yields qualitatively good agreement. A
concentration-dependent conduction orbital energy correctly
captures the experimental trend in resistivity and thermopower.
The coherent potential approximation does not capture inter-
site coherence and coherent back-scattering effects. Recently
developed approaches such as the typical medium dynamical
cluster approximation should be able to capture such effects
and will be the subject of future investigation.
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