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Quantum impurity in a Luttinger liquid: Universal conductance with entanglement renormalization
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We study numerically the universal conductance of Luttinger-liquid wire with a single impurity via the
multiscale entanglement renormalization ansatz (MERA). The scale-invariant MERA provides an efficient way
to extract scaling operators and scaling dimensions for both the bulk and the boundary conformal field theories. By
utilizing the key relationship between the conductance tensor and ground-state correlation function, the universal
conductance can be evaluated within the framework of the boundary MERA. We construct the boundary MERA
to compute the correlation functions and scaling dimensions for the Kane-Fisher fixed points by modeling the
single impurity as a junction (weak link) of two interacting wires. We show that the universal behavior of the
junction can be easily identified within the MERA and argue that the boundary MERA framework has tremendous
potential to classify the fixed points in general multiwire junctions.
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I. INTRODUCTION

Recent advances in nanofabrication allow device miniatur-
ization to the molecular scale. Devices such as single-molecule
junctions connecting to multiple metallic leads are promising
candidates as the building blocks for molecular electronics
[1,2]. Furthermore, it is now possible to confine electrons
in one-dimensional (1D) quantum wires, where Luttinger
liquid (LL) can be realized with short-ranged electron-electron
interactions [3-8]. As a result, fabrications of junctions of
multiple LL wires are within the reach of current experimental
technology. Therefore, understanding properties of the multi-
wire junction, such as the linear conductance, are of current
interest.

Theoretically, one-dimensional (1D) interacting quantum
systems enjoy a special status as there exist a plethora of
analytical and numerical methods. In particular, for 1D critical
systems, we can use powerful theoretical tools such as the
conformal field theory (CFT) and the renormalization group
(RG) to analyze the physical properties [9,10]. For instance, the
presence of a potential barrier (impurity) leads to a boundary
RG fixed point that determines the transport of a 1D interacting
LL [11-14]. The CFT description suggests that a conformally
invariant boundary condition (CIBC) will be associated with
a boundary RG fixed point due to the presence of the
impurity [15]. A complemental RG approach with fermionic
description instead of the standard bosonization procedure
can also be used at weak interaction and provides a route
to capture the non-Luttinger-liquid behaviors in 1D quantum
wires [16]. These analytical approaches have yielded great
success in studying various 1D quantum impurity problems,
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such as Kondo impurities [17], resonance tunnelings [18], and
junctions of quantum wires [19].

On the other hand, numerical studies on the LLs with
impurities have provided useful insights into the properties of
the RG fixed points [20-22], and have aided the identification
of new fixed points for more complicated structures [23-25].
However, it is difficult to simulate 1D critical systems, of which
the LL is an example, because reaching scale invariance in
order to capture the true power-law correlations requires large
system sizes. A recent proposal based on tensor network states
called the multiscale entanglement renormalization ansatz
(MERA) has been shown to overcome these difficulties in sim-
ulating scale-invariant critical systems [26]. The key concept
of the MERA is to keep only the long-range entanglement
of the system during the real-space RG transformation. In
particular, MERA in its scale-invariant form allows one to
extract the universal properties such as critical exponents,
scaling dimensions, and long-range power-law correlations.
Moreover, since the effects of an impurity can be included
by introducing an impurity-defined boundary, the boundary
MERA is capable of capturing the boundary RG fixed points
and serves as an ideal tool to study quantum impurity problems
in 1D quantum critical systems [27].

With the density-matrix renormalization group (DMRG)
as the primary numerical scheme currently to study quasi-
1D interacting systems [28,29], it is worthwhile to discuss
briefly how and where the boundary MERA scheme can
have an advantage over DMRG. First, since the finite-size
DMRG calculation rarely reaches scale invariance, it becomes
nontrivial to extract properties of boundary RG fixed points due
to the presence of an impurity in a 1D critical system. Often,
a finite-size scaling or further manipulation on the numerical
data is required to extract the necessary information in order
to show the effects of the boundary [30]. Specifically, previous
attempts using DMRG to obtain the fixed-point universal
conductance of a multiwire junction has its limitations: it
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is necessary to perform a conformal transformation of the
correlation functions to map the semi-infinite wire system to
a finite strip, and a second boundary term has to be added
to cap the system in order to perform a finite-size DMRG
[25,31]. The mapping between the two boundary Hamiltonians
is obtained exactly in the noninteracting case, and is argued
to remain valid in the interacting case [25]. Even with this
manipulation, it is still necessary to perform calculations in
a large enough system size to reach scale invariance at the
middle of the wire. However, it is not straightforward to know
a priori how large the system size has to be to obtain the
scale-invariant properties of RG fixed points, especially for
unknown RG fixed points. On the other hand, while an infinite
DMRG calculation can reach the scale-invariance limit and
displays power-law correlations [32], it requires translational
invariance. Addition of an impurity into such a calculation
can be numerically costly as the translational invariance is
broken explicitly. A numerical method that can explicitly
preserve scale invariance in the presence of an impurity and
perform direct simulations on the (semi-)infinite chains is
coveted.

In this paper, we employ the boundary MERA to study
the simplest 1D quantum transport with an impurity: a
single weak link (potential barrier) in a spinless LL. As
shown by Kane and Fisher [12], there exist two possible
RG fixed points: a total reflection fixed point and a per-
fect transmission fixed point. When the electron-electron
interaction in the lead is repulsive, the former becomes
stable. In contrast, the perfect transmission fixed point be-
comes stable when the interaction is attractive. Although
numerical analysis based on DMRG and functional RG
shows evidences in support of these conclusions [20,33-36],
a direct computation of correlation functions on the semi-
infinite wires with a junction remains illusive. Using a MERA
that explicitly preserves the scale invariance, we are able to
compute the current-current correlation functions, spin-spin
correlation functions, and the scaling dimensions of a 1D LL
in the presence of an impurity. We show that under MERA’s RG
transformations, the system will reach either the total reflection
or the perfect transmission fixed point, depending on the sign
of the interaction in the LL leads. Furthermore, we show that
the correlation functions have a universal scaling behavior for
attractive interactions. Most importantly, the boundary MERA
provides crucial information about the scaling dimensions for
the primary fields in the boundary CFT, which can be used
to classify RG fixed points without prior knowledge of the
operator contents of the theory.

The paper is organized as follows: In Sec. II, we provide
a brief review of the multiscale entanglement renormalization
ansatz. In Sec. III, we discuss how to describe a two-wire
junction as a Luttinger liquid with an impurity. In Sec. IV, we
discuss how to construct the boundary Hamiltonian and how to
obtain the boundary state from which correlation functions and
scaling dimensions can be evaluated by optimizing a boundary
MERA. The current-current correlation functions at different
RG fixed points are presented in Sec. V and in Sec. VI we show
the spin-spin correlation functions and the scaling dimensions
with and without the impurity. In Sec. VII, we discuss how to
directly extract the scaling dimensions of the boundary scaling
operators through the boundary MERA. Finally, we summarize

PHYSICAL REVIEW B 90, 235124 (2014)

and discuss the advantage and the potential of the scheme
in Sec. VIII. Technical details on the implementation of the
boundary MERA are presented in the Appendices.

II. MULTISCALE ENTANGLEMENT
RENORMALIZATION ANSATZ

In this section, we give a brief review of the basic concepts
and properties of the MERA tensor network, and we refer the
readers to Ref. [37] and references therein for more details.

The MERA is a flexible real-space RG scheme based on the
tensor network and is designed to retain only the long-range
entanglement of the system [26,27,37—41]. This makes MERA
an ideal method for simulating quantum critical systems with
divergent correlation lengths. In this work, we adopt the ternary
MERA scheme where three lattice sites at L, are coarse
grained into a single site at £,. In Fig. 1 we illustrate the
ternary MERA scheme with the N = 18 sites subjected to a
periodic boundary condition. The top lattice layer L7 with two
sites is obtained via two RG transformations

08,8 e, (1)

The ternary MERA scheme consists of two major ingredi-
ents: (1) the disentangler u, that removes the short-range
entanglement within the corresponding length scales and (2)
the isometry w, that merges three sites at layer £, to form
one site at layer £, . During the simulation, the u, and w,
are optimized iteratively based on the variational principle. It
is essential that one first applies the disentangler u, before
applying the isometry w, to merge lattice sites. Another key
feature of the MERA scheme is that the isometry w, and the
unitary u, of bond dimension x on each bond must satisfy the
constraints (Fig. 2)

YW whE = Su, )
Bys

D )y = bawdp 3)
y8

These constraints ensure that local operators are transformed
into local operators and make it possible to evaluate two-point
correlation functions within the MERA framework.

LT
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FIG. 1. (Color online) Ternary MERA with periodic boundary
condition for lattice length N = 18 lie in the x axis. Blue triangles
are isometries w, and orange squares are disentanglers u,. L.
indicates various lattice layers with = = 0,1,7. The gray vertical
lines separate three lattice sites with green circles as one foundation
block in each lattice layer. Each lattice spacing is renormalized by the
corresponding RG transformation, and the length scales of effective
lattices are changed along the y axis.
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FIG. 2. (Color online) Diagrammatic representation of the con-
straints for the isometries w and disentanglers u of the ternary MERA.

For a two-site operator at layer 7, for example, the nearest-
neighbor Hamiltonian #;;4,(t), one can define an average
ascending superoperator A built from the disentanglers and
isometries [37]

hiipi (T + 1) = Alh; (0], “

which describes a discrete RG map from h(t) to the coarse-
grained Hamiltonian 4(zr + 1) in the x*-dimensional space of
possible two-site interactions [42].

For an infinite lattice £ one can perform infinite many RG
transformations, resulting in a MERA tensor network similar
to Fig. 1 with infinite sites and layers. Assuming translational
invariance, a single pair of (u,,w- ) is enough to uniquely define
the coarse-graining process into £ . For critical systems, after
a finite number of RG transformations, the system becomes
scale invariant at L. After the system reaches scale invariance,
further RG transformation will generate the same effective
Hamiltonian and the lattice. Hence, it suffices to use a single
pair of (u,wy) to represent the RG transformations for £, for
T > 5. Such a MERA structure is called scale-invariant MERA
in the literature [38]. In principle, the number of RG steps to
reach scale invariance is a priori unknown and depends on the
original Hamiltonian. In practice, to keep the computation
trackable one sets s to some predetermined number and
layers £.,7 =1, ...,s — 1, are called buffer layers in MERA
terminology.

An advantage of the scale-invariant MERA is its ability
to directly extract scaling properties of a critical system. For
example, scaling dimensions of primary fields and the central
charge of the corresponding CFT can be obtained directly [38].
At scale-invariant layers, the RG transformation of operators is
dictated by the scaling superoperator S which is a fixed-point
RG map. The scaling operator ¢; with scaling dimension A;
should satisfy the equation

S(i) = ridi,

where the logarithmic base three reflects the three-to-one
coarse graining of the ternary MERA scheme. All scaling
dimensions can be, in principle, obtained by evaluating
eigenvalues of the superoperator.

As an example, we show the results of scaling dimensions
for the 1D transverse Ising model at criticality. We set s = 5
as the scale-invariant layer, making t = 1, ... ,4 be the buffer
layers. We first optimize (u,,w-) and (ug,w;) by the standard
MERA algorithm. The superoperator S is then constructed
from (uy,wy) and diagonalized to obtain the (lowest few)
scaling dimensions. One can also construct superoperator S;
from (u,,w-), although the system is not yet scale invariant. In

A; = —logs A, 5)
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FIG. 3. (Color online) (a) Four pairs of (w.,u.) in buffer layers
(r =1,2,3,4) and the same copies of the scale-invariant pair
(wy,uy) in the scale-invariant layers are employed. Along the RG
transformation axis, the pseudoscaling dimension A,(t) of buffer
layers flows into the real scaling dimension A, of the scale-invariant
RG fixed point. (b) Both A,(7) and the scaling dimension of the
spin primary field in the CFT are calculated, and the pseudoscaling
dimension approaches the exact value as the layer t is close to the
scale-invariant layers. The exact value of the scaling dimension of the
spin primary field from the CFT is é for the transverse Ising model
[9]. The bound dimension used here is x = 8.

the same token, pseudoscaling dimensions A;(7) for the buffer
layers can be obtained by diagonalizing S;. These A;(t)’s
are used to monitor how the system approaches the scaling
invariance. Thereby, we calculate A;(t) for each buffer layer
to form a flow of the pseudoscaling dimension as illustrated
in Fig. 3(a). We observe that the pseudoscaling dimension
A () of buffer layers gradually approaches the value of the
scaling dimension A; of the scale-invariant layers for T > 5.
The exact value of A = % is also plotted as a reference. The
above example shows that the scale-invariant MERA provides
a well-defined method to study the scaling properties of the
RG fixed points. In the following, we will use this scheme to
study the scaling properties of the junction of two interacting
quantum wires.

Finally, we would like to briefly contrast the MERA
as a real-space RG and the conventional momentum-space
RG. In MERA, the coarse-graining transformation using
disentanglers u, and isometries w,, which define a discrete
RG map [Eq. (4)], does not generate long-range interactions
starting from a short-ranged Hamiltonian, unlike in the case
for the momentum-space RG. The disentanglers and isometries
that define the RG map, and the coarse-grained Hamiltonian
are all generated through an energy minimization without any
bias. More discussions can be found in Ref. [42].

III. JUNCTION OF TWO INTERACTING
QUANTUM WIRES

We start by modeling the impurity as a junction linking
two identical semi-infinite 1D wires with a total Hamiltonian
H = H,, + hp. Here, H, represents the lattice Hamiltonian
of the wires at half-filling

o0
Ho= Y Z(_c;j,c;f + He.+ Valat,), (6)
wel, 11 i=0

while the hopping Hamiltonian at the junction is given by

hp = —t(clcl! +He). )
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We denote ¢} (! "ywith € 1,11 as the annihilation (creation)
operator at the site i of the wire 1, iil' = ¢/ — 1 and v
as the nearest-neighbor interaction strength. Following the
bosonzination scheme [19], the wires can be represented in
terms of continuum bosonic fields ¢* and their dual fields 0#
by

1
Hug" oM =Y = f dx [g(axso“f + —(axeﬂ)z] . ®
4 g
wel 11
where, in the range |V| < 2, the plasmon velocity v and the

Luttinger parameter g are identified via the Bethe ansatz at
half-filling as

V1= (V)22 7

=TT , 8= /"""
arccos(V/2) 2 arccos(—V /2)

Hence, we have g = 1 for noninteracting wires and g < 1
(g > 1) for repulsive (attractive) interactions.

In comparison with an infinite LL wire, the presence
of the junction could change the scaling behavior of the
correlation functions across the junction. Starting from
the lattice operators, define the current operator J I" I and the

©))

fermion density operators N ;-11 on the bond between sites j
2
and j + 1 as

Iy = et~ et
Ny = 3+ =) = (). (10)

With these lattice operators, two-point correlation functions,
such as (J'(x)J'(x)) and (N'(x)N'!(x)), can be evalu-
ated using the boundary MERA. The evaluated correlation
functions should exhibit power-law decay as expected in a
1D scale-invariant quantum critical system. To see how the
CIBC emerges due to the presence of the impurity at the RG
fixed point, it is useful to introduce incoming and outgoing
chiral density operators pf,  (x), defined with respect to
the junction, with the relations J*(x) = v[pl,(x) — ph(x)]
and N*(x) = pk . (x) + pl(x). It is worth to emphasize that
these chiral densities are those diagonalizing the interacting
Hamiltonian in Eq. (8) but not the chiral currents defined in
the noninteracting bands.

Since the boundary condition will dictate both the long-
distance scaling behaviors and the amplitude of correlation
functions of primary fields [43], the chiral density correlation
functions change accordingly with respect to different CIBC
[25]. We can now decompose the two-point correlation
functions with operators defined in Eq. (10) to obtain the chiral
density correlation functions. For instance, we have, in the case

of u # ',

(ol ()P (x)

1/1 ) 1 ,
= ——(—Z(J’“‘(X)J" (X)) + —(N"(x)J" (X))), 1D
2\v v
Iz WHEL
where we have used (0gyin) Pourin)) = 0- In the presence of
time-reversal symmetry (which is our case), the second term
in Eq. (11) always vanishes. Thereby, the chiral correlation
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functions between different wires are directly proportional to
the current-current correlation function.

Since the bulk of the LL quantum wires remain conformal
invariant in the presence of impurity, correlation functions,
in general, follow power-law behaviors. Therefore, we expect
that the equal-time current-current correlation function decays
at long distance in the form

()T (x))] ~ Ax™, (12)

for u # w'. From RG prospect, the tunneling term between two
LL wires is a relevant perturbation for attractive interactions
g > 1, and is irrelevant for repulsive interaction g < 1. As a
result, two semi-infinite LL wires effectively fuse into a single
infinite LL wire at the stable RG fixed point for g > 1 [12]. In
this case, the leading contribution to the correlation function
in Eq. (12) is universal regardless of the impurity strength,
and has the prefactor A = gv?/8m? and the exponent o = 2
(cf. Appendix C) [25,31]. Thus, for g > 1 the stable RG fixed
point is a perfect transmission RG fixed point.

On the other hand, for g < 1 the stable RG fixed point
corresponds to two disconnected wires with a strict zero linear
conductance. An immediate consequence of this fixed point is
the vanishing of 1/x? term for the current-current correlation
function in Eq. (12). However, subleading contribution can
come from the irrelevant boundary operators, which gives
a faster power-law decay with the exponent & > 2 and the
prefactor depending on the strength of the impurity. Here, the
exponent is nonuniversal and can be contingent on the detail
of the impurity.

In the linear-response regime, the chiral correlation func-
tions in Eq. (11) can be used to determine the conductance
across the impurity. From the conventional Kubo formula [19]

e’ 1 o :
G,y = lim ———/ dt "
w—04 h oL —00

L
xf dx (T, J*(y,7)J"(x,0)), (13)
0

the imaginary-time ordered (indicated by 7;) dynamical
current-current correlation function for currents J* and JV
on wires p and v is needed to evaluate the conductance. As
the current operators can be represented in terms of the chiral
density operators, we can decompose the nonchiral correlation
function by chiral current correlation functions. For u # v, we
have

(T.J"(y,T)J"(x,0))
= 0 ((0 7, DPL,0)) + (PL(y, TPl (x, ), (14)

where we have used the fact that correlation functions vanish
for the same chiral current in different wires. In the presence of
the conformal symmetry and the CIBC, one can show that the
chiral correlation functions in Eq. (14) are always a function
of z=vt Fi(x 4+ y) [25]. As a result, the dynamical chiral
current correlation functions can be reconstructed via the static
correlation functions shown in Eq. (11). Finally, the fixed-point
conductance can be subsequently evaluated using the Kubo
formula in Eq. (13).
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FIG. 4. (Color online) Sketch of the boundary scale-invariant
MERA structure for three layers. The central tensors w? are used
to represent the boundary state inside the causal cone (light green
shaded area) of the green impurity. hr 41 18 an effective two-site
boundary Hamiltonian which is obtained by inhomogeneous coarse
graining, related to the causal cone of K| such as the red shaded
area. Here, w!, u¥, and V} are bulk isometries, bulk disentanglers,
and boundary truncation tensors, respectively. The effective impurity
Hamiltonian EB is constructed from the impurity Hamiltonian /4 5 and
two-site Hamiltonian %{ | and A{/, in the bulk wires. Two quantum
wires are connected in the junction, and we also label the site indices
for each wire.

IV. BOUNDARY MERA

The boundary CFT predicts that each boundary RG fixed
point is associated with a CIBC and hence a conformally
invariant boundary state [9]. As a result, scaling behavior of
the boundary operators is directly controlled by the realized
boundary condition. In addition, even though the scaling
dimensions of bulk primary operators, such as the chiral
current operators, remain unchanged in the presence of a
boundary, the coefficients of their correlation functions are
dictated by the given boundary state. Thereby, constructing
the corresponding boundary state allows us to obtain the full
properties of a junction at its RG fixed point [43]. In this
section, we will discuss how to obtain the boundary state
using a numerical boundary MERA scheme. For a complete
review of the MERA algorithm and detailed discussion on
the MERA with impurities, we refer the interested readers to
Refs. [26,39,44].

In Fig. 4 we sketch the MERA structure that describes
two semi-infinite wires with a junction. First, two sets of
standard bulk scale-invariant MERA with isometries w/ and
disentanglers u* of bond dimension x are used to describe the
two semi-infinite wires. Second, the bare Hamiltonian at the
original lattice is regrouped into K f ++1 and inhomogeneously
ascended using the truncation tensors V/* with bond dimension
xB, w¥, and u" to form the boundary Hamiltonian Hp.
Finally, the central tensor w2 is used to describe the boundary
state and is optimized via the boundary Hamiltonian Hp. In
a nutshell, the scale-invariant boundary state is represented
by the scale-invariant central tensor w? in the boundary
MERA. In the following, we summarize the major steps of
the boundary MERA algorithm, and we refer the readers to
the Appendices for more details.
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FIG. 5. (Color online) (a) Graphic representation of ﬁB including
the impurity Hamiltonian /4 5 and the inhomogeneous coarse graining
of the first two-site Hamiltonian h(’il inwire u € I,11.(b), (c) Using
inhomogeneous coarse graining to obtain the boundary Hamiltonian
h{) | with a scaling factor for wires [ and 11, respectively.

Optimization of the bulk scale-invariant MERA. MERA is
a specific scheme to perform real-space RG transformations
using isometries w (light blue triangles) and disentanglers
u* (yellow squares) as shown in Fig. 4 [37]. In each RG
step, to construct the coarse-grained Hamiltonian at the next
layer v + 1, the disentangler u* is used to transform to a
less entangled local basis between blocks while the isometry
w# is used to perform coarse graining. They are optimized
using the bulk scale-invariant MERA algorithm [45]. The
algorithm minimizes the energy per site associated with the
bare Hamiltonian, shown as the light pink bars at the bottom
of Fig. 4. In this step, each wire is treated as independent and
the associated u* and w* are optimized independently. In this
work, the two wires are identical, so the bulk optimization
needs to be carried out only once.

Construction of the effective boundary Hamiltonian. A key
step of the boundary MERA is to perform an inhomogeneous
coarse graining of the bare Hamiltonian to obtain an effective
boundary Hamiltonian H s [27]. The boundary Hamiltonian
for the chain of the central tensors w? consists of the effective
impurity Hamiltonian hB, plctorlally defined in Fig. 5(a) and
two-site Hamiltonians hm +1 that connect two adjacent sites T
and t 4 1 as depicted as red bars in Fig. 4:

Hymfpt 330 (15)

nel, 11 =0

Here, hr 41 s constructed from the inhomogeneous ascending
of a collection K/, | of bare Hamiltonians A/, , | at the same
scale

s(z+1)—1

rr+l - Z htl+l’ (16)
i=s(1)

where s(t) = (37! — 1)/2witht =0,1,2,3, ...,and hl i1 is
a two-site Hamiltonian in wire . The boundary Hamlltoman
R .., is obtained by inhomogeneous coarse graining the
two-site bulk Hamiltonian in layer t via the inhomoge-
neous ascending superoperator Kgd[h‘ﬁ2(r),h‘z"3(r),h’3f4(r)],
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with a scaling factor % which reflects the ternary MERA.
For instance, to obtain the boundary Hamiltonian ﬁg 1, We
construct Ay [} ,( = 0),h% 5(z = 0),h% ,(z = 0)]for K}, in
Figs. 5(b) and 5(c) by contracting the tensors inside the causal
cone (shaded red area in Fig. 4). Moreover, in order to assign
a different bond dimension x? to the central tensor w5, we
introduce a truncation tensor V# at the boundary. We note that
in general x 2 can be layer dependent until the central tensor
w? reaches scale invariance, after which only one single x 2
is used for all the scale-invariant layers.

Optimization of the central tensors. The final step is
to utilize the boundary Hamiltonian (red bars) to optimize
the central tensors w? (blue triangles) which represent the
boundary state in the boundary chain (shaded green). Here,
we employ a scale-invariant boundary MERA algorithm to
optimize the central tensors wf. Similar to the bulk MERA,
we treat the energy per site as the cost function for the
optimization processes. The energy of the boundary MERA
can be calculated at layer 7 as

E =te{w’Y,). (17

where Y, is the environment associated with wf. In general,
it is necessary to insert several buffer layers with different

central tensors w§,wf, ... ,w? before one reaches the scale-

CWg
invariant layers characterized by a single central tensor w 2. For
the buffer layers and the scale-invariant layers, the environment
construction differs. The environment for the former can
be obtained by the procedure defined in Appendix B. The
environment for the scale-invariant layers is constructed from
the scale-invariant Hamiltonian

ooﬁu

7 7,741
hg = Z 3r—r§ ’ (18)

—
T=T

where the layer 7 starts from the second scale-invariant layer
7, = 7, + 1, and all layers beyond layer t, are scale invariant.
Here, the factor 3 reflects the three-to-one coarse graining. In
practice, it is useful to introduce a cutoff to replace the infinite
sum by a finite sum (see Appendices).

Given the effective Hamiltonian Hg, we perform an opti-
mization procedure based on the boundary MERA framework
[27]. The procedure is similar to optimizing the scale-invariant
MERA and allows us to construct a scale-invariant boundary
state. We describe the details of the construction of the
boundary MERA tailored for the two-wire junction in the
Appendices. In the following calculations, we set the number
of buffer layers to two, and enforce the system to have scale
invariance starting from the third layer.

V. CURRENT-CURRENT CORRELATION FUNCTIONS

As stated previously, the current-current correlation func-
tions across the junction provide important information on the
transport properties. To simplify the calculations, we perform
a Jordan-Wigner transformation to map the spinless fermion
model into a spin—% XXZ model. We consider two semi-
infinite wires, labeled by p = I,11, and the transformation is
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FIG. 6. (Color online) The current-current correlation function
as a function of the distance from the boundary. (a) Universal
behavior with the same A = 0.032,a ~ 2 for g = 1.5 with various
t = 0.5,0.8,0.9 is observed. (b) Nonuniversal behavior with distinct
A and o > 2 for g & 0.8 and r = 0.9,0.5,0.3,0.1. The calculations
are carried out using x = 12 and x % = 24.

defined as
ot = §1 e (19)
il = §t eI, (20)

The site index j goes from zero to infinity in each wire, and the
junction connecting the two wires is at site zero (see Fig. 4).
In addition, the phase factor CIJ’; is defined as

j+1
L= 8*si. Q1)
k=00
0 Jj—1
off = Y sl + oSS @
k=00 k=0

Additionally, the current operator in Eq. (10) in the spin
language is written as

B s Qh— it ut ot~
Il = i(SysE =SS, (23)

Once an optimal boundary MERA state is obtained, we
can evaluate the current-current correlation function in the

presence of the junction. For the lattice model, we calculate
[(J J’,‘Jrlj ;ﬂr )|, where j + % denotes the current from the jth to
2

1

2
the (j + Dth site. x = (j + %) defines the distance from the
boundary.

In the following, we show our numerical results of
current-current correlation function for g = 1.5 and g ~ 0.8
as representatives for the g > 1 and g < 1 fixed points,
respectively. For g > 1, the RG fixed point corresponds to
a healed single wire. Furthermore, the boundary CFT predicts
that the prefactor A and the exponent « in Eq. (12) are universal
regardless of the strength of the junction. In Fig. 6(a), we
show the current-current correlation function for the case of
g =15 and r =0.5,0.8,0.9 for large distance. We observe
that all data points fall on a universal line with the same
exponent o = 2.04(4) and the same prefactor A = 0.032.
These results agree well with the boundary CFT’s prediction of
A = gv?/87? using the velocity v ~ 1.299 from Eq. (9). For
very short distance, we find that the current-current correlation
functions depend on the coupling strength of the weak link. We
employ two buffer layers before we enforce scale invariance in
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our current MERA scheme; therefore, for distance longer than
a characteristic length scale x; = 337_] = 13, the correlation
function is dictated by the RG fixed point and shows a universal
behavior. For distance x < x,, however, the the correlation
function depends on the strength of the weak link. Compared
with a direct finite-size DMRG calculation without the
conformal transformation [25,31], the scale-invariant MERA
can describe the long-range correlation at large length scales,
while the DMRG describes better short-range correlations
but suffers strongly from the finite-size effect at large length
scale [46].

In contrast, for g < 1, the RG fixed point corresponds
to two disconnected wires and the universal behavior is not
expected. Consequently, to the leading order, the coefficient in
front of the correlation functions is zero and the subleading
corrections from the irrelevant operators at the boundary
will be observed. Since the scale invariance of the MERA
scheme is enforced, the correlation function will still show
a power-law decay but with an exponent that is larger than
2 with a nonuniversal prefactor. In Fig. 6(b), we show the
results for the case of g &~ 0.8 < 1 and r = 0.1,0.3,0.5,0.9.
Indeed, we observe that different 7 results in different scaling
behavior with the exponents « > 2. Similarly, for short
distance x < 13 we also observe nonuniversal behavior since
the system is not yet dictated by the RG fixed point. The
distinct behavior of the correlation function for g > 1 and
g <1 indicates that the system flows into different RG
fixed points. Even without the a priori knowledge about the
analytical results for the number and the nature of the RG fixed
points, the numerical results can distinguish the two RG fixed
points.

Furthermore, the conductance for the two-wire model can
be estimated by the Kubo formula using the current-current
correlation function [13,25]. For g > 1, we expect that the
system is dictated by a total transmission fixed point, i.e., two
wires are fused into a single LL wire. The exponent in the
current-current correlation function is hence o = 2, leading to
the conductance

e2

G = 85

On the other hand, for g < 1, we expect the two wires are
effectively disconnected, which corresponds to a total reflec-
tion fixed point. In this case, the current-current correlation
function between two wires should decay faster than 1/x2,
resulting in a zero conductance. Our results discussed above
hence show that one can use boundary MERA to classify fixed
points from the exponent of the current-current correlation
function. In the following section, we will show a more direct
way to identify the fixed points using the scaling dimensions
of the boundary operators.

For problems with unknown RG fixed points, in principle,
one should evaluate all chiral current correlation functions
between and within each wire. We expect different fixed points
will give different exponents, coefficients, etc., for different
chiral current correlators. This can be used to distinguish
different fixed points, as long as they have different transport
properties. Therefore, there is no need to design different
correlators for different fixed points.
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FIG. 7. (Color online) (a) The spin-spin correlation function in
Eq. (24) as a function of the distance between two spin operators for
a bulk wire with g ~ 0.79,0.9,1,1.24,1.5. (b) The exponent S of the
spin-spin correlation function as a function of g. The calculations are
carried out using x = 16.

VI. SPIN-SPIN CORRELATION FUNCTIONS

We next study the two-point spin-spin correlation function,
defined as

Cses-(r) = {ST(r1)S™(r2)) — (STHSTI, (24)

where r; = r, is the distance from the spin operator to the
impurity site on the wires I and I I, respectively.r = |ri| + |rz]
is the distance between two spin operators of S*(r;) and
S7(r2). The correlation function shows a power-law decay

Csrs-(r) = ar™ 2, (25)

where B should be equal to the second lowest scaling
dimension A, of the bulk LL wire. The lowest scaling
dimension A; = 0 which corresponds to the scaling operator
of the identity, and is independent of the Luttinger parameter
g. The lowest nonvanishing scaling dimension A,, however,
varies with g as 1/4g. In the spin language of the XXZ model,
this is the scaling dimension of the primary fields S, leading
to a power-law decay of the spin-spin correlation function.
In Fig. 7(a), we plot the spin-spin correlation functions for
several g in the bulk wire. We clearly observe that for all g’s,
the spin-spin correlation functions show a power-law decay. In
Fig. 7(b), we show the fitted exponent § as a function of g. The
results agree well with the expected value of § = A, = 1/4g.
Since the exponents are dictated by the scaling dimensions of
the primary fields, this provides an indirect way to study the
scaling dimensions. We will demonstrate how to study scaling
dimensions directly in the MERA later in this section.

To study the effects of the boundary, we investigate how
the behavior of spin-spin correlation function depends on the
strength ¢ of the impurity. In Figs. 8(a) and 8(b), we show the
results for g = 1.5 and g &~ 0.8, respectively, witht = 0.1,0.5,
and 0.9. For g > 1, we again observe a universal behavior that
all correlation functions fall on the same line regardless of the
strength ¢ of the impurity. Furthermore, the line is actually
the same as the one for the bulk wire. In contrast for g < 1,
nonuniversal behavior is observed. The prefactor a depends
strongly on the value of 7. The exponent 8, however, remains
the same as the bulk value. We comment that even without the
a priori knowledge on the exact nature of the fixed points, the
results obtained by MERA clearly indicate that there are two
distinct fixed points corresponding to the case of g > 1 and
g < 1, respectively.
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FIG. 8. (Color online) The spin-spin correlation function in
Eq. (24) as a function of the distance between two spin operators
crossing the junction for various g, and we chose two spin operators
that have the same distance far away from the boundary. (a) The
universal behavior at the perfect transmission fixed point for g =
1.5 with r = 0.3,0.5,0.9, the exact solution [47,48] describes the
character of the bulk. (b) The nonuniversal behavior at the total
reflection fixed point for g &~ 0.8 with ¢+ = 0.1,0.5,0.9, and the lines
are the fitting results of Cs+s-(r) ~ ar=2°.

VII. SCALING DIMENSIONS FROM BOUNDARY
SCALING OPERATORS

For a given system with unknown fixed points, it is
generally impossible a priori to identify which correlation
functions should be computed to extract scaling dimensions.
In a boundary MERA, the scaling dimensions of the boundary
scaling operators at unknown RG fixed points can be directly
computed without prior knowledge of the operator contents of
the primary fields. Identifying operator contents of primary
fields and their descendants are the most essential step to
quantify the properties of a conformally invariant system.
These scaling operators ¢5 follow specific rule under the
scaling transformation and have the scaling dimensions A5.
Similar to the scale-invariant bulk MERA [38], in the scale-
invariant layer the boundary scaling superoperator S? which
can be expressed in terms of central tensor w? as

187150 =3 [why, [wf 10"
By

Here, the upper index B indicates that the superoperator
is evaluated at the boundary. Then, one can show that the
boundary scaling operators ¢Z are the eigenoperators of
superoperator S8 and have the relations [27,37,38]

SP(pf) = 1BpE, AF = —logsal. (26)

The base three of the logarithm reflects the mapping of three
sites into one during the coarse graining. Now, the scaling
dimensions AZ of scaling operators are obtained simply by
the eigenvalue decomposition of the SB. Numerically, with
the finite boundary bond dimension x B the maximum number
of scaling dimensions, which we can evaluate from boundary
MERA, is constrained to be (x%)?.

The boundary scaling dimensions are expected to show
different dependence on the Luttinger parameter g, but
are independent from the hopping amplitude ¢ at the the
junction. First, we expect that A% (g > 1) = 1/4g has the same
Luttinger-liquid parameter dependence as that in the bulk. This
is due to the fact that the boundary RG fixed point at g > 1
corresponds to the perfect transmission between two wires
and two semi-infinite LL wires effectively heal to one infinite
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FIG. 9. (Color online) The lowest few nonvanishing scaling di-
mensions of primary fields of the bulk and boundary as a function of
Luttinger parameters g. The calculations are carried out using y = 12
and x & =24.

LL wire. On the other hand, the RG fixed point for g < 1
corresponds to a total reflection boundary condition for both
wires. Due to the current conservation, the incoming current
is perfectly reflected to the outgoing current at the boundary
for both wires. Therefore, the current operators are pinned
at boundary, i.e., 8"/ |,—o = 0 = @inlx=0 = Pout|x=0, Which
lead to the change of scaling dimensions of boundary operators
(cf. Ref. [19] for detailed arguments). The spin operators at
boundary now become S* ~ eFV8/2¢ 5 §E| () ~ ¢EV280n
[19,47], and have scaling dimension AB = 1/2g.

The lowest nonvanishing bulk and boundary scaling di-
mensions are evaluated and shown as red triangles and blue
squares in Fig. 9, respectively. First and foremost, the bulk
scaling dimension fits very well with the expected functional
dependence A, = 1/4g while the boundary scaling dimension
A%(g) exhibits a drastic change at g = 1. Numerically, we
found A%(g > 1) = 1/4g, the same Luttinger-liquid param-
eter dependence as in the bulk. For g < 1, we observed that
the functional dependence of A¥(g < 1) fits very well with
1/2g. The slight deviation from the expected results is due to
the finite bond dimension x. These results are consistent with
the fact that two different stable boundary RG fixed points are
reachedatg > land g < 1.

VIII. CONCLUSIONS

We have used the boundary MERA framework to classify
two fixed points in a simple two-wire case shown by Kane
and Fisher. By keeping explicitly the scale invariance of
the boundary state, we obtain current-current correlation
functions that decay as a power law with either a universal
or nonuniversal exponent and prefactor, depending on the RG
fixed point reached. We also obtain the bulk and boundary
scaling dimensions that agree perfectly with the formal RG
analysis. This establishes firmly the boundary MERA as a
numerical method to determine the RG fixed point and the
universal conductance of quantum two-wire junctions.

The method has the advantage that it can be easily extended
to study multiwire junctions. Even in the simplest case, the
Y junction with three LL wires, not all the fixed points are
fully understood by the CFT [19]. We expect that boundary
MERA can provide a new approach to gain insights into the
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properties of possible RG fixed points and their classification
for more complicated multiwire junctions [49-58], spinful LL
wires [59], junctions of LL wires with different interaction
strength in each wire [60-64], and junctions of Josephson-
junction networks [65,66]. Potentially, the boundary MERA
also provides an unbiased numerical RG method to resolve the
issue about whether the conductance of Y junction can break
the single-particle unitarity in the strong attractive interaction
regime [19,58].

In addition, since we optimize the bulk scale-invariant
MERA independently of the boundary, the bulk results
can be reused. This potentially can significantly reduce the
computational costs, and can have the advantage over the
DMRG method proposed in Ref. [25]. Moreover, the scaling
dimensions of the primary fields at the impurity site can be
directly obtained, which can provide crucial information about
the associated boundary CFT and enable further classifications
of the RG fixed points [15,19,59]. While the conductance of
multiwire junctions has been calculated by CFT, however,
only very few numerical calculations exist in the literature
to quantitatively study and classify these results in details. In
the MERA framework, none of the theoretical manipulation
required in the DMRG is necessary, and a direct computation
of the current-current correlation function is possible. This
provides a systematic and direct numerical method to study the
effects of strong electron-electron interactions in the transport
properties of quantum impurity problems and molecular
electronic devices.
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APPENDIX A: SCALE-INVARIANT BOUNDARY MERA

The boundary MERA framework used in this work is based
on a ternary bulk MERA of two semi-infinite wires with a
junction as shown in Fig. 10. The shaded green area represents
the casual cone associated with the junction that is described by
hp.Itis clear from the figure that when one connects two wires
with a junction, one does not need to reoptimize the MERA
structure associated with the bulk part of the wires (light color
tensors). The tensors in the shaded green area, however, need
to be reoptimized. To simplify the structure of the boundary
MERA, we fuse tensors inside the green shaded area to form
a rank-four central tensor w? with four external legs at each
layer (Fig. 4). Within the boundary MERA framework, the
boundary state is characterized by these central tensors.

We introduce both the boundary truncation tensors V!
and the boundary tensors BY to reduce the computational
cost and the memory storage during the optimization of the
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FIG. 10. (Color online) Ternary MERA for three layers with an
impurity at the junction described by /5. The shaded green is the
causal cone for the junction. The two-site Hamiltonian A, for
layer © = 0 (pink bars) is described in Eq. (A3). We also label site
indices in each layer running from zero to infinity for both wires.
The light blue triangles and the light yellow squares represent bulk
isometries and bulk disentanglers, respectively.

central tensors. The boundary truncation tensors V} allow
the bond dimensions of the central tensors to be different from
the bond dimensions of the bulk MERA tensors. For simplicity,
all tensors here are scale invariant, and each bond of bulk w#
has the same bond dimension y. As shown in Fig. 11(a), both
V! and BY are obtained by decomposing the rank-four bulk
isometry w¥ as two rank-three tensors that satisfy the equation

wf{wt TVEBLpl =1, (A1)
where p! +1 1 the bulk one-site density matrix. When trunca-
tion is necessary, one can truncate the bond linking the V}* and
B* to some number x® < x2. We note that V* of all possible
layers satisfies the orthogonal condition V,’” V# =1as shown
in Fig. 11(b). Conceptually, we fuse B!, B!! and the boundary
disentangler u? in the green causal cone of Fig. 10 to form
the rank-four central tensor w? in Fig. 4 by the contraction
shown in Fig. 11(c). With all the derivation above, one arrives
at the MERA structure describing two wires with a junction, as
shown in Fig. 4. We refer to Ref. [39] for optimization details
of both boundary truncation tensors and boundary tensors.

1. Boundary Hamiltonian H, B

In this section, we describe how to construct the effective
boundary Hamiltonian from the bare Hamiltonian of a general
Br B‘r

p:+1 B B" 1+l Vz’ W
§ 1 ’
ll/ I/‘ VII%

FIG. 11. (Color online) (a) Graphic representation of Eq. (Al).
An isometry is decomposed into two tensors V/* and B linked in the
truncated bond dimension x Z. (b) The isometric conditions of V* for
w € I,11.The lines at the right-hand side of equal signs are identity
matrices. (c) Construct a central tensor w? from three tensors B!,
B!I" and u?.
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two-wire model:

H =hp + Hy, (A2)
Z Zhl i+1° (A3)
pnel, Il i=0

where hp is the onsite impurity Hamiltonian shown as the
green circle in Fig. 4, and H,, represents two semi-infinite
Hamiltonian for wires u € I,11. We assume that the wire
Hamiltonian can be expressed as a sum of nearest-neighbor
interactions in Eq. (A3). In particular, for the spin-1 XXZ
model considered in this work, one has

hg =—t(S§Sy" 4+ 85785 ), (A4)

hivgr = J(SIASTY+SASY) +ASI4877 (AS)

11
th—

V= IS+ SYSIT) st ST (A6

There are two stages in constructing the effective boundary
Hamiltonian:

Regrouping the bare Hamiltonian. As shown in Fig. 4,
we regroup the bare Hamiltonian into K, according to
Eq. (16), where 7 is the layer index. Apply a sequence of
average bulk ascending processes on the subset Hamiltonian

K., until layer 7 is reached,

D], (A7)

where i, (t) is the two-site bulk Hamiltonian in layer

hg’,‘+1(f) = Zbulk[hl;,j_;_](f -

7, and Apgy is the bulk average ascending superoperator
in the MERA framework [37]. In addition, if we consider
a translational-invariant bulk MERA, within the same layer
T, hf‘l +1(7) remains the same for different sites due to the
translational invariance.

Performing the inhomogeneous ascending operation. The
two-site boundary Hamiltonian A ., is obtained by an
inhomogeneous coarse graining of bulk two-site Hamiltonians
(7) in layer 7. By applying bulk ascending process on
we obtain A}, (r), and we employ the inhomo-

z 1+1
Kf,f+]’
geneous boundary coarse graining with a scaling factor %
(Fig. 12):

El;,fﬂ = Abq [AY 5(2) + k5 5(2) + Ry 4 (D)].

Once the boundary Hamiltonian is obtained, we can forget
about the bulk tensors and concentrate on the optimization of
the central tensors w; B with the effective boundary Hamiltonian
H. Therefore, the tensor network in the boundary MERA is
simplified (Fig. 13), and we perform optimization to obtain
w2 The central density matrix p, and the central Hamiltonian
h¢ are fundamental building blocks during the updates,
and they can be descended and ascended using descending
and ascending superoperators described in the following
section.

(A8)

2. Central ascending and descending processes

Similar to the bulk MERA, an operator that lives on the
effective boundary lattice can be RG transformed to the next
or previous layer via central ascending or descending superop-
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FIG. 12. (Color online) Graphic representation of E‘;T 41 (a) for
wire I and (b) for wire 1.

.\

erators. In this section, we describe how to construct the central
ascending and descending superoperators. Typically, one uses
the ascending superoperator to ascend the Hamiltonian and use
the descending superoperator to descend the density matrix.

First, the central Hamiltonian h‘; 41 for T >1 can be
obtained from the lower layer using the central ascending
superoperator [Fig. 14(a)]

Eiﬂ = A(hc hr Ir’hr 11') (A9)

The central ascending for T = 0 is defined slightly differently
[Fig. 14(b)]
hS = Ay(hg). (A10)
Second, we show how to perform central descending
superoperator on the central density matrix. In contrast to the
ascending superoperators, there is only one tensor network
associated with the central descending superoperator D¢
consisting of both w? and w2 as shown in Fig. 14(c). The
central density matrix at layer t is then obtained by applying

o Bend By | AR /|

hl,zho,l hB 0,1 hl,z
FIG. 13. (Color online) The red bars represent the effective
boundary Hamiltonian consisting of h”+] and n B. w are the central

tensors indicated by blue triangles. p, and h° are central density
matrices and central Hamiltonian, respectively.
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FIG. 14. (Color online) (a) The average central ascending pro-
cess for h“ tr1-(0) h“ is carried out using the ascending operation of the
effective Hamiltonian /5, described in Fig. 5(a). (c) The descending
superoperator D¢ composes of w? and w?, and it acts on p,,; to
obtain the central density matrix p,.

the central descending superoperator D€ to the central density
matrix at layer t + 1 as

pr = D(pr41). (ALD)

APPENDIX B: OPTIMIZATION OF CENTRAL TENSORS

In this section, we describe how to optimize the central
tensor w? in Fig. 13 We assume several buffer layers
with central tensors w ,T=0,1,..., 11, before the scale-
invariant layers characterized by a single central tensor w5.
The optimization procedures for buffer layers and scale-
invariant layers are different. In the following, we show the
optimization procedure for the buffer and the scale-invariant
layers, respectively.

Optimization in buffer layers. To find the optimal central
tensor w?, the central Hamiltonian coming from the boundary
Hamiltoman including the scaling factors 1/3% plays an
important role. We use the energy of layer v + 2 as the cost
function

Ep = tr{prash ). (B1)

Moreover, the central Hamiltonian E‘; Iy is obtained by the
average central ascending process as shown in Eq. (A9), thus
Eq. (B1) becomes

E, = tr{Pr+2Z(ﬁ§+1 vhi T+1 ’hi1r+l)} (B2)

which is represented graphically in Fig. 15. Using the same
trick again, the central ascending process of h$ replaces he
in Eq. (B2), and the energy per site is written as

T+1

E, = tr{pf+2Z[A(h hi 1, r’hi’[ 1 r) hi’ 1:+l’h'11711'+1]}
= tw{w?lY.}, (B3)
r+l H’]
Z =1/3[ Rt hite

T+2
r+l
I

1t+1 T+l

FIG. 15. (Color online) Graphic representation of Eqs. (B1) and
(B2).
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FIG. 16. (Color online) The missing triangle corresponds to w?,
and its corresponding environment Y, is defined by the sum of five
tensor networks with certain weights.

where Y, is the environment as shown in Fig. 16. Because
the environment Y, also contains the conjugate term wBJr
an iterative process is utilized to reach the self-consistency
required by Eq. (B3). We iteratively perform singular value
decomposition of ¥, = VAU to obtain the optimal wh =
—UVT. We note that the environment of the zeroth layer ¥,
has a special structure as shown in Fig. 17.

Optimization in scale-invariant layers. Similarly, optimiz-
ing the central tensor of buffer layers in Eq. (B3), one can
define the corresponding environment to numerically obtain
the scale-invariant central tensors w”. For the scale-invariant
layers, to find the optimal w?, the cost function is defined as

E, = rfwlY,}, (B4)

where the corresponding environment Y is a function of

wf, wfi, ps, and ile with v € I,11,c. The environment Y;
is a weighted sum of tensor networks as shown in Fig. 18.
We note that, however, at the first scale-invariant layer, one
should calculate the environment using Fig. 16 because the

central tensor below is not w? but w? .- This means that the

environment of w? is distinct from that of w?® for r < 7, + 1.
On the other hand, after the second scale-invariant layer, the
definition of the environment Y in Fig. 18 is used since all the
next layers are characterized by the same tensor w5.

‘We here define a scale-invariant central Hamiltonian

1
W=D gt (B5)
=T
P P
Y=o w8
é =13 B, +13 Rt + 19
wg’

whr

FIG. 17. (Color online) The missing triangle corresponds to wg,
and its environment Yy includes three tensor networks, where the
effective Hamiltonian 4 is defined in Fig. 5(a).

235124-11



LO, HSIEH, HOU, CHEN, AND KAO

+1/6 Mo+ 173

FIG. 18. (Color online) Both the missing and the blue triangles
represent the scale-invariant central tensor wf. The environment Y;
is a sum of tensor networks composed of the scale-invariant density
matrix o, and the effective scale-invariant Hamiltonian ﬁ: with v €
1,11,c defined in Egs. (18) and (BS).

where 7 starts from the third scale-invariant layer 7 = 7, + 2,
and the construction of the central Hamiltonian hL isreferred to
Eq. (A9). Moreover, from the numerical s1mulat10n perspective
it is impossible to perform the infinite sum in Eq. (BS);
therefore, a cutoff of finite L layers is introduced in the infinite
sum. Due to the scale invariance, the two-site Hamiltonian
ht 41 decays quickly as a power of when 1 increases [27].

Therefore, it is suitable to keep a ﬁnlte number of hf el

1. Algorithm of scale-invariant boundary MERA

We briefly outline the overall update procedure for the
central tensors in Fig, 13;
Step 1. Initialize A%, ht 10 Pz and w . The Hamiltonians

hf 41 and hI «+1 are obtained by the inhomo-

geneous coarse graining in Eq. (A8), and hi are
carried out using the central ascending processes
in Egs. (A9) and in (A10). For p, and w?, we
initialize them with the bulk tensors.
Step 2. Calculate the corresponding environment Y, of
w? starting from the zeroth layer, and optimize
w? by minimizing the cost function in Eq. (B3).
Iterative optimization is employed to acquire self-
consistency for both w? and Y;.
Apply the average central ascending superoperator
A to obtain the central Hamiltonian h$_ ; for the
next layer.
Step 4. Go to Step 2 for the optimization of the next layer
(t + 1) until the second scale-invariant layer is
reached.
Apply the power method to obtain an optimal py.
The scale-invariant density matrix py is the same
for all the scale-invariant layers.

Step 3.

Step 5.
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Step 6. Calculate the effective scale-invariant Hamiltoni-

ans k!, h!! in Eq. (18), and &€ in Eq. (B5).

Step 7. Construct the scale-invariant environment Y, opti-

mize w? by Eq. (B4).

Step 8. Apply the descending superoperator D¢ on the

density matrix from the top layer to the bottom
and start over from Step 2.

This optimization procedure has several advantages. The
most important is the feedback between the scale-invariant
layers and the buffer layers. The information of the entan-
glement is passed down from the scale-invariant layer to the
buffer layers by descending of the density matrix in Step 8. On
the other hand, the feedback from the buffer layer to the scale-
invariant layer is achieved through h° from the ascending of
the boundary Hamiltonian and the central Hamiltonian. When
we optimize the central tensor wf, we need to calculate Y;
which contains the information of the effective scale-invariant
Hamiltonian. This optimization method is two-way feedback
such that the RG flow can more quickly reach the fixed point.

APPENDIX C: CORRELATION FUNCTION
WITH PERFECT TRANSMISSION

With the attractive electron-electron interactions, i.e., Lut-
tinger parameter g > 1, the presence of a single impurity
is renormalized to the situation as if the impurity is in
absence [12]. Hence, all correction functions are the same
as an infinite Luttinger-liquid wire. In this appendix, we will
focus on the equal-time current-current correlation function
(T J*(x)J* (x)) for u # w1/ corresponding to different wires.

From Eq. (14), we can decompose this correlation function
by chiral currents as

(T ) I* (x))

= =0 ((pbuPlh () + {pfs(¥)pbe ). (CD)
Here, we omit the 7; symbol. As two LL wires connected by
a weak link (impurity) behave the same as a single infinite LL
wire for g > 1, the chiral current correlation functions between

two wires are given by

(L4 )P (0)) = (i () P2 (x) = (C2)

£
472 (2x)%°
The normalization of the correlation function is followed by
Eq. (8) and is consistent with Ref. [31]. The physical current-
current correlation function is then given by

, v2g 1
JH(x)JH =———. C3
(@I 0 = 5 (€3)
This gives the exponent &« = 2 and coefficient A = U £ which

we will benchmark against our numerics.
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