
PHYSICAL REVIEW B 90, 235123 (2014)

Majorana zero modes in dislocations of Sr2RuO4
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We study the topologically protected Majorana zero modes induced by lattice dislocations in chiral topological
superconductors. Dislocations provide a new way to realize Majorana modes at zero magnetic field. In particular,
we study several different types of dislocations in the candidate material Sr2RuO4. We also discuss the properties
of linked dislocation lines and linked dislocation and flux lines. Various experimental consequences are predicted
which provide an approach to determine the nature of the superconducting phase of Sr2RuO4.
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Chiral topological superconductors (TSCs) in two di-
mensions (2D) are predicted to have vortices that harbor
stable Majorana bound states (MBS) when the Chern number
topological invariant is an odd integer [1]. This property
is an important feature for topological quantum computing
architectures which are based on the use of such non-Abelian
anyon qubits [2,3]. It is generally agreed that Sr2RuO4 is a
quasi-2D, p-wave superconductor with broken time-reversal
symmetry, although the precise nature of the order parameter
is still controversial (for a review, see Ref. [4]). So, while there
is no comprehensive evidence that Sr2RuO4 is a TSC, it is one
of the best candidate chiral TSC materials.

The low-energy electronic structure of the normal metal
state of Sr2RuO4 is controlled by the t2g multiplet of d orbitals
dxz, dyz, and dxy . These three orbitals give rise to three Fermi
surfaces which are expected to become fully gapped below
the superconducting transition temperature at Tc ∼ 1.5 K. The
conventional wisdom indicates that the quasi-2D dxy band
dominates the pairing instability and develops a nodeless chiral
px + ipy order parameter [5]. If such an order parameter were
generated, then the recently measured half-quantum vortices
would indeed bind MBS [6,7]. However, a conflict between
the theoretical prediction of chiral surface states in the px +
ipy state, and the clear lack of surface currents measured in
Ref. [8], motivated Raghu, Kapitulnik, and Kivelson (RKK)
to make a different, compelling proposal for the nature of the
order parameter which is dominated instead by the quasi-1D
dxz and dyz orbitals [9]. The RKK order parameter by itself
is odd-parity/p wave which breaks time reversal, but is not
a chiral TSC and should not exhibit chiral edge states. Thus,
it is consistent with the measurements of Ref. [8]. The true
nature of the order parameter is still an open question, and
experiments that can distinguish between these two predictions
are needed.

In this article we propose topological properties that can
distinguish the two pairing schemes and also provide an
approach to MBS in superconductors with even-integer or
vanishing Chern number. Our key observation is that the RKK
order parameter, while trivial in the sense of a 2D chiral
superconductor (i.e., vanishing Chern number), in fact is still
nontrivial as a weak TSC. Weak TSCs (and insulators) [10–13]
are topological states protected by translation symmetry.
They are distinguished by a topological invariant defined

in a lower-dimensional submanifold of the Brillouin zone
(BZ) (recall that the so-called strong invariant depends on
the electronic structure in the entire BZ). For example,
the three-dimensional (3D) weak topological insulators are
classified by three Z2 invariants, which characterize whether
the gapped Bloch Hamiltonian restricted to the three 2D planes
of kx = π,ky = π,kz = π in the BZ are trivial insulators or
quantum spin Hall insulators in that plane. Heuristically, a
nontrivial weak invariant indicates a state which is made from
stacking up topological states of lower dimensions. Another
example is a 2D superconductor in class D (no symmetry)
which has two weak Z2 indices. These exist since there is
a strong Z2 topological superconductor in this class in one
dimension (1D)—the Majorana chain/p-wave wire [13–15].
We show that the RKK pairing in the dxz and dyz bands
corresponds to this type of weak topological superconductor
where 1D topological wires have been “stacked” into a
higher dimension. As a consequence, we show that naturally
occurring or fabricated crystal defects can exhibit a number
of remarkable properties that can help to distinguish the case
when the px + ip + y state dominates from the case when the
RKK pairing dominates. These properties can topologically
characterize the superconducting order, and as we will show,
can give rise to a mechanism for stable MBS even in the RKK
state.

3D weak topological superconductors: The noninteracting
topological insulators and superconductors in generic dimen-
sions have been classified [13,15,16]. Here we are interested in
superconductors in class D, which have a strong Z2 topological
classification in 1D, Z in 2D, and trivial in 3D which is
stable without any additional symmetries beyond fermion
parity conservation. For class D SCs in 3D with additional
translational symmetries we can define weak topological
invariants as well—the 2D Chern numbers can be defined
along constant kx, ky , or kz planes in the BZ. In a gapped state
the Chern number cannot change, so the Chern number in
different kz = const planes is the same integer nz. Similarly nx

and ny can be defined for the other two planes, as is illustrated
in Fig. 1(a). The integer-valued vector n = (nx,ny,nz) are the
primary weak indices of the 3D TSC. A system in class D with
indices n is topologically equivalent to a set of decoupled 2D
layers of topological chiral superconductors with nonvanishing
Chern number, stacked along the n direction. For any surface
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FIG. 1. (Color online) (a) The Brillouin zone of a 3D SC. The
primary weak topological invariants n = (nx,ny,nz) are defined
as the Chern numbers in the three independent planes (colored
green, blue, and red), and the secondary weak topological invariants
ν = (νx,νy,νz) are defined as the 1D Z2 indices along the three
perpendicular lines colored in red. (b) Illustration that a topological
superconductor with topological invariants n = (0,0,1),ν = (1,1,0),
such as Sr2RuO4, is equivalent to decoupled layers of chiral
superconductors (with the red line and arrow labeling the chiral edge
states) and 1D wires along x and y directions with Majorana zero
modes at end points.

plane which is not perpendicular to n, there will be chiral
surface states.

Similarly, the 1D Z2 invariants [14] can be calculated
along time-reversal invariant lines in the 3D BZ [17]. The
three secondary weak topological invariants are defined as the
Z2 invariants along the three lines (ky,kz) = (π,π ),(kz,kx) =
(π,π ),(kx,ky) = (π,π ). We collect them into a vector ν =
(νx,νy,νz) shown in Fig. 1(a) (with νx,y,z = 0,1). It can be
shown that ν and n together determine the Z2 invariants
along all other time-reversal invariant lines. A TSC with
ν �= 0 and n = 0 is topologically equivalent to decoupled
1D TSC wires aligned in the direction of ν, each of which
has an odd number of MBS at each end. Consequently, for
any surface plane that is not parallel to ν there will be
Majorana surface states. A generic TSC with both n and ν

nonvanishing can be considered as decoupled layers of 2D
chiral TSC coexisting with decoupled wires of 1D TSC. We
will show that the RKK model (ignoring spin degeneracy)
has the weak topological invariants n = (0,0,1),ν = (1,1,0),
which is topologically equivalent to decoupled topological
layers and wires as is illustrated in Fig. 1(b). This conceptual
decomposition into stacks of lower dimensional systems will
be helpful to illustrate our discussion of dislocations. Primary
weak topological indices were first discussed in the context of
time-reversal invariant topological insulators [10,11,18] and
subsequently both primary and secondary indices (and beyond)
can be straightforwardly extracted for the entire periodic
table of topological states from the K-theory calculation
in Ref. [13]. We note that although we have defined the
secondary-index ν as a vector, the natural structure is actually
an antisymmetric two-index tensor which can be interpreted
as a vector only in 3D [19,20]. In addition to the application
to Sr2RuO4, one of our primary results is that secondary weak
invariants also describe the MBS trapped on a pair of linked
dislocation lines, which is analogous to a similar mechanism
for bound states on linked vortex lines in 3D time-reversal
invariant topological superconductors [21].

Application in Sr2RuO4: To begin our discussion we will
review the electronic structure of the normal metal state of

Sr2RuO4. This will by followed by recounting the supercon-
ducting pairing scheme as given in the paper by RKK [9].
The three relevant orbitals for the electronic structure are the
t2g multiplet dxz,dyz,dxy which will be labeled by α = 1,2,3.

The layered structure of Sr2RuO4 makes the system behave
quasi-two dimensionally; consequently the first two orbitals
are effectively quasi-1D in nature while dxy is quasi-2D. The
band structure can be modeled using these three orbitals, plus
spin, on a simple tetragonal lattice with nearest neighbor, and
next-nearest neighbor hoppings. The Bloch Hamiltonian is

H (k) =

⎛
⎜⎝

εxz(k) �(k) 0

�(k) εyz(k) 0

0 0 εxy(k)

⎞
⎟⎠ ⊗ Ispin,

εxz(k) = −2t cos kx − 2t⊥ cos ky − 2t z1 cos kz,

εyz(k) = −2t cos ky − 2t⊥ cos kx − 2t z1 cos kz, (1)

εxy(k) =−2t ′(cos kx +cos ky) −4t ′′ cos kx cos ky −2t z2 cos kz,

�(k) = −2λ sin kx sin ky,

where values of in-plane hopping parameters taken from
RKK are t = 1.0,t ′ = 0.8,t⊥ = 0.1,t ′′ = 0.3. We have also
considered an orbital-hybridization term �(k) which arises
from next-nearest neighbor hopping between different quasi-
1D orbitals in the xy plane, and removes the crossings in
those Fermi surfaces. Hopping amplitudes along z are t z1 and
t z2 for quasi-1D and quasi-2D orbitals, respectively. Due to
the layered structure of the lattice, out-of-plane hoppings are
negligibly small [22,23] and we shall consider the 2D limit
hereafter.

In the left panel of Fig. 2 we show the Fermi surfaces.
There are three Fermi surfaces: two around (kx,ky) = (0,0)
and one around (kx,ky) = (π,π ). The two quasi-1D Fermi
surfaces from dxz and dyz orbitals do not touch as long as
λ �= 0. The inner quasi-1D Fermi surface is a hole pocket,
and the outer Fermi surface is an electron pocket. The round
quasi-2D Fermi surface arises from the dxy orbital which we
assume is completely decoupled from the quasi-1D orbitals at
the single-particle level and in the 2D limit [24]. We have also
left out the spin-orbit coupling from this Bloch Hamiltonian
description. It is expected that the spin-orbit coupling scale
in Sr2RuO4 is appreciable, and that it affects the orbital
character of the states on the Fermi surfaces, primarily near
the intersections between the quasi-1D and quasi-2D Fermi
surfaces [25,26]. The main effect of the spin-orbit coupling
will be to determine the dominant superconducting pairing
instabilities on each Fermi surface. As such, since this article
is agnostic toward which order parameter dominates we will
not consider the corrections due to spin-orbit coupling much
further. We will thus make the same assumption as RKK,
i.e., the interorbital hybridization is more important than
the spin-orbit coupling, and as such we have spin-rotation
symmetry. We do note that if the spin-orbit coupling is too
strong it might destabilize the MBS zero modes on the linked
dislocation lines considered below, if spin-rotation symmetry
is strongly broken. However, it is likely that before this
happened the dominant order parameter would be modified
significantly anyway to a (possibly) different topological class.
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FIG. 2. (Color online) (Left) Fermi-surface structure of Sr2RuO4 showing the Fermi surfaces coming from the dxz, dyz, and dxy bands with
orbital mixing. (Right) Low-energy quasiparticle spectrum of superconducting Sr2RuO4 for a geometry with open boundary conditions in the
y direction and periodic boundary conditions on the x direction. The states in red-dashed lines are edge states arising from the quasi-1D bands;
notice they exist at kx = 0 and kx = π. The green dash-dotted lines are the edge states arising from the quasi-2D band; notice they exist only
around kx = 0.

As such, we will leave the consideration of the nontrivial
effects of spin-orbit coupling in Sr2RuO4 to future work.

We now want to consider the properties of the superconduct-
ing state of Sr2RuO4. When we consider the quasi-2D band
we will assume triplet px + ipy pairing (possibly induced via
proximity coupling to the quasi-1D bands [9]). For values of
the Fermi level which lie within the quasi-2D band (which
is expected in experiments) this means that the system will
be a weak 3D TSC with primary index n = (0,0,1). For
the quasi-1D bands we assume either a topologically trivial
pairing [27] or the RKK pairing, which we now describe.
Since the quasi-1D and quasi-2D orbitals are assumed to be
approximately decoupled, at least at the single-particle level,
we can separate off the quasi-2D band and write a reduced
two-orbital model for the quasi-1D orbitals:

H (k) =
(

εxz(k) �(k)

�(k) εyz(k)

)
⊗ Ispin, (2)

with λ = 0.1t. The superconducting pairing that RKK propose
is spin triplet and intraorbital. The pairing functions of orbital
α for this chiral superconducting state are

�α = idα(k) · �σσy, α = 1,2, (3)

d1 = ẑ�0 sin kx cos ky, (4)

d2 = iẑ�0 sin ky cos kx, (5)

where the direction of dα and the relative phase between d1

and d2 are determined by the interorbital hybridization and
spin-orbit coupling. This pairing term establishes a nontrivial
secondary weak invariant ν = (1,1,0).

When considering all of the orbitals there are a few possible
scenarios for the pairing in Sr2RuO4, but let us limit ourselves
to two main cases: (i) the pairing is dominated by the quasi-2D
orbital and is the chiral, topological px + ipy state so that
n �= 0 but ν = 0 or (ii) the pairing is dominated by the quasi-1D

orbitals which are in the RKK state and a (probably weak)
px + ipy state is induced on the quasi-2D orbital, i.e., n �= 0
and ν �= 0. It is these two cases which we aim to topologically
distinguish in this article.

Properties of boundary states: The RKK superconducting
pairing term winds around the two quasi-1D Fermi surfaces
with the same chirality, but since they have opposite charge
character, they contribute oppositely to the winding number
yielding a vanishing Chern number. However, in a clean
system with (even approximate) translation invariance there
will be edge states located near, say kx = 0 and kx = π if,
for example, we put the system on a cylinder with open
boundary conditions in the y direction and periodic boundary
conditions in the x direction. The energy spectrum for such
an open boundary system is shown in the right panel of Fig. 2
with clear low-energy modes near kx = 0,π which develop
zero modes exactly at these k points. This figure assumes the
pairing scenario (i) and the boundary states exist because of
a nontrivial primary weak index n = (0,0,1), and a secondary
weak index ν = (1,1,0) due to the RKK pairing. Even though
n, and other quantities, should be doubled when the spin
degeneracy is taken into account, it has no qualitative effect on
most of the properties of lattice dislocations discussed below
when the effects of spin-orbit coupling are weak and we have
approximate spin-rotation invariance. Thus the quasi-1D bands
contribute gapless boundary states, albeit nonchiral modes.
The energy gaps in the figure have been exaggerated from
what one would expect in a real experiment to illustrate the
important features.

If the px + ipy state on the quasi-2D Fermi surface is
generated via proximity coupling [or exists independently of
the quasi-1D bands as in scenario (i)] then there will be an
overall chirality of the boundary states, e.g., two chiral modes
at kx = 0 and one antichiral mode at kx = π. If the location
of the surface states in momentum space can be resolved via
ARPES then, if the RKK pairing is not present, we would
not expect any gapless surface states at kx = π (ky = π ) for
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edges with normal vectors in the ŷ (x̂) direction. This is one
distinguishing feature of these two pairing scenarios. If the
gap induced on the quasi-2D band is very weak then the chiral
boundary states associated with this gap will not be very well
localized and might hybridize with the low-energy modes on
other boundaries. In this case, there will be an energy gap
for the chiral modes and the gapless boundary states will be
distinctly nonchiral. This is perhaps a more clear signature,
and is one feature that RKK emphasized, however from our
analysis above, the boundary state distinction persists between
the two pairing scenarios even if the px + ipy gap is not
extremely small.

Properties of dislocations and linked dislocation lines:
In addition to the surface state properties, weak topological
indices have important consequences for the properties of
crystal dislocations [19,20,28]. For the 3D crystal we are
considering, a lattice dislocation is a line defect around which
the ions are displaced by an integer valued vector b (in the
lattice basis) known as the Burgers’ vector. A dislocation
is described by b and the integer-valued tangent vector l.
The relative orientation of b and l determines the type of
dislocation: edge (l · b = 0), screw (l parallel to b), and
mixed (l neither parallel nor perpendicular to b). While b
is a topological property of a dislocation line, l (namely the
dislocation type) is not.

Both the primary and secondary weak topological indices
can be probed by dislocations. The primary weak indices n in
class D lead to

N1 = n · b (6)

branches of chiral Majorana modes propagating along the
dislocation [19]. Note that N1 is independent of the dislocation
tangent vector l, and is thus topologically protected. The sign
of the integer N1 determines the chirality of the localized
state, which is defined with respect to l. This fact can be easily
understood for an edge dislocation with n perpendicular to
l, in which case the dislocation can be obtained by adding an
additional layer of chiral 2D TSC on one side of the dislocation
line, as is illustrated in Fig. 3(a), i.e., we just imagine jamming
an extra partial plane of a 2D strong chiral TSC into the layered
system.

The secondary weak indices ν lead to nonchiral 1D
propagating Majorana modes on the dislocation line if

N2 ≡ (b × l) · ν = 1 mod 2. (7)

The modes determined by N2 are like the “weak” analog of
the “strong” modes determined by N1. This fact can be easily
understood using a similar picture for an edge dislocation,
in which case the dislocation can be obtained by adding
an additional layer of a weak 2D TSC on one side of the
dislocation line, as is illustrated in Fig. 3(b), i.e., we imagine
jamming an extra partial plane of a 2D weak TSC into the
layered system.

For the secondary weak invariant, the dislocation line is
thus like the edge of a weak TSC and requires translation
symmetry to have protected modes. We can see this because
of the dependence of N2 on the variable direction l, which
indicates that topological stability will require an additional
symmetry which in this case is translation symmetry along
the dislocation (i.e., the direction l cannot change along the

FIG. 3. (Color online) (a) Illustration of an edge dislocation
line with Burgers’ vector b in a TSC consisting of decoupled
layers stacked along the direction of topological index vector n.
(b) Illustration of an edge dislocation line with Burgers’ vector b
and direction l in a TSC consisting of decoupled 1D wires along the
direction of secondary weak topological index vector ν. The red dots
at the end of wires represent Majorana zero modes. (c) Illustration of
the Majorana zero modes induced by linking of two edge dislocations
with b1 = ẑ and b2 = −x̂ in the decoupled plane limit. There is a
Majorana zero mode at each dislocation line, indicated by the red dot
and red line.

dislocation line). The nonchiral Majorana propagating modes
are protected by translation symmetry along the dislocation,
since its left and right moving branches are around k = 0
and k = π (k is the momentum parallel to the translation
invariant dislocation line), which cannot be coupled without
breaking translation symmetry. Also we see that N2 can be
nontrivial only for edge dislocations, i.e., b × l �= 0 must be
satisfied.

In the topologically equivalent decoupled chain limit
(which is appropriate for a system with ν �= 0), the dislocation
bound states can be understood intuitively, as is illustrated in
Fig. 3(b). Decoupled 1D Majorana chains along the ν direction
terminate at the dislocation line and the MBS at their end
points couple to form the 1D nonchiral Majorana edge state.
It is thus intuitive to take N1 to be akin to a strong dislocation
invariant and N2 to be a weak dislocation invariant. The weak
invariant N2 requires the additional translation symmetry along
the dislocation line to be protected.

Despite the fact that our arguments are based on the
decoupled layer/wire limit, the topological protection remains
as long as the bulk gap is not closed. Thus, we can move
away from the decoupled limit and the low-energy bound
states will remain stable. We illustrate this numerically in
Fig. 4 where we plot the sum of the probability densities for
the two zero energy modes which are localized on the two
dislocation lines that bound an extra partial plane of atoms.
To perform the calculation we only considered the quasi-1D
RKK sector, since the quasi-2D band is decoupled and we
wanted to test the secondary weak invariant. We used the same
parameters as in Fig. 2 where the layers/wires are certainly
coupled. We inserted an edge dislocation where the Burgers’
vector of the dislocation is b = (0,1,0) and the tangent vector
is l = (0,0,1) which yields N2 = (ŷ × ẑ) · (x̂ + ŷ) = 1. We
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FIG. 4. (Color online) Spatial profile of the sum of the probability
densities for the two lowest energy (closest to zero energy) bound
states at the ends of a dislocation that stretches from x = 40 to x =
120 on the line y = 50. The total lattice size is 160 × 100. The
asymmetry in the density profile is due to finite-size error introduced
by discretization.

used exact diagonalization on a system with periodic boundary
conditions in all three directions to extract the wave functions
of the two zero modes. We plot the sum of their probability
densities (restricted to the xy plane) in Fig. 4. One can
clearly see the exponentially localized bound states on each
dislocation line.

One additional effect that has thus far gone unnoticed is
the property of linked dislocation rings. Along a finite-length
dislocation ring in a system with nontrivial topological invari-
ants N1 and/or N2, the Majorana fermion energy spectrum is
discrete, and the boundary conditions of the fermions around
the ring determine whether there is an exact zero-energy
Majorana mode (cf. Ref. [29]). Interestingly, the boundary
condition around a dislocation ring depends on its linking with
other dislocation rings and with flux/vortex lines. To illustrate,
consider the RKK model with ν = (1,1,0) and consider two
edge dislocation lines: one which is a circle in the xy plane
with b1 = (0,0,1), and one with b2 = (1,0,0) aligned along
the ẑ direction so that l = ẑ. If these two dislocations are not
linked, the MBS along the xy-plane dislocation loop has a
finite size gap with no exact zero mode because the boundary
conditions are (effectively) antiperiodic due to a Berry phase
effect [29]. This can be shown in the decoupled-layer limit as
in Fig. 3(c), in which case the in-plane dislocation circle is the
boundary of a single-layer disk, and a finite gap of order 1/R

(with R the radius of the circle) is present since the boundary
conditions are (effectively) antiperiodic.

In contrast, when the circle encloses the other dislocation
line along ẑ direction, the effect is to introduce an edge dislo-
cation with Burgers’ vector b2 in the disk, which introduces an
extra translation phase for the fermion modes on the xy-plane
dislocation loop enclosing the threaded dislocation line. When
the condition

N0 ≡ NL(b1 × b2) · ν = 1 mod 2, (8)

where NL is the linking number of the two edge dislocations,
is met, the boundary conditions are shifted exactly back to

effectively periodic, and a MBS will appear. Since MBS have
to come in pairs, there must also be a MBS along the other
dislocation which is threaded through the disk [30]. In fact, if
the dislocation line along ẑ is glued to form a closed loop then it
will also clearly receive a translation phase which will convert
the boundary conditions to effectively periodic exactly when
the same condition is met. Since any generic superconductors
can be adiabatically deformed to the decoupled layer limit
(due to the absence of strong invariant in 3D), the number of
MBS on linking dislocations can be determined generically
from this argument. Importantly, the dependence on l has
dropped out which means that N0 is topological and does
not require the addition of translation symmetry along the
dislocations. Thus, we see that a crucial consequence of the
secondary weak invariant is the determination of bound states
on linked dislocations. This is one of the main results of this
article, and it provides a mechanism to generate stable MBS
on defects even in superconductors with an even-integer or
vanishing Chern number. If we had left ν as an antisymmetric
tensor this invariant would simply be the contraction of
the tensor with the Burgers’ vectors of both dislocation
lines.

While the primary weak invariant N1 has no effect in
the linking of two dislocations, it does determine the MBS
when linking occurs between dislocation lines and flux/vortex
lines. When a superconducting vortex ring is linked with a
dislocation ring, the boundary condition for the Majorana
fermion along the dislocation line will change. For odd
N1 such a boundary condition change results in a single
MBS on the dislocation line, and another one on the vortex
line. The existence of a MBS on the dislocation line is
determined by

Ñ0 ≡ ÑLN1 mod 2, (9)

where ÑL is the linking number between a dislocation line and
a vortex line.

Discussion and physical consequences of dislocation
bound states: So far we have mentioned how one might
distinguish the two pairing scenarios using the low-energy
boundary modes. Now let us indicate several more distin-
guishing features determined from our dislocation analysis
above.

(1) Due to the nontrivial primary weak topological invariant
n, the dislocations with Burgers’ vector b = ẑ have chiral
Majorana fermion modes. Thus, in scenario (i) each such
dislocation carries a (localized) “persistent” chiral energy

current IE = πk2
BT 2

24�
at finite temperature [31]. However, we

should clarify that this “persistent energy current” carried
by a chiral Majorana mode is not in contradiction with the
fundamental principles of thermal transport (such as heat can
only flow in nonequilibrium) because the number of left and
right moving Majorana modes is always the same in any
physical system. For our case this implies that since in a
physical crystal dislocation lines must come in pairs if they
extend between two boundaries, or form loops if the do not,
there is no way to extract an energy transport current without
perturbing the system away from equilibrium. Locally there is
an energy current on every dislocation even without a thermal
gradient, however a real transport experiment is sensitive to
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the global energy current and the currents of the dislocations
and antidislocations and dislocation loops will globally cancel.
With a random distribution of dislocations in the system, a net
chiral energy flow will not be observed when a temperature
gradient is applied. However, the chiral energy current along
random dislocations will contribute a thermal conductivity that
is proportional to the dislocation density. Furthermore, it is
possible to have a strained system with imbalanced dislocation
lines which could conduct a net energy current since the strain
will cause an inhomogeneous dislocation density. We should
note that similar energy flows might also be observed on
vortex lines in TSCs that have bound low-energy chiral modes
[32,33].

Compared to the thermal current carried by the edge states
which is easily overwhelmed by bulk thermal conduction, the
dislocation current can be a bulk effect that remains finite in the
thermodynamic limit, and this would be a signature of scenario
(i) where the px + ipy quasi-2D pairing dominates. In scenario
(ii), if the px + ipy gap is weak then the chiral modes on the
dislocations will not be localized and will hybridize with other
low-energy modes and annihilate. Thus we generically would
not expect chiral energy currents on dislocations unless the the
px + ipy gap is strong.

(2) Another distinguishing feature arises for linked defects.
For an edge dislocation ring in the xy plane (with Burgers’
vector b1 = ẑ) and a second edge dislocation along the z

axis threading the ring (with Burgers’ vector b2 in-plane),
a Majorana zero mode on the second dislocation may be
observable by scanning tunneling microscopy (STM). In
particular, when the first dislocation is at a crystal surface,
it will be a disk-shaped plateau on the surface, threaded by
the second dislocation line and be easy to locate using, for
example, TEM. If linked dislocations exhibit the zero-energy
MBS it is an immediate smoking gun indication for the RKK
pairing, i.e., scenario (ii).

Given the same set up for the surface dislocation we can
also apply a magnetic field. For scenario (i) the STM signal
will exhibit a clear even-odd dependence based on the number
of vortices piercing the dislocation ring plateau. When the
number of vortices is odd then there should be a zero-energy
bound state on both the vortex and the dislocation loop, and
when the number of vortices is even then there will not be a zero
mode. Thus, the even-odd effect would be a clear signature
of scenario (i). However, if the proximity-induced px + ipy

gap in scenario (ii) becomes large then this effect would also
be present in that case. However, since we expect the gap
to be weak then the zero mode on the vortex and that on the
dislocation loop will hybridize and open a gap, thus presenting
the observation of any zero modes in STM.

These two possibilities yield useful experimental proposals
for how to distinguish the two pairing scenarios. To some
extent, since the proposals are based on weak topological
invariants, then they should be protected by translation
symmetry. Even though clean crystal samples of Sr2RuO4 are
available there will always be some disorder which breaks the
translation symmetry. Thus, some comments on the stability
of our predictions in the presence of disorder are necessary,
although this topic is an active area of research and we will
leave a full discussion for future work.

For the primary weak invariant, i.e., either pairing scenario
(i), or scenario (ii) with a strong induced px + ipy quasi-2D
gap, the low-energy bound states on a dislocation line will
be chiral, and robust to the addition of disorder as long as
no low-energy, delocalized channels couple to the modes.
We thus expect the modes to be stable for weak to moderate
strength disorder. In order for the modes to be destroyed there
must be some mechanism for them to leak away from their
dislocation line and couple to modes on a separate dislocation
line in the bulk or on the surface. There could be some local
fluctuation of the disorder potential that might destabilize
the modes in a local region, or the disorder could be strong
enough to close the bulk/mobility gap which would signal a
disorder-driven bulk topological phase transition. The stability
is essentially the same if we consider the boundary states
themselves which are also chiral, and for zero-energy bound
states on a dislocation line linked with a vortex as long as Ñ0 is
nontrivial.

For the secondary weak invariant there will exist nonchiral
modes on dislocation lines and nonchiral boundary modes.
These modes are not as stable as the modes due to the
primary invariant as they can be gapped/localized locally at
the dislocation line (or boundary) itself. This can happen
from local disorder at or near the dislocation line which
can localize the low-energy modes. Even nonrandom, but
translation-symmetry breaking perturbations could localize
the modes. We thus expect these modes to be stable only in
the case of weak disorder.

As we have emphasized the secondary weak invariant also
has another consequence. That is, for the secondary weak
invariant there will exist zero-energy bound states on linked
dislocation lines. These modes are insensitive to disorder
on the dislocation itself, but can be destroyed if they come
too close, or couple through delocalized modes, to other
zero-energy states. These modes are thus the most stable
consequence of bound states due to the secondary weak
invariant and we expect them to be stable for weak to moderate
disorder.

In conclusion, we have observed that the RKK pairing
induces a nontrivial secondary weak invariant which dis-
tinguishes it from the primary weak invariant of the chiral
px + ipy state. We then showed that this secondary weak
invariant has several interesting consequences which can help
to experimentally distinguish the two pairing scenarios, the
most notable of which is the presence of Majorana bound
states on linked dislocation lines. For future work it will be
exciting to consider the effects of strong spin-orbit coupling
and disorder.

After the completion of this work we noticed a recent
preprint with similar themes albeit a different focus [34].
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