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Samarium hexaboride (SmBg), a representative Kondo insulator, has been characterized recently as a likely
topological insulator. It is also a material with strong electron correlations, evident by the temperature dependence
of its band gap and the existence of a nearly flat collective mode whose energy lies within the band gap. Similar
strong correlations can affect or even destabilize the two-dimensional metallic state of topological origin at
the crystal boundary. Here we construct the minimal lattice model of the correlated boundary of topological
Kondo insulators, and make phenomenological predictions for its possible ground states. Depending on the
microscopic properties of the interface between the topological Kondo material and a conventional insulator,
the boundary metal can exhibit a varied degree of hybridization between the d and f orbitals of the rare-earth
element, yielding a rich two-dimensional heavy-fermion phenomenology. A pronounced participation of the f
orbitals is expected to create a heavy-fermion Dirac metal, possibly unstable to a spin density wave, electron
localization, or even superconductivity. The opposite limit of “localized magnetic moments” helped by the
partial Kondo screening on the crystal boundary can bring about a non-Fermi liquid of d electrons that exhibits
two-dimensional quantum electrodynamics, or other unconventional states. In addition, ultrathin films made from
topological Kondo insulators could open the possibility of creating exotic incompressible quantum liquids with
non-Abelian fractional excitations, whose dynamics shaped by the strong Rashba spin-orbit coupling resembles

that of fractional quantum Hall systems.
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I. INTRODUCTION

Topological insulators (TIs) are materials whose crystal
boundaries host a metallic state protected by the time-
reversal (TR) symmetry, while the bulk is (ideally) insulating
[1-3]. The ideal crystals of all well-characterized “strong”
TI materials, such as Bi,Se; and Bi,Tes, or half-Heusler
compounds [4,5], are uncorrelated band insulators shaped
by the spin-orbit coupling. The bulk is a band insulator
identified by multiple Z, topological invariants [6—8], while
the surface hosts a two-dimensional metallic state born out of
the spin-momentum-locked massless Dirac spectrum. As long
as the TR symmetry is respected, the surface metal is protected
[6] against disorder, interactions, and any other source of
electron backscattering that causes Anderson localization in
two-dimensional metals [9].

Very promising materials that combine interactions and
a strong spin-orbit coupling are Kondo insulators (SmBg,
YbB,, Ce;BisPt3, CeNiSn, CeRhSb, Ce;Pt;Sbs, UNiSn, etc.)
[10-20] and iridium oxides (PryIr,O7, SryIrO4, Na,IrOs,
etc.) [21-27]. The former are insulating heavy-fermion sys-
tems that were recently theoretically characterized as likely
three-dimensional strong TIs [28-32] or topological crystal
insulators [33]. All heavy-fermion materials feature some
degree of hybridization between the f and d orbitals of
their rare-earth element. The f orbitals have a very small
intrinsic bandwidth in the crystal environment, while the d
orbitals are broadly dispersing. Coulomb interactions tend to
localize electrons in the f orbitals when they become dense,
and produce Kondo singlet correlations between the f and d
electrons. The resulting ground state of Kondo TIs is a strongly
correlated insulator.

The most studied Kondo insulator material is samarium
hexaboride (SmBg). The Fermi energy of a Kondo insulator lies
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within a small temperature-dependent band gap [34]. Neutron
scattering experiments have revealed a gapped coherent
collective mode with a fairly narrow dispersion that also
resides inside the band gap [14,18,35,36]. The slave boson
theory of Kondo materials views this mode as an exciton,
which is created by the Coulomb interactions among the
narrow-band f electrons and protected against decay by the
material’s band gap [13,20]. In addition to this evidence of
correlations, some Kondo materials exhibit a characteristic
insulating temperature dependence of the dc conductivity until
the lowest temperatures where the conductivity saturates at a
finite value [37—41]. While this may or may not be related to
the existence of a metallic surface, the experimental support
for SmBg being a TI is growing [36,42-53]. This motivates
new theoretical studies of the band-structure and correlation
phenomena in Kondo insulators [54-61].

The purpose of this paper is to construct the minimal inter-
acting lattice model of Kondo TI crystal boundaries, and then
discuss some possible correlation phenomena that arise from
it. The Anderson model treated with the slave boson method
[28,30] is adapted for the description of two opposite Kondo
TI surfaces with an odd number of Dirac points each, using the
same approach as Ref. [62]. The obtained Hamiltonian is an
effective theory with a useful low-energy sector constrained by
symmetries, low-energy degrees of freedom, and any known
properties of the spectrum. Its parameters can be fitted to
an experimentally or numerically [11,29,55,56,63] determined
surface band structure. The lattice formulation of an effective
theory at the Kondo TI boundary is more appropriate for
analyzing strongly correlated states than its continuum limit
formulation [64].

The metallic two-dimensional surface state of a Kondo TTis
only more susceptible to interactions and quantum fluctuations
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[65] than its insulating three-dimensional bulk. Our main
prediction is that the boundaries of Kondo TIs can in certain
regimes exhibit correlation phenomena analogous to those
found in heavy-fermion metals [66-75], but with features
specific to the two-dimensional geometry and the existence
of protected Dirac quasiparticles (whenever the TR symmetry
is not broken). A two-dimensional Dirac metal of hybridized
d and f electrons is susceptible to spin or charge density wave
instabilities [62,65], and perhaps even superconductivity. The
argument is largely based on the slave boson theory of Kondo
materials, which seemingly describes in great detail [36] the
collective mode seen by inelastic neutron scattering in SmBg,
and then predicts similar quantum fluctuations on the Kondo
TI boundary. Additional nontrivial phases with localized f
electrons can be stabilized by strong Coulomb interactions
acting in two dimensions. Among them are spin liquids of
localized f moments. They can arise from the Kondo singlet
fluctuations, which frustrate the correlations of f moments
along the surface. We discuss a particular surface regime
in which the underlying spin liquid dynamics of localized
f electrons produces a “marginal” non-Fermi liquid metal
of d electrons described by the two-dimensional quantum
electrodynamics. Which particular phase is realized at the
crystal surface depends on the microscopic surface properties,
and may be controlled to some extent by interface engineering.
Even the surface orientation with respect to the crystal can
affect the surface phase through its specific symmetry and
structure of Dirac points.

Topological insulator quantum wells (TIQWSs) or ultrathin
films made from Kondo TIs are another system of interest
in this paper. Their added virtues are tunability in gated
heterostructures and the potential to introduce instabilities
in the spin-triplet channel. We discuss unconventional triplet
condensates within a simplified model of TIQWs, and find
that they break the translation symmetry either by a pair
density wave or a vortex lattice. The latter is analogous to
the Abrikosov vortex lattice of superconductors in magnetic
fields: the Rashba spin-orbit coupling on the TI’s surface,
which creates its Dirac quasiparticle spectrum, is equivalent to
an external SU(2) Yang-Mills flux [76], a non-Abelian analog
of the ordinary U(1) magnetic field. The fully gapped quasi-
particle spectrum of TIQWs opens a possibility of stabilizing
incompressible quantum liquids with fractional excitations,
by quantum melting of the mentioned vortex lattice [77,78].
Quantum wells made from certain Kondo TI materials could
have all the necessary ingredients for such exotic physics:
strong gauge flux, gapped spectrum, and flat heavy-fermion
surface bands sensitive to Coulomb interactions. Note that
fractional quantum Hall systems have the same fundamental
properties, only with the SU(2) spin-orbit flux being replaced
by a much weaker U(1) magnetic flux (the realistic Rashba
spin-orbit coupling can be equivalent to about 1000 T magnetic
fields, at least in bismuth-based TIs).

The existence of fractional incompressible quantum lig-
uids in the phase diagram of strongly correlated TIQWs is
supported by fundamental physical principles [77,79]. The
Rashba spin-orbit coupling is expected to naturally shape
fractional states with non-Abelian statistics in the TIQWs [80],
which have the kind of many-body quantum entanglement
needed for quantum computing. The experimental exploration
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of TIs as a platform for topological quantum computing
has begun very recently [81-91], starting off with the Fu-
Kane idea to create zero-energy Majorana quasiparticles
using the proximity-induced superconducting state on the TI
surface [92]. In contrast, the possible fractional incompressible
quantum liquids in TIQWs could become the platform for
quantum computing analogous to that envisioned in non-
Abelian quantum Hall states [93,94]. Its advantage over the
Majorana system is fully gapped non-Abelian quasiparticles
that maintain their exchange statistics at short distances and
likely allow universal quantum computing.

This paper is organized as follows. Section II reviews the
essential physics of Kondo materials and the slave boson
method. The model and properties of protected Kondo TI
boundaries are then discussed in Sec. III. The phenomenology
of Kondo TI quantum wells is analyzed in Sec. I'V. Finally, all
conclusions are summarized in Sec. V.

II. THE BASIC PHYSICS OF HEAVY-FERMION
MATERIALS

By way of introduction, we review here some essential
properties of Kondo insulators and other heavy-fermion ma-
terials through the lenses of the Anderson model. Section IT A
justifies this model in the context of Kondo material band
structures, and Sec. IIB surveys the competing correlation
effects that emerge from Coulomb interactions. The introduc-
tion concludes by a brief review of the slave boson method in
Sec. I C, which provides the framework for several predictions
of this paper.

A. The minimal model

The fundamental degrees of freedom in Kondo insulators
are electrons that originate from the atomic d and f orbitals
of arare-earth element. These orbitals spread into bands in the
crystal environment and hybridize to avoid crossing each other
at the same momentum. The resulting electronic states have
a broad energy dispersion as a function of crystal momentum
when their character is predominantly d-like, and a fairly flat
dispersion giving rise to a large effective mass when their
character is predominantly f-like. The intrinsic spin-orbit
coupling of d electrons is usually neglected, so their spin
o = =1 is considered a good quantum number. In contrast, the
internal quantum number @ =1, ...,N of f electrons labels
states within a degenerate multiplet that arises from the crystal
electric fields and spin-orbit coupling. In general, multiple
d and f orbitals may significantly contribute to dynamics.
However, the hybridization between d and f orbitals, due to
both crystal fields and interactions, opens a narrow band gap
that contains the Fermi energy in Kondo insulators. Only one
Kramers-degenerate pair of effective d and f orbitals each may
be sufficient to capture the lowest energy dynamics of particle
and hole excitations. Coulomb interaction is appropriately
defined for local charged degrees of freedom such as electrons
in the atomic orbitals, but we may approximately emphasize
its influence only among the f electrons because their intrinsic
bandwidth (i.e., kinetic energy) is very small. The dominant
effect of the Coulomb repulsion is to suppress the double

235107-2



TWO-DIMENSIONAL HEAVY FERMIONS ON THE ...

occupancy of any lattice site by f electrons, so we may model
it as a simple on-site potential U.

The minimal model of a Kondo insulator that captures the
above features is given by the following second-quantized
tight-binding Hamiltonian involving d and f electron field
operators d, g and fyR, respectively, or their Fourier transforms
[28,30]:

H = Z/BZ (27T)3 é:k ok ak+2/ BZ (27_[)3 kfzjk ak
+ZZ( oa;R—R’ GR aR’+HC)

oa RR’

+UZZfaTR angRfﬁR~ (1)

R op

This is a version of the periodic Anderson model. The sites R
may form a simple cubic lattice found in Kondo insulators. The
hybridization couplings V,,.r_r’ arise from crystal fields and
can be calculated microscopically. All important features of the
band structure near the hybridization gap can be captured by
the nearest 71, next-nearest t,, and third-neighbor #; hopping:

X,,2 x,¥,2
& = —2ty1 Z cos(k;) — 2tz Z cos(k;) cos(k;)
i#]

2
— 243 cos(ky) cos(ky) cos(k;) — 1,

and similarly for the f electrons (we will use the units of
h =1 and lattice constant ¢ = 1 throughout this paper). The
dispersion € of the bare f electrons is sometimes modeled by
a flat band, ex =~ €; — u, where € is the relative energy shift
of the f orbitals with respect to the d orbitals, and p is the
chemical potential (Fermi energy).

The symmetry of orbitals in the cubic lattice requires that
the hybridization couplings V,,.r—r have no strictly local
component [28,30]; i.e., Vy4:0 = 0. The simplest form of
such a hopping-assisted hybridization is given by the Fourier
transform:

R-R

= Vols* sin(ky) + s” sin(ky) + s° sin(k,)], 3)

where V) is an energy scale, and we represent V,, as a
matrix in terms of the Pauli matrices s*”-* (assuming N, = 2).
Consequently, hybridization cannot occur at high-symmetry
points of the first Brillouin zone. If the band of f electrons
were perfectly flat, as is often modeled for simplicity, then (3)
would fail to open an indirect gap: the hybridized spectrum
would retain the energy of the original f band at the center
and corners of the first Brillouin zone, etc. Figure 1 illustrates
the realistic mechanism for gap opening, and demonstrates
that the f orbitals should have an “inverted” dispersion with a
finite effective mass (m ; ~ 100m, in SmBg, where my is the
bare electron mass) in order for a gap to appear. Such band
inversions are necessary (but not sufficient) for the emergence
of a topological insulator.
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FIG. 1. (a) A schematic band structure of a Kondo insulator.
Electron states are dominated by either d or f orbitals away from
avoided crossings. Band inversion must occur at all places in the
first Brillouin zone where the f and d orbitals hybridize, due to the
spatial structure of hybridization couplings. (b) Hybridization does
not produce a band gap without band inversion.

B. Correlations due to Coulomb interactions

Let us now consider various interacting regimes of the
model (1), regardless of whether they correspond to a Kondo
insulator or not. This discussion will later provide the needed
perspective for the analysis of correlated surface states in
Kondo TIs.

If the Coulomb interaction U is weak, then it renormalizes
the band-structure through electron self-energy but yields no
qualitative departures from the physics of a Fermi liquid or a
band insulator. However, interesting correlation phenomena
emerge in the realistic limit U > V > ¢, for Kondo TIs,
paving the way for new metallic, insulating, and supercon-
ducting states. Correlations can be understood easily from the
Hubbard model perspective, by regarding the hybridization
coupling V as an interorbital “hopping” analogous to the
lattice hopping ¢y for f electrons. If the occupation of f
orbitals happens to be one electron per lattice site (ny = 1),
then a sufficiently large Coulomb interaction localizes the f
electrons and prohibits their hopping both on the lattice and
between orbitals. This situation is most easily envisioned in the
light-fermion metallic state, where the intrinsic f orbitals are
completely buried below the chemical potential by the amount
of energy u — ey. Charge-carrying excitations involving f
electrons are pushed to high energies due to the large energy
cost U — (. — € ) of double occupancy, or the cost 4 — €7 of
removing an f electron. The spin of f electrons can remain a
low-energy degree of freedom.

In the absence of hybridization, virtual electron hopping
correlates the f electron spins into an antiferromagnetic Néel
state, governed by the spin-exchange coupling J ~ tj% /U
at the second order of perturbation theory. By the same
mechanism, the interorbital hopping due to hybridization
correlates the spins of f and d electrons. This effect is even
stronger than the correlation between different lattice sites
when V > f, and results in the formation of interorbital
(Kondo) singlets. However, the competition between the
Kondo and lattice spin exchange for the spins of f electrons
can create very complicated ground states. The low-energy
dynamics of conduction d electrons and localized f moments
is captured by the Kondo lattice model in this regime [95].
The f electrons whose spin is screened by the formation of
strong Kondo singlets are hardly available for the formation of
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antiferromagnetic orders on the lattice, but their number n; per
site is limited by the number of itinerant d electrons [96]. The
situation ny < ny =1 is largely analogous to doping a Néel
antiferromagnet of f electrons by n; (chargeless) holes per
site, where the terminal points of Kondo singlets reside. These
holes are mobile and frustrate the residual spin correlations on
the lattice.

The f orbital is not exactly half filled (ny < 1) in Kondo
insulators and heavy-mass metallic states. This requires the
chemical potential u to cross the energy range of f orbitals,
either through the hybridization band gap as in Kondo
insulators or through a flat portion of the hybridized band
as in heavy-fermion metals. The ensuing mobility of f
electrons invalidates the Kondo lattice model of dynamics in
the strict sense because the f electrons can now contribute their
charge to the low-energy quasiparticles. However, the quantum
fluctuations resulting from the evolution of Kondo singlets
continue to play an essential role in the strongly correlated
dynamics [97-101]. Magnetic ordering without localization
can emerge out of this metallic state through the spin density
wave instability [75,102-104]. Note that a different type
of quantum criticality, where the f electrons localize at
ny =1, is seen more often in heavy-fermion compounds
[68,71,72,105—113]. Understanding this unconventional quan-
tum criticality is a major theoretical challenge [114—120].

Instead of controlling the f electron localization by
changing the chemical potential or “doping” as in the previous
scenario, we can use the hybridization V as another theoretical
tuning parameter. If V becomes comparable or larger than
U—(u—e€y) or u—ey, then the f electrons cannot be
localized in the interorbital sense. It now costs virtually no
energy to promote an f electron to a d orbital and move it
across a large distance before recombining it back to the f
orbital. Consequently, f electrons become delocalized, even
if their intraorbital hopping ¢y is still too small (the d orbitals
provide a shunt). Just before such delocalization takes place,
the spin dynamics of weakly localized f electrons can be
highly frustrated by ever-increasing range of their effective
spin-exchange couplings. Such conditions are friendly to
exotic states of matter. Kondo insulators are at least close to
being in this regime simply because their chemical potential
must reside within the hybridization band gap that splits open
the f “band” (u ~ €y).

If not in the ground state, correlation effects are visible
in the excitation spectrum of Kondo insulators. The electron
band structure itself is renormalized and effectively shows
temperature dependence [34]. More importantly, coherent
collective modes of the paramagnon type have been seen in
Kondo insulators [14,18,35,36] such as SmBg. These modes
can be understood as excitons of hybridized particle-hole
pairs [13,20] whose binding is mediated by the quantum
fluctuations of Kondo singlets, as illustrated by the Feynman
diagrams in Fig. 2. Even though the modes are gapped, they
are protected from decay by energy conservation because their
energy lies within the particle-hole band gap. The condensation
of such a mode would typically correspond to a spin density
wave instability. The analogous fluctuations in Kondo metals
are more likely damped, but they can still be involved in
magnetic instabilities. On the other hand, before a low-energy
paramagnon mode gets a chance to condense, it may produce
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FIG. 2. (a) The Feynman diagrams for the processes that produce
collective exciton modes in Kondo materials. The wiggly line
represents the Kondo singlet propagator, which mediates an attractive
interaction between an electron and a hole represented by solid lines.
The ensuing exciton bound state I'(q) acquires self-energy renormal-
ization I'(g). The outcome is a coherent low-energy excitation in
Kondo insulators such as SmBg, protected against decay by having
energy that lies within the particle-hole band gap. (b) The process
mediated by collective modes that generates a pairing glue for Cooper
pairs.

an entirely different instability in the Cooper channel, through
the process illustrated in Fig. 2, especially in two dimensions
[121,122].

The Hamiltonian parameters that we considered in the
above survey are hardly tunable, so any particular material will
realize only one concrete scenario that we discussed. However,
our main interest here is fopological Kondo insulators, which
have protected metallic surface states. Microscopically, the
dynamics of these surface states is governed by a properly
modified two-dimensional version of the model (1) that we will
construct later. Much of the heavy-fermion physics becomes
possible on the surface of a Kondo TI, but with even more
enhanced quantum fluctuation effects due to the reduced
dimensionality. Furthermore, some aspects of the dynamics
can be tuned through interface or heterostructure design.

C. Slave boson approximation

The main difficulty of analyzing the correlation effects
in Kondo materials is that the Coulomb interaction is too
strong for a perturbative treatment. On the other hand, the
most important effect of Coulomb interactions is to suppress
the double occupation of any lattice site by f electrons.
Slave boson approximation is a convenient way to remove the
high-energy states with double occupancy from the low-energy
effective theory. In the first step, it represents an f electron
as a bound state of two auxiliary degrees of freedom, a slave
boson and a slave fermion. The f electron creation operator is
written as a product

Jar = Vorbr: 4)

where wiR creates a slave fermion at the site R and by
annihilates a slave boson at the same site. Slave bosons are
a surplus degree of freedom that enlarge the Hilbert space
beyond that of the physical states. Therefore, we need a local
constraint that projects out all unphysical states. The constraint
is designed to mimic the physics at large Coulomb interactions
U and prohibit double occupation of any lattice site by f
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electrons:

Z I//lRwaR + bLbR =1 ©)

Now, the number of slave bosons and slave fermions must add
up to one on every site, so an empty site contains one slave
boson. An attempt to create two f electrons on an initially
empty site involves two slave boson annihilations where only
one boson is present, and thus results in the zero probability
amplitude.

Since an f electron is mathematically represented as a
composite particle, there are multiple ways in which its charge
can be distributed among its constituents. Most generally, the
slave boson and slave fermion can have charges ¢ and g — 1,
respectively, in the units where the electron charge is —1.
The value of ¢ is not fixed in the Hamiltonian, even by the
coupling between the f electrons and the electromagnetic
field that we do not explicitly write in this paper. Instead,
q has to be regarded as a variational parameter selected by
the dynamics in an approximate slave boson ground state.
Note that fixing the value of ¢ in this manner is equivalent
to removing the unphysical local symmetry of the slave
boson Hamiltonian under the transformation bg — e!*®bg,
Yor — € ® g, which was introduced by (4). We are unable
to calculate ¢, so we can only discuss its phenomenology.

The slave boson can be electrically neutral (g = 0) while the
slave fermion takes the full electron charge. The phase angle
of slave bosons is then fixed by the lack of the corresponding
global U(1) symmetry in the Hamiltonian (i.e., there can be
no Goldstone modes). Neutral slave bosons are fluctuations
related to Kondo singlets; they have the same quantum
numbers of a neutral spinless particle, and the presence
of Kondo singlets is generally reflected in (b%) # 0. The
constraint enables vibrant slave boson dynamics in quantum
states with delocalized f electrons. This is where the slave
boson approach is most useful as a practical approximation,
because it gives birth to a slave boson “condensate.” A slave
boson order parameter (bgr) 7 0 is found to renormalize the
quasiparticle spectrum even at the mean-field level, while its
quantum fluctuations can effectively give rise to collective
modes and instabilities.

Given that spin liquids and superconducting states can
also arise from frustrated spin dynamics, we should consider
another use of the slave boson theory. Spin-charge separation
that takes place in spin liquids can be captured by a charged
slave boson (¢ = 1) and a neutral slave fermion. Uncondensed
slave bosons represent a spin liquid, whose fermionic spinon
excitations arise from the dynamics of the neutral slave
fermions. A charged slave boson condensate is an exotic
fractionalized superconducting phase [123]. The slave boson
theory allows a transparent description of these phases, but it
is usually quantitatively unclear what microscopic conditions
are needed to establish any one of them.

The slave boson method first becomes an approximation if
we take the U — oo limit. This can be remedied in the large
but finite U limit by first integrating out the high-energy states
with double occupancy, using for example the degenerate
perturbation theory, and then applying the slave boson method
on the resulting effective Hamiltonian without f electron
double occupancy. This would generate additional Kondo and
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Ruderman-Kittel-Kasuya-Yosida (RKKY) couplings with ex-
change energy scales V2/U and t}/ U, respectively. However,
the effects of these terms may be small in comparison to the
other aspects of dynamics captured by the slave boson method.
The main approximation step comes in the implementation
of the constraint, which cannot be done exactly. At least when
the slave fermions and bosons are highly mobile, it is sensible
to implement the constraint softly on the average densities:

<Z ‘/’JR «r T bIsz> =1 (6)

The slave boson can condense, (br) = B, and we may
even use the mean-field theory to estimate band-structure
renormalization from the Hamiltonian:

mf Z/ (2]_[)3 ék (ik (Tk

4’k
+ (&l BP + ¢, — vl v,
;/132(27[)3 W BE € = Ve

+ Z Z(Voa;RfR’B*diR «r T H.C). )

oo RR’

Note that the boson commutation relation bRblT1 =14+

b;bR — 1+ | B|? yields the additional constant € — 4 term
in the renormalized spectrum of f electrons. The Coulomb
coupling is eliminated by the no-double-occupancy constraint.
This theory of fermionic excitations is formally noninteracting,
but the value of | B| has to be determined self-consistently by
minimizing the ground state energy under the soft constraint
(6). The renormalized spectrum of hybridized electrons takes
the form

— / 2
Egx = g“;ek +A/(§"T€"> + V2IBI2, (8

where

€ = ek|B|2 +ep—u,

2
b= (ZT| Yewwe ] o)
o o« |R—-R’
The hybridized states are labeled by the conduc-

tion/valence band index A = %1 and the Kramers degeneracy
index s = +1.

III. TOPOLOGICALLY PROTECTED BOUNDARY STATES

Samarium hexaboride has been identified as a likely can-
didate for a strong topological insulator [28,30]. Other Kondo
insulator materials are potential candidates too. A Kondo TI
crystal will normally have a two-dimensional metallic state
at its entire boundary that surrounds the insulating bulk.
This “helical” metal has only one low-energy spin-projection
mode, where the spin and momentum vectors are orthogonal
and related by the right-hand rule. The energy dispersion
of quasiparticles in the helical metal of a TI has an odd
number of massless Dirac points in the first Brillouin zone,
although no symmetry binds the chemical potential to any
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one of them. These properties of the boundary spectrum can
be formally attributed to the Rashba spin-orbit coupling, and
their robustness against perturbations is the result of topology
and TR symmetry.

The argument in favor of SmBg being a TI was based on the
band-structure analysis. It neglected various consequences of
quantum fluctuations. We will argue that Coulomb interactions
might give rise to various manifestations of strong correlations
on the Kondo TI boundary. Both the interactions and the spin-
orbit coupling enhance dynamics at the cutoff length scales,
so we will need a lattice effective model of the Kondo TI
surface to study correlated states. We develop such a model
in Secs. IIT A and III B, and then survey its various possible
ground states in Sec. III C.

A. Lattice models of topological insulator boundaries

Our ideal goal would be to construct a two-dimensional
lattice model of a single flat TI surface. This turns out to be
impossible. The main problem is capturing an odd number
of Dirac points in the band structure of a two-dimensional
lattice model. Here we review this problem and a way around
it [62], while setting up a lattice gauge theory formalism that
will enable a seamless generalization to Kondo TIs in the next
section.

Constructing a continuum limit with a single Dirac point at
zero momentum is rather simple:

H, = vi(S x p), (10)

where S and p are the electron’s spin and momentum operators
respectively, Z is the unit vector perpendicular to the surface,
and v is a coupling with units of velocity. The hint for
constructing a lattice theory with this continuum limit is found
by “rewriting” the Hamiltonian as a gauge theory:

_(p—tt AP

2m

H/

s

, A= -—mv(E x8S). 11

The SU(2) gauge field A is a static background representing
a nonzero Yang-Mills “magnetic” flux created by the Rashba
spin-orbit coupling. Electrons carry SU(2) charge t° = +1
with respect to this gauge field, where the opposite surfaces
of the TI carry opposite charges with a global interpretation
of 2. The surface Hamiltonians H, and H, differ only by a
p?/2m term and a constant, which makes H more realistic.
It is now straightforward to propose a simple lattice theory in
the second-quantized form

Hy==Y t_pcle™ e, (12)

rr’

with a lattice SU(2) gauge field defined on lattice bonds:
Arr = — Ay r Arrig = —ac*. (13)

Indeed, the continuum limit of this tight-binding Hamiltonian
describes the I point of the two-dimensional first Brillouin
zone the same way as (11). However, there are an even number
of Dirac points in the first Brillouin zone of the square lattice,
so we are not describing the surface of a TL.

The spin-orbit coupling can lift the twofold spin degeneracy
of bands at almost any point in the first Brillouin zone.
However, the TR symmetry protects the degeneracy of bands at

-Ar,rJrf( =ao” s
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high-symmetry points, I' k = (0,0), M k = (r,7), and two X
points k = (7,0),(0,7). There are four high-symmetry points
in the Brillouin zone of the square lattice, so four Dirac points
are unavoidably pinned to them for any finite SU(2) gauge field
that captures the Rashba spin-orbit coupling. Additional Dirac
points in the interior of the first Brillouin zone can be generated
by introducing nonzero gauge fields associated with hopping
beyond the nearest-neighbor sites. Note that gauge invariance
does not require the existence of such extended-range gauge
fields in any circumstances.

The above argument in favor of the four Dirac points is very
fundamental: four Dirac points are protected by the TR and
square lattice symmetries. Of course, disorder easily violates
the lattice symmetry, so all Dirac cones can be gapped out in
pairs. There is no way to formulate a strictly local lattice theory
of a single TI surface. This is similar to a quantum anomaly:
the continuum limit of a single TI surface exists [64], but its
direct lattice regularization is not possible.

We still need a lattice theory. Some regularized effective
theory that captures the dynamics of only the low-energy
surface states must exist. The hint to finding such a theory
lurks in the fact that the surface states envelop the entire crystal
boundary and cannot be terminated. Considering a slab crystal
geometry, it may not be possible to adequately describe a
single surface, but it must be possible to describe two opposite
surfaces in a single theory. The lattice Hamiltonian (12) already
labels the two opposite surfaces by 7%, so we can promote 7°
into an operator (Pauli matrix). The lattice symmetries along
the slab still protect the four Dirac points, so the only way to
gap out one or three of them, without introducing high-energy
bulk degrees of freedom in our effective theory, is to include
couplings between the two surfaces. For example,

Hl/ = Z Cl( - trfr’ eiTZAr’r, + Arfr’rx)cr’ (14)

rr’

with
4 k. k,
Z Agre™ = Ay sin? (?> sin’ <?>> (15)
or

gaps out just one Dirac cone at the M point of the Brillouin
zone. Note again that the phenomenology of TIs does not leave
us with any options to construct a qualitatively different lattice
theory of just TT boundaries. We are then left with the problem
of justifying the necessary couplings such as A, which appear
to connect the two opposite surfaces of a TI across arbitrarily
large distances through the insulating bulk.

In a nutshell, a two-dimensional spectrum E(k) with an
odd number of Dirac points cannot connect to itself across
the first Brillouin zone, as required by the zone’s periodic
boundary condition. This can be visualized by plotting the
texture of spin-momentum locking at energies above the Dirac
points in the first Brillouin zone, as in Fig. 3. The vector
field of spin orientations features a vector-vortex singularity at
every Dirac point. The periodic boundary condition of the first
Brillouin zone requires that the total vortex charge be zero. A
vector vortex is symmetric under rotations but the antivortex
is not. We may place a vortex at the I" point, but we cannot
compensate it with a single antivortex without violating the
rotational symmetry of the square lattice. The solution is to put
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FIG. 3. (Color online) The texture of spin-momentum locking of
the Hamiltonian (12) in the first Brillouin zone. Every Dirac cone
is a vortex singularity of the vector field formed by the local spin
orientations. The periodic boundary condition of the Brillouin zone
requires that the total vortex charge be zero, a total of four Dirac
points.

two antivortices at the two symmetry-related X points, and then
add another vector-vortex singularity at the M point to achieve
vortex charge neutrality. We have four symmetry-protected
Dirac points that we identified earlier. Even if we relax the
lattice symmetry requirement, we cannot have an odd number
of Dirac points in the Brillouin zone with periodic boundary
conditions.

Since an odd number of Dirac points prohibits the 2D
spectrum from independently connecting to itself across the
Brillouin zone boundaries, it is necessary for this spectrum to
cross into the high-energy regions somewhere in the Brillouin
zone, where it overlaps with the bulk bands. An odd number
of Dirac points must appear at such high energies. There is
now a channel through the bulk for the coupling between such
Dirac points on the opposite crystal’s surfaces. This is how
they become gapped, and our effective theory (14) captures
precisely this process.

Considered by itself, the intersurface coupling A brings
about some long-range entanglement between the two sur-
faces. The ensuing physical consequence is a half-quantized
Hall conductivity of a TI surface in the presence of a magnetic
field [3]. No simple two-dimensional noninteracting lattice
model can produce a noninteger Chern number. The lattice
model of two surfaces (14) must also produce an integer Chern
number, but half of it can be associated with one and the other
half to the other surface.

It is satisfying to observe that the same problem, and
essentially the same solution, are found in an attempt to
formulate a lattice theory of just the edge states in integer
quantum Hall systems. A tight-binding dispersion of an edge
state must be E (k) ~ sin(ka) in order to reproduce E(k) o k in
the continuum limit. However, this generates two low-energy
modes near the chemical potential u =~ 0, one with the correct
and one with a wrong chirality. The “wrong” mode cannot be
formally removed from a well-defined lattice theory of a single
edge. The solution is to write a theory of two opposite edges,
and introduce formal interedge couplings at near-the-cutoff
momenta k ~ 2 /a that gap out the undesired edge mode. This
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can be simply justified by considering the continuum-limit
Landau gauge, where a momentum change corresponds to a
lateral spatial shift of the state’s “guiding center.” If the system
size is Ly x L, and the applied magnetic field is B, then the
Landau level degeneracy is N = BL,L,/2m, and the change
of momentum by the cutoff amount Ak =2n/a =2nN/L,
implies the guiding center displacement Ay = Ak/B =L,
across the entire sample between the two opposite edges.
Therefore, the “wrong” modes of the two edges should belong
to the bulk where they must be a part of the high-energy
spectrum.

B. Lattice models of topological Kondo insulator boundaries

Here we apply the insight from the previous section to
construct models of Kondo TI surfaces. Since we are looking
for an effective theory, we could focus on the protected metallic
state of hybridized electrons on the crystal boundary and write
a Hamiltonian such as (14) to describe their dynamics. This
may be sufficient for dealing with fermionic quasiparticle
excitations, but makes it very hard to study correlation effects
due to interactions.

Instead, we will construct a lattice model of the TI surface
that contains both d and f electrons as microscopic degrees of
freedom. As argued before, we need to model a pair of opposite
surfaces (corresponding to the £ eigenvalues of ). Then we
will be able to use approximations such as the slave boson
method to explore correlation phenomena. The Hamiltonian
we seek is the two-dimensional analog of (1) enhanced by the
SU(2) gauge fields that implement a Rashba-type spin-orbit
coupling:

Hyp = Z [dj( _ trd_r, gizfA‘,"r/ + A?—l"rx)dr’
rr’

gt ,
+ f:( _ tf y elr A“_/ + A{—r’rx)fr’

r—

] Vo fy +H) U D FIf2 (16

The square lattice sites are labeled by r, and we organized
the field operators into spinors whose components distinguish
spin projections (1, ), multiplet states (1 ... N), and surface
index (= for top vs bottom):

flr+
dTr+
N | Sy
dy = die |’ fr = e | (17)
dyr- :
for—

It will be sufficient for our purposes to work with a doublet
of f orbitals, Ny =2. A background SU(2) lattice gauge
field of the type (13) is associated with every electrons’ direct
hopping path between two sites. Note that the hybridization
term V now involves a matrix that can also be gauged. The
f electrons do not have spin as a good quantum number, but
their multiplet index o =1, ...,N transforms nontrivially
under TR like a generalized angular momentum, and so can
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FIG. 4. (Color online) A modeled band structure (a) and Fermi
surface (b) of the metallic SmBs boundary states that quantitatively
reproduce the important low-energy features of the LDA+Gutzwiller
ab initio spectrum in Ref. [56]. Electron hopping takes place between
the nearest-neighbor and next-nearest-neighbor sites for d electrons
t! =1, = —0.5 and up to third-neighbor sites for a doublet of
f electrons 1/ = —0.05, t/ = 0.0165, 1/ = —0.015 (the units are
eV). The chemical potentials are €, = 2.0, u = 2.09. The SU(2)
gauge field (13) is assigned only to the f electron hopping, with the
parameter a = 0.9 [the spin matrices in (13) are taken to act on the
orbital space of the f electron doublet]. The Fourier transform of
the hybridization term is given by Vy = Vy[s* sin(k,) + s sin(ky)],
where V) = 0.4, and s*,s” are Pauli matrices that convert the d
electron spin to the f electron multiplet index. The intersurface
couplings (15) are implemented for both d and f electrons, with
Al =4, Ag = 0.1. There is alarge freedom to choose different values
of various couplings without significantly affecting the depicted
low-energy features of the spectrum.

be involved in the spin-orbit coupling. This two-dimensional
model describes two opposite surfaces of a TT; the Pauli matrix
operators t°,t* operate on the surface index. The unusual
intersurface couplings A are needed to ensure an odd number
of Dirac cones in the first Brillouin zone, as we discussed in
the previous section.

At this point, the only remaining task is to choose the values
for various coupling constants that reproduce a desired surface
band structure at low energies. One example is shown in Fig. 4.
There are several rules to consider in choosing the parameter
values. First of all, the SU(2) gauge fields should vanish on
all but the nearest-neighbor lattice bonds in order to have the
minimal number of Dirac points. Otherwise, additional Dirac
points arise in the interior of the first Brillouin zone. For the
same reason, either d or f electrons, but not both, should
be coupled to the SU(2) gauge field. The hopping parameters
determine the relative energies of the Dirac points through
the overall shape of the electron dispersion. The ab initio
calculation in Ref. [56] suggests that the Dirac points at X lie
about 5-8 meV above that at I, while the spurious Dirac point
at M can be gapped out only if immersed in the bulk band that
spreads at energies more than 15-20 meV below the energy
of the X Dirac points. These features were taken into account
in the example from Fig. 4, but require up to third-neighbor
hopping in the f orbitals. In this particular case, the d orbitals
are very broad, so most details of their dispersion controlled
by the hopping parameters are irrelevant as they appear at high
energies. The parameter € strongly affects the momentum
extent of hybridized states that are dominated by the f orbitals
and thus disperse weakly.
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C. Correlations on the Kondo TI boundaries

Here we make qualitative predictions for a few strongly
correlated states that could arise on the Kondo TI boundaries.
The best way to summarize them is to say that a Kondo TI can
exhibit “helical” two-dimensional heavy-fermion physics on
its boundary even though its bulk is insulating.

The correlated states on the boundary may depend sen-
sitively on the surface quasiparticle spectrum. It should be
appreciated now that the detailed properties of the surface
band structure are not universal. They depend on the precise
conventional insulator that is interfaced with the Kondo TI,
as well as the orientation of the surface with respect to
the bulk crystal (e.g., the 100 cut of the cubic lattice is a
square lattice, but the 111 cut is a triangular lattice). Various
impurities that have affinity for the surface or the bulk can
also alter the spectrum. Pressure and temperature are the usual
controllable parameters. The only universal feature of the TI
surface spectrum is the presence of an odd number of Dirac
points (if the TR symmetry is not broken).

One nonuniversal phenomenon at the crystal boundary that
creates different regimes for correlations is band bending. Even
though band bending in not responsible for the existence of
metallic surface states in TIs, it affects their spectrum and
occurs in general. Figure 5 illustrates three characteristic cir-
cumstances that we will discuss. The least interesting regime,
Fig. 5(b), is obtained if the chemical potential crosses the bulk
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FIG. 5. (Color online) (a) Bending of the Kondo insulator’s
bands near the crystal boundary. The amount of deformation depends
on the microscopic surface (interface) properties, and determines
the relative placement of the chemical potential E, in the bulk
band structure near the surface. (b) Weakly correlated metallic
boundary dominated by d electrons, without appreciable Kondo
singlet fluctuations. (c) Strongly correlated states of hybridized d and
f electrons. (d) Strongly correlated metallic boundary dominated by
light d orbitals, influenced by the Kondo singlet dynamics amid the
half-filled f orbital.
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d orbital at energies well below the f orbital in the bent bulk
spectrum near the surface. Then, the metallic state at the crystal
boundary consists primarily of d electrons, while the f orbitals
are depleted. There is hardly any substance to establish Kondo
singlets or other correlations through Coulomb interactions.
The surface metallic state is conventional. The second regime
is shown in Fig. 5(c). Now the chemical potential crosses the
energy range where the d and f orbitals hybridize. Quantum
fluctuations are abundant and Coulomb interactions are highly
influential. It is extremely difficult to formulate a controlled
approximation that describes this regime, but we may use the
dynamical slave boson theory to approximately describe the
dynamics at least when the f electrons are not localized.
Indeed, there is no generic reason for the f electrons to
localize in this regime given that their orbital is only partially
populated. We will briefly discuss the ensuing possible ground
states in Sec. IIIC 1. Finally, Fig. 5(d) illustrates the third
characteristic regime, where d electrons again dominate the
surface transport, but not in a weakly correlated fashion.
Here the f orbital is at half filling, so the f electrons are
localized. Still, they can form Kondo singlets with d electrons,
which affects both the metallic properties of the conduction d
electrons and the spin dynamics of the localized f electrons.
We will discuss some interesting possible consequences of
these correlations in Sec. III C 2.

It should be noted that the above naive picture of band
bending has nothing to do with the size of the Fermi surface at
the crystal boundary. The strength of the Rashba spin-orbit
coupling and the energy difference between the chemical
potential and the Dirac points determine the Fermi surface
size. Therefore, the Fermi surface at the sample boundary can
be either large or small regardless of whether it is dominated
by d or f electrons. Figure 5 schematically represents the bulk
bands and should not be used to visualize the size of the Fermi
surface at the crystal boundary.

1. Hybridized correlated regime

Here we discuss the boundary states of Kondo TIs in
the regime depicted in Fig. 5(c) where band bending is
small. Surface states are formed by hybridized electrons
and have an appreciable f orbital content. The f orbital is
partially populated so Coulomb interactions create frustration
by disallowing two f electrons on the same lattice site. Since
f electrons are not localized, we are able to qualitatively
capture the dynamics using the slave boson theory with a
soft constraint. To that end, we introduce the slave bosons
and fermions by (4) on every site r of the two-dimensional
lattice that models the TI surface. The ensuing slave boson
Hamiltonian (16) of the Kondo TI surface,

HSb = Z [le( - l‘:f:r, e”:Air, + Ai‘lfr"tx)dr’

rr’

ir7A! X
+bbl il (=] T AL Yy,
+(bLdl V, ¥ +He)], (18)

ought to be diagonalized with the restriction

1 .
_ i 1 —
N Er (e +biby) =1, 19)
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where N is the number of 2D lattice sites. The choice of the
Hamiltonian parameter values is discussed in Sec. IIIB. It
seems most appropriate to form Dirac points predominantly
on f orbitals, so that only A/ should be nonzero among the
lattice SU(2) gauge fields in (18).

The mobility of slave bosons allows them to condense,
(by) = B # 0. The condensate alone renormalizes the quasi-
particle spectrum according to the expression like (8) but with
different quantum numbers and lifted degeneracy. In practice,
various properties of the realistic surface band structure may
be determined experimentally or numerically, and then they
already include renormalizations due to Coulomb interactions.
Hence, it is prudent to fit the renormalized band structure (8)
to the measured one, and obtain B by “reverse engineering”
instead of the more complicated self-consistent approach
which assumes the knowledge of microscopic parameters.

The lowest energy excitations are hybridized quasiparticles
whose Fermi surface and Fermi velocity are dominated by
the Dirac cones rather then their significant f character. The
slave boson condensate does not contribute Goldstone modes
to the low-energy spectrum in any scenario that we discussed in
Sec. IIB. However, slave boson fluctuations beyond the
condensate can give rise to collective modes that live at finite
low energies, or even cause instabilities.

In order to analyze fluctuations, we rewrite the slave boson
operator as b, = B + 8b,, and rewrite the Hamiltonian as
a theory of hybridized electrons c,, in the presence of the
mean-field condensate, which can now interact by exchanging
slave bosons §b;. As long as the typical fluctuations §b, are
small and random enough to not change the average slave
boson density and not create locally unphysical states, we may
treat them perturbatively without any further concern about
the constraint. This also allows us to switch to the momentum
space representation of the interacting Hamiltonian:

&%k )
H, :f ( E,chec, +u8b'8b>
D 1BZ (27_[)2 ; k k™ nk k k

N / &k d2k
1z 27)* (27)?
XY (Ve i CocCne bty + Hc). (20)

nn'

The index n labels eigenstates in the mean-field version of the
Hamiltonian (18), where every occurrence of by is replaced by
B. The corresponding mean-field quasiparticle spectrum E,x
is given by a two-dimensional extension of (8) that takes into
account the spin-momentum locking. Various technicalities,
presented elsewhere, are hidden behind the simple appearance
of the interaction term. For example, the fluctuations that
are longitudinal and transversal to the condensate acquire
different couplings to the fermions, but one can neglect or
integrate out the higher-energy longitudinal fluctuations. As an
approximation, we handle only one Feynman diagram vertex
in the perturbation theory shown in Fig. 6(a), in which a
slave f fermion is converted to a d electron via the emission
of a slave boson, or the other way round. The microscopic
theory produces another vertex, the mutual scattering of a
slave fermion and a slave boson, but this process is negligible
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(b) (c)

FIG. 6. The fundamental processes of the slave-boson perturba-
tion theory. (a) The hybridization vertex in which a slave f fermion
is converted to a d electron via the emission of a slave boson.
(b) Exciton pairing process: an electron and a hole attract each other
by exchanging slave bosons. (c) Cooper pairing process: slave boson
exchange can take advantage of the nesting between different Fermi
pockets to produce a superconducting phase.

because its amplitude is inversely proportional to the f
electron effective mass.

The perturbation theory is made difficult by two features.
First, slave bosons are artificial degrees of freedom without
intrinsic (bare) dynamics. Polarization bubble diagrams are
entirely responsible for producing an effective dynamics of
slave bosons. A slave boson propagator acquired in this manner
mediates interactions between fermionic quasiparticles. The
most important processes are fermion scattering in the particle-
hole and Cooper channels, shown in Figs. 6(b) and 6(c).
The former contributes self-consistently to the slave boson
propagator, which can be calculated at least at the RPA level
by summing infinite series of ladder and bubble diagrams (see
Fig. 2). There lurks the second difficulty: the ladder diagrams,
which contain repeated exchanges of slave bosons between
two propagating fermions, are hard to calculate because both
the slave boson propagator and the vertex function have
nontrivial momentum and frequency dependence. The RPA
summation of ladder diagrams deals with two-body correlation
functions, making it a task equivalent to solving a nonlocal
three-dimensional partial differential equation.

Various approximations put in place to solve the above
problems enable calculating the energy dispersion of a col-
lective paramagnon mode represented by the I'” diagram in
Fig. 2. In essence, certain parts of the full vertex function
and slave boson propagator are approximated by a few phe-
nomenological parameters that depend on the self-consistent
renormalization. The simplified vertex and propagator are then
amenable to further analytical and numerical treatment. There
is little point in trying to calculate these phenomenological
parameters starting from the microscopic formulation of the
problem (20), because they depend on the poorly known
microscopic details of the surface band structure, interactions,
etc. Instead, it is more useful to treat them as fitting parameters
in the theory.

The perturbative slave boson calculation of this kind
has been done for the bulk SmBg crystal, where a weakly
dispersing collective paramagnon mode is seen by neutron
scattering. The parameters were fitted to match the calculated
and measured mode energy everywhere in the first Brillouin
zone (where data are available) [36]. The calculated spectral
weight qualitatively follows the measured neutron scattering
intensity as a function of momentum transfer. Therefore,
despite the high level of uncontrolled approximations, the
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perturbative slave boson theory may be able to reveal the
correct physical picture of strong correlations in bulk Kondo
insulators.

By a direct formal analogy, we can predict the existence of
similar collective modes in the surface spectrum of Kondo
TIs. Only now, the surface is a two-dimensional metal
instead of a three-dimensional insulator. Two-dimensional
systems with gapless excitations are surely more sensitive
to quantum fluctuations and susceptible to instabilities than
a bulk insulator, where a coherent collective mode is still
created by strong interactions. The mere existence of a gapped
surface paramagnon is not expected to qualitatively alter the
helical Fermi liquid behavior of the surface states, but should
renormalize their dynamics. However, this collective mode
can condense, or stimulate other kinds of instabilities such as
superconductivity. Below we discuss some possibilities.

It is well known that repulsive interactions between elec-
trons on a nested Fermi surface can lead to spin density wave
(SDW) instabilities. The most direct effect of slave boson fluc-
tuations is indeed to generate repulsive interactions between
hybridized electrons. Looking at the LDA+Gutzwiller Fermi
surface of the 100 cut of SmBg, approximately depicted in
Fig. 4(b), nesting is possible at wave vectors (;,77) and (7,0),
(0,m). The Fermi pockets may be small, but the bulk collective
mode is found [36] to have the lowest energy and exceedingly
largest spectral weight at wave vectors (mr,7,7) and (r7,0,0),
which project to the “nesting” wave vectors of the 100 crystal
boundary. Given that our system is in the strong-coupling
limit, it is fairly likely that an SDW instability takes place
in this hybridized regime. The outcome is a ground state that
breaks TR symmetry and thus gaps out the Dirac points of
the surface heavy-fermion metal. Should this happen, it could
be experimentally tested by raising temperature and observing
a restoration of the protected surface metal when the SDW
is thermally destroyed. A harder test would be to look for
lattice translation symmetry breaking on the crystal boundary,
or Goldstone modes associated with the broken spin-rotation
symmetry. Some amount of ferromagnetic polarization could
also occur due to the Rashba spin-orbit coupling, which
introduces a Dzyaloshinskii-Moriya type of coupling between
lattice spins.

Another interesting possibility is a superconducting phase.
This is the two-dimensional analog of a superconducting state
that hides the quantum critical point between magnetic and
heavy-fermion metallic phases of heavy-fermion materials
[70]. The slave boson mediates repulsive interactions between
fermions, but this can still lead to unconventional superconduc-
tivity by having sign changes of the order parameter between
different Fermi pockets. The prominent candidate states in the
Fermi surface from Fig. 4(b) are a d-wave and a sign-changing
s-wave superconductor. The former features opposite signs of
the order parameter on the two symmetry-related X points
(7,0), (0,7) of the Brillouin zone, and requires slave boson
transfers at the “nesting” wave vector (;r, 7). The latter features
the same order parameter sign on the two X points, and
the opposite sign on the I' point, being stimulated by the
slave bosons with (77,0), (0,77) wave vectors. All of these
“singlet” superconducting states effectively screen the charge
of fermionic quasiparticles, but allow spin to be transported
by the surviving helical Dirac metal. The promising conditions
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for superconductivity are indeed found near the SDW quantum
critical point, where the slave boson disguised as a collective
paramagnon mode is about to condense.

The phases mentioned so far are competing orders that
arise from instabilities of the Dirac Fermi liquid on the
Kondo TT surface. Making more concrete predictions about the
phase diagram requires knowing the values of the microscopic
parameters in the model, and the application of methods
that go beyond the scope of this paper. A powerful method
capable of mapping out the phase diagram of instabilities
in this regime is functional renormalization group. Precise
shapes and sizes of the Fermi pockets, as well as the collective
mode dispersion details, play an important role in selecting the
winning instability. The only thing we can reliably say is that
different instabilities may occur on different cuts or sides of
the Kondo TI crystal. It may be even feasible to stimulate one
instability over another by interface engineering.

As alast topic in this section, we briefly mention the possi-
bility of obtaining exotic boundary states featuring electron
fractionalization. Strong interactions in a two-dimensional
geometry can localize particles into a Mott insulator at a
lattice-commensurate density of p/q particles per site [124].
The simplest kind of such an insulator is a charge density
wave (CDW). However, no spinful particle can experience
backscattering on the surface of a TT unless the TR symmetry is
broken. A charge Mott insulator can exist either if some neutral
spinful fermions remain delocalized to form Dirac points, or if
the TR symmetry is spontaneously broken (exceptions to the
latter have been recently identified [125-128]). The former
is an exotic “algebraic” spin liquid state with spin-charge
separation, in which the TI surface is metallic for spin and
not for charge.

Fractionalized states of matter are captured in our formal-
ism by a slave boson field that takes the full charge of an
f electron and leaves behind a neutral spinon as the slave
fermion excitation. The process of fractionalization cannot
be described perturbatively, but could be encouraged by the
vibrant spin dynamics of dense and strongly interacting f
electrons, especially through the quantum motion of Kondo
singlets which frustrates the spatial spin correlations. Delocal-
ized fractionalized f electrons would allow the slave boson to
condense and form an exotic fractionalized superconducting
state [123]. Alternatively, localized f electrons could suppress
the condensation of slave bosons and instead produce a spin
liquid ground state.

2. Localized moment regime

This section focuses on the Kondo TI boundary regime
with large band bending shown in Fig. 5(d). The f electrons
are localized by Coulomb interactions and their orbital is
essentially half filled. A three-dimensional heavy-fermion
metal in this regime could be expected to exhibit an anti-
ferromagnetic Néel order of f electrons and a conduction
sea of d electrons with a small Fermi surface. But, in two
dimensions there are fewer lattice bonds per site for spatial spin
correlations, and Kondo singlets are more competitive. Some
f electron moments can be consumed by Kondo singlets, and
some involved in establishing correlations across separated
lattice sites. Kondo singlets act as dopants that destabilize
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the prospects of f electrons to form long-range magnetic or
valence-bond solid (VBS) orders. The resulting spin dynamics
depends on how well the f electron spins are screened via the
Kondo mechanism.

One way of exploring the dynamics in this regime is
provided by the well-known Kondo lattice model:

J
H=- :trr,djdr,+7’( > S dicd,+ Y J.SS, + -
T r

rr’

This is a low-energy effective theory of localized moments S
coupled to the conduction d electrons.

If the short-range RKKY exchange J,, is sufficiently larger
than the Kondo exchange Jk, then the local moments prefer
to establish spatial correlations among themselves rather than
participate in Kondo singlets. Antiferromagnetic or any long-
range order of local moments that breaks the TR symmetry
will gap out the Dirac points of conduction electrons on
the TI surface, and potentially but not necessarily produce
an insulating surface. If the TR symmetry is not broken,
then the metallic state surely survives on the TI boundary
with a protected odd number of Dirac points. The charge
transport properties of the surface are qualitatively the same
as in uncorrelated TIs, except that the Fermi surface (and the
structure of Dirac points) may be reconstructed due to the
order of local moments. The local moments can themselves
add charge-neutral low-energy excitations to the spectrum.

At least in SmBg, the d-f hybridization energy scale V
seems to be considerably larger than the bandwidth ¢, of the f
orbitals. Then, we may naively expect the opposite Jx > Jyp
limit. The local f moments are screened via Kondo singlets
whenever possible in such circumstances. Overscreening
occurs if the number of local moments is smaller than the
number of d electrons. Since the overscreened moments are
entirely consumed by Kondo singlets, their spatial correlations
are short-ranged, featureless, and accompanied by gapped
excitations (broken singlets), while the surplus d electrons can
conduct currents on the Kondo TI surface as an uncorrelated
metal. The opposite and realistic underscreened limit opens
new possibilities, as sufficiently many local f moments may
be left alone to strengthen correlations among themselves [96].
The possibilities for correlations range from magnetic orders
that gap out the Dirac points to metallic VBS and spin liquid
states.

A spin liquid of localized f electrons is a real possibility
in the underscreened Kondo singlet regime. Every lattice site
temporarily caught in the state of having exactly one d electron
will neutralize one local moment through a Kondo singlet.
This becomes a mobile “magnetic hole” in the f orbital which
frustrates the two-dimensional spatial correlations of the local
moments. If the outcome of frustration is a spin liquid, we
can most easily describe it within the TI-surface slave boson
formalism (18) based on the Anderson model (16). The spin
liquid is captured by a noncondensed charged slave boson
field that separates the charge of physical f electrons from
the neutral slave fermions . The slave boson energy gap is
the charge excitation gap of localized f electrons. The slave
fermions are localized via the slave-boson constraint, but their
gapped hole excitations are mobile and represent spinons. We
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will now work out the feedback of this spin liquid dynamics
on the charge transport properties of conduction electrons.

The average number fj fr < 1of f electrons on a surface
lattice site is close to but smaller than one in the localized
moment regime. It cannot exceed 1 in our effective Anderson
model (16) when U — oo, but can be reduced below 1 by
virtual transfers of f electrons to the d orbital due to the
hybridization term V. Once we switch to the slave boson

Hamiltonian (18), we can use the exact local constraint
Vi, +blb, =1 @1

and the commutator [br,bI] = 1 to express the number of f
electrons on a site:

f e = beblyly, = A+ blb)(1 = blb) =1 - (b]b,)*.

The number of slave bosons bibr on every site is close to
zero, but still finite. Without the hybridization between the d
and f orbitals, there would be no Kondo singlets and strictly
no slave bosons on any site in the ground state. However,
since the hybridization term does not conserve the slave boson
number while conserving charge, we generally have (blbr) >
0 without necessarily having a superconducting condensate of
slave bosons. The system remains an insulator much like the
QED vacuum despite its virtual electron-positron fluctuations.

We begin by translating the Hamiltonian (18) to an
imaginary-time path integral with the action

Ssp = /dTI:E <d1’l‘8—rd1’l‘+btr‘¢,l’l‘a_rbfrl/ffr)
r

+ HSb(drr’d:r; wrr’w:r; brr’b:r)] : (22)
Here, d,,.d}., ...V}, are Grassmann numbers, b_ b  are

complex numbers, and Hg,(- - - ) is the Hamiltonian (18) with
all operators replaced by their corresponding Grassmann or
complex fields. We may implement the constraint (21) either
directly in the path-integral measure or through a Lagrange
multiplier, the details of which are not important in the
following discussion.

Since the fields b, live in a Mott-like insulating state at
the sample surface, their local amplitude fluctuations |b,,| are
suppressed as high-energy excitations. However, their phase
6. fluctuations in

ber = |byele® (23)

are hardly restricted. Of special interest to us will be the
vortex configurations of 6., which proliferate in our two-
dimensional state of uncondensed bosons. A certain energy
cost is associated with a vortex core because the slave boson
density must be depleted there. This disturbance of the optimal
(bibr) > 0 represents a local expulsion of the Kondo singlets
from the vortex core region.
The Hamiltonian Hy, part of the action (22) reads

Hyy =Y [dfe K dyp + b3 Ve Yoy + Hee,

rr’

b b K U] (24)
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We collected all details of the SU(2) gauged hopping and
intersurface tunneling of electrons into the K¢ and K/
symbols. We are free to carry out a gauge transformation

e (25)

diy — Jfreiien,
by a change of variables in the path integral. Slave fermions are
not affected because they are neutral. Note that electrons and
slave bosons carry opposite charges with respect to the physical
electromagnetic gauge field, which is also transformed but not
shown in this discussion due to being less important. Our
choice of the gauge transformation will depend on the field
configuration in a way that makes the new slave boson field
purely real and positive, b,y = |b;r| € R. Then, after dropping
the tilde symbols, the Hamiltonian written in terms of the new
d and b fields becomes

i(0,,—0O d
Hy =Y e[ dr Ko dyy + by dfy Ve Y

rr’

FHe + |bybo | VKL ] (26)
Its form is reminiscent of a lattice gauge theory if we interpret
Arr,r/r’ = Or — Oy 27

as a compact U(1) gauge field that lives on the lattice bonds.
Even though A+ looks like a pure gauge, it is impossible
to trivially absorb it into matter fields when we keep the
slave boson |b;y| strictly real, and the slave fermions are
neutral. Consequently, A, -+ must have some physical effect.
It serves merely as a convenient way to separate the abundant
fluctuations of the slave boson phase 6;, from the high-energy
amplitude fluctuations |b,,-| that we want to integrate out.

In order to make progress, we ought to temporarily
discretize the imaginary time t — At X integer. This merely
corresponds to identifying a high-energy cutoff A ~ (A7)~
The above Hamiltonian introduces the gauge field on the
spatial links, while the discretized time derivative terms in
the action (22) introduce the gauge field on the temporal links
of the space-time lattice.

We are now ready to integrate out the gapped fluctuations of
the slave fermions ¥ and the slave boson amplitude ||, which
are correlated by the local constraint (21). Instead of doing it
in detail, we rely on the gauge symmetry to restrict the form
of the resulting effective action on the space-time lattice sites
i = (z,r). Our first naive guess is

® = Zd;*(Ar —iAji+ad)d; + ZeiAi"jd;kK’?fdf'
p (i)

—-K Z cos(curl(A; ;)), (28)
O

which keeps treating the gauge field as a compact one. The
discrete time derivative means A.d;r = dryarr — dor, and
the symbol (i, j) indicates the summation over the nearest-
neighbor lattice sites at the same time 7. The last Maxwell
summation runs over all lattice plaquettes and takes the lattice
curls of the gauge field on them: curl(4; ;) is defined as the
sum of A; ; on the four plaquette bonds oriented in a circular
clockwise sense.

It turns out, however, that our guess (28) is too naive because
it microscopically treats (27) as a pure gauge. It follows from
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6=0,2n =
e,
O0=2n-¢ 32n n

FIG. 7. (Color online) Illustration of the two interpretations of a
superfluid phase in the vicinity of a vortex. The thick red loop is a
path on the lattice on which the phase factor ¢’® gradually rotates by
27 in the complex plane. The phase is single-valued on all lattice
sites, but the angle 0 can be interpreted either as having a jump across
a semi-infinite string that emanates from the singularity, or as being
smooth but not single-valued far away from the singularity.

(27) that A; ; must have a quantized 277 flux on every lattice
plaquette, so that the compact Maxwell term is just a constant.
The remaining appearances of A; ; can be completely removed
by a gauge transformation, and we end up with a theory in
which the slave boson phase fluctuations have absolutely no
effect.

Still, the overall form of the effective action is restricted
by the gauge symmetry. We will now argue that the theory
we seek is a noncompact gauge theory. We have no means
to mathematically derive this result, so the argument will be
phenomenological. Consider a quantized slave boson vortex on
the lattice. We can interpret the corresponding 6; configuration
in two different ways. In the first interpretation, 6; is considered
single-valued, so that the gauge field A; ; is a pure gauge.
Alternatively, the phase 6; can be interpreted as a gradually
varying quantity on the lattice, at the expense of being defined
up to an additive value 27 n, n € Z. Then, the gauge field A, ;
is allowed to have a nonzero quantized flux

C
Oc= Y Aj=2tn, nel (29)

(i=j)

through any oriented closed loop C on the space-time lattice.
The two interpretations are absolutely equivalent on the
lattice because the lattice derivatives (including the discretized
time derivative) are always applied on ¢’® which is insensitive
to the changes of 6 by 2. This is illustrated in Fig. 7. However,
we will have to adopt the second interpretation when construct-
ing the continuum limit. The lattice gradients of 6; (i.e., A; ;)
must be small for taking the continuum limit, even far away
from a vortex core where the first interpretation would make 6;
jump by almost 2 on a single lattice link somewhere on the
loop C that encloses the singularity. In other words, we must
wind 6; and give a finite flux to A; ; on the loops C around a vor-
tex in order to consistently describe it in the continuum limit.

The appropriate continuum limit effective action restricted
by the gauge symmetry can be formally constructed from
(28) by keeping only the lowest order terms in the gradient

PHYSICAL REVIEW B 90, 235107 (2014)

expansion:
Ssebff = /df d*r{d*(d, —iA)d + ("9, A;)

+[(V = iA)T*K[(V — iA)d]}. (30)

We used the convenient Einstein notation for the summation
over repeated indices u € {r,x,y} and the Levi-Civita symbol
" to represent the Maxwell term K, now a noncompact
2+1D curl in the continuum space-time. Strictly speaking,
the continuum gauge field A, = (A;,A) inherits perfectly
quantized flux lines (now infinitely thin line singularities) from
its definition (27). However, these singularities are mobile and
proliferate in the spin liquid state, so a simple coarse graining
(integrating out some high-energy fluctuations) relaxes this
constraint and captures flux diffusion. Even though we did
not microscopically derive the noncompact Maxwell term,
there is a clear physical justification for it. The rapid singular
variations of 6 near a vortex core cannot be accurately
described by the continuum limit in which we keep only the
lowest-order gradients. Instead of introducing higher orders
in the gradient expansion, we phenomenologically associate
some extra energy cost O with the regions where we have a
finite vortex density (¢#"*d,A;)? # 0. This takes into account
the energy cost of vortex cores.

The effective theory (30) describes a 2D Fermi surface of
“helical” d electrons coupled to a 2D fluctuating U(1) gauge
field. It has an additional “photon” degree of freedom to the d
electrons. This is a collective mode of mobile Kondo singlets,
made possible by the “magnetic hole” doping of the f orbitals.
The d electrons cannot screen the magnetic fields of A, so
the “photon” mode is gapless. A yet more complete theory
includes the coupling of the two-dimensional d electrons to
the physical three-dimensional electromagnetic field.

The Rashba spin-orbit coupling locks the spin of d electrons
to their momentum and leaves a single spin mode at low
energies. A theory equivalent to (30) but with two degenerate
spin modes of electrons coupled to a 2D U(1) gauge field
was extensively studied in the context of v = % quantum
Hall states. A two-component 2D metal in the presence
of gauge fields is known to be only marginally different
from a standard Fermi liquid [129-134]. Gauge invariance
protects the conventional Fermi-liquid-like behavior of the
most usually observed equilibrium and transport properties
of this system, but various thermodynamic and transport
properties exhibit subleading deviations from the Fermi liquid
behavior [131].

An open question here is whether our one-component
“helical” metal coupled to a gauge field has any different
behavior from the two-component gauged metal. One obvious
difference is that large momentum transfers across the Fermi
surface by gauge bosons are suppressed in the helical metal
in comparison to those of the ordinary metal. Namely, two-
dimensional photons have only one state of polarization and
thus cannot transfer spin. The helical spin-momentum locking
implies that a large momentum transfer across the Fermi
surface must be accompanied by a spin flip, which cannot
be generated by a 2D photon. Such momentum transfers
in ordinary metals are not a problem because they need
not be accompanied by spin flips. Therefore, the two types
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of non-Fermi liquids may have different charge and spin
responses to perturbations with spatial periodicity of the order
of k7. This is in addition to every aspect of the helical response
caused by the nontrivial topology.

IV. KONDO TI QUANTUM WELLS

Quantum wells made from Kondo TIs are a potentially
interesting and tunable platform for creating novel strongly
correlated states of matter. The Rashba spin-orbit coupling is
strong enough to make lattice details important for dynamics;
i.e., the amount of flux per plaquette is not small (equivalent
to about 1000 T magnetic fields in bismuth-based TIs).

Here we will focus on the Kondo TIQWs within the
hybridized regime, which has a rich phenomenology. Two
opposite surfaces of the Kondo TI contribute their Dirac
quasiparticle bands to the low-energy spectrum, but all Dirac
points are gapped by the intersurface tunneling. We will
assume that the ensuing band gap in the Dirac spectrum
is sufficiently smaller than the band gap of the bulk 3D
crystal. This two-dimensional insulator of hybridized d and
f electrons is still strongly affected by the Rashba spin-orbit
coupling and Coulomb interactions. The slave boson model of
this system is given by (18), where A, = Ag + - - - acquires a
constant tunneling term A in each orbital. An improved model
can also take into account the “extended range” Coulomb
interactions between (at least f) electrons on the opposite
TIQW surfaces.

On one hand, the existence of a gap in the “surface”
spectrum can hinder some surface instabilities that were
discussed in Sec. III C 1. On the other hand, a quantum well
can be embedded in a gated heterostructure device that allows
controlling the chemical potential placement within its band
structure. The chemical potential can be raised or lowered
toward or into a band by tuning the gate voltage. This is a
practical way to control the phases and drive phase transitions
in a Kondo lattice material.

The possible instabilities of a Kondo TIQW are a superset of
those anticipated on a single Kondo TI surface. The Coulomb
repulsion

§ : § § : T T
Urr’ car,rcat,rca’r’,rca’r/,r
Tt/ oo’ T

d*k  d*k’ dzq iimn t
= Z uim et ol e c
(271’)2 (27‘[)2 (27.[)2 kK,q"i,k" j,K“mK+q nk—q

ijmn

(€29

between local electrons of spin o and surface index t has finite
overlaps Uy, with almost generic TR-respecting scattering
processes expressed in terms of the eigenstate field operators
cix of the Kondo TIQW. The eigenstate label i is a two-
state index at any fixed wave vector and energy; it morphs
into the surface index at high energies away from the gapped
Dirac points while spin remains locked to momentum. The
conduction and valence bands of gapped Dirac quasiparticles
generally have multiple valleys of low-energy excitations (e.g.,
surrounding the I' and X points in SmBg quantum wells).
The Coulomb scattering can create low-energy particle-hole
pairs across the band gap and optionally between different
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valleys. It takes an arbitrary weak amount of interaction to
create an exciton bound state in two dimensions, which lives
as a coherent gapped excitation at an energy inside the band
gap [135]. An instability at which such a collective mode
condenses requires a finite interaction strength.

The intrasurface and intersurface Coulomb interactions
Uiy =U__, Uy_ = U_; respectively do not depend on the
spins of interacting electrons. Furthermore, electron pairs can
antisymmetrize their wave functions through the surface index
instead of spin, and form small spin triplets confined by the
quantum well potential. Neither the spin nor the surface index
are good quantum numbers in the conduction and valence
band valleys. Therefore, the scattering processes in (31) will
explore exciton pairing in essentially all channels. The kinds
of instabilities that were anticipated on a single surface of a TI
are still possible, especially if the chemical potential is raised
into the conduction or valence band to recreate Fermi pockets.
Let us refer to these as “singlet” instabilities, even though
spin is not conserved. New “triplet” instabilities specific to
quantum wells may preempt the “singlet” ones in insulating
ground states.

A triplet exciton or Cooper pair is a spinful bosonic particle
which necessarily experiences the strong Rashba spin-orbit
coupling of the TI boundary. This can be formally understood
from the gauge principle, since the Rashba spin-orbit coupling
effectively introduces a background SU(2) gauge field to any
particle with an internal degree of freedom that transforms
nontrivially under TR [77]. Therefore, triplet excitons and
Cooper pairs exhibit spin-momentum locking. They acquire a
mode whose energy decreases when its momentum increases
(the Rashba spin-orbit coupling can be viewed as a spin-
dependent Zeeman effect). Even when this triplet mode is
costly or unstable at small momenta, a large-momentum triplet
(e.g., near the cutoff momentum scale) can be a low-energy
excitation and even condense.

If this scenario occurs in the Cooper channel, a supercon-
ducting order parameter that lowers the ground state energy
must have different signs on the valleys between which elec-
tron pairs are scattered (given that interactions are repulsive).
Pair scattering of the Cooper type occurs within a single band,
and becomes stronger when the chemical potential approaches
or enters that band. Since the band quantum numbers are
mixtures of spin and surface indices, triplet pairing has a finite
amplitude in the general scattering process and then becomes
dynamically enhanced by the Rashba spin-orbit coupling. An
example of the ensuing triplet superconductivity in a TIQW
can be found in Ref. [78].

The hallmark of triplet instabilities is condensation at large
momenta that yields unusual forms of translation symmetry
breaking. This is most appropriately studied on a lattice. As
an illustration, consider a simple interacting Hamiltonian that
captures the above physics:

How = —t Z [ci (e_”ZA'«f’ + Arr,t")cr, + H.C.]

(rr’)
—u Z cle, +U Z(clcr 2, (32)
r r

This is not directly a model of a Kondo TIQW, but describes a
tight-binding TIQW of electrons in two surface states, which
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are coupled to the static Rashba SU(2) gauge field (13).
The notation is inherited from (14). Preliminary numerical
mean-field calculations of the order parameter have been
carried out in the context of triplet intersurface Cooper pairing,
U < 0. Order parameters with different spatial structures were
treated as variational states aimed at minimizing the ground
state energy of the corresponding Bogoliubov—de Gennes
mean-field Hamiltonian. This minimization has revealed novel
TR-invariant lattices of SU(2) spin-current vortices, which
are the lattice version of the continuum limit vortex lattices
discussed in Ref. [136]. Vortex arrays appear to be the lowest
energy configurations in some parameter regimes, despite the
aggressive search for alternative orders. Figure 8 shows the
structure of a typical SU(2) vortex lattice.

The above model is a simplistic rendition of the complicated
hybridized 2D band structure in Kondo TIQWs. However, it
is designed to qualitatively capture the competition between
interactions and Rashba spin-orbit coupling for the influence
on strongly correlated phases in Kondo TIQWs. The prospect
of having stable vortex lattices somewhere in the phase
diagram is especially exciting because their quantum melting
is expected to produce incompressible quantum liquids with
likely non-Abelian fractional excitations [80] when the number
of particles per vortex is small. It has been argued through a
quantum Lindeman criterion [77,137] that this first-order tran-
sition preempts any second-order transition out of the ordered
phase, and therefore is a generic transition that can be driven by
adjusting the gate voltage in a suitable heterostructure. What
distinguishes the ensuing novel fractional states from the spin
liquids mentioned before is their “bosonic” nature, an even
rather than odd number of flux quanta attached to a particle. By
identifying the structure of vortices in a parent vortex lattice,
one can determine the type of quasiparticle fractional statistics
in the vortex liquid.

V. CONCLUSIONS

In conclusion, we constructed microscopic slave boson
models of the protected Kondo TI boundaries, and surveyed
a variety of strong correlation phenomena that they exhibit.
The slave boson model phenomenologically predicts the
existence of several correlated and topologically enhanced
phases, the analogs of which are found in the phase dia-
gram of heavy-fermion metals. In addition to the quantum
critical point associated with a magnetic instability of the
surface metal, strong Coulomb interactions and Kondo singlet
fluctuations in the two-dimensional geometry can localize
electrons in the f orbitals and stabilize exotic phases such
as algebraic spin liquids (charge-insulating, but spin-metallic
TI crystal surface). Depending on the interface conditions, the
metallic boundary of a Kondo TI can alternatively feature
light electrons dominated by d orbitals, whose dynamics
exhibits obscure non-Fermi liquid transport properties. Kondo
TI quantum wells can show even richer physics involving
spin-triplet fluctuations, but their quasiparticle excitations are
gapped. The condensation of spin triplets can produce unusual
vortex lattice states. Quantum wells are tunable via the gate
voltage in heterostructure devices, and a driven quantum
melting of a vortex lattice can yield a novel fractional TI state
in the quantum well.
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FIG. 8. (Color online) The S =1 component n; of the triplet
superconducting order parameter obtained by numerical mean-field
minimization in the model (32) with A =1¢, a = 1.4, and attrac-
tive interactions. (a) The magnitude |74| in the best conventional
condensate, expressed in arbitrary units. (b) The magnitude and (c)
phase density plot of 1, in the competing TR-invariant vortex lattice
state with the same energy. Note that 1, is defined only on discrete
lattice sites i = (x,y), where x,y are integers. All other values (at real
x,y) are obtained by linear interpolation. Similar condensed states
of excitons are expected in the equivalent model with short-range
repulsive interactions
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