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Role of impact ionization in the thermalization of photoexcited Mott insulators
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We study the influence of the pulse energy and fluence on the thermalization of photodoped Mott insulators. If
the Mott gap is smaller than the width of the Hubbard bands, the kinetic energy of individual carriers can be large
enough to produce additional doublon-hole pairs via a process analogous to impact ionization. The thermalization
dynamics, which involves an adjustment of the doublon and hole densities, thus changes as a function of the
energy of the photo-doped carriers and exhibits two time scales: a fast relaxation related to the impact ionization
of high-energy carriers and a slower time scale associated with higher-order scattering processes. The slow
dynamics depends more strongly on the gap size and the photodoping concentration.
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I. INTRODUCTION

The photodoping of a Mott insulator provides a relatively
simple way to induce and study a nonequilibrium phase
transition. If a laser pulse with a frequency higher than
the Mott gap is applied, doublon-hole pairs are produced,
and these mobile carriers lead to a metallic response of the
photodoped Mott insulator [1–3]. The changes in the optical
conductivity associated with this metallization have been
studied experimentally using time-resolved spectroscopy. In
the pioneering work by Iwai and collaborators on a Ni-chain
compound [1], a Drude peak in the conductivity was measured
promptly after the photodoping pulse, and the metallic state
was found to last for a few picoseconds. Alternatively,
photoemission spectroscopy can be employed as a probe of
the metallized Mott insulator, as shown for 1T − TaS2 [4,5].

One can distinguish two mechanisms which play a role
in the relaxation of photodoped carriers: On the one hand,
electron-electron scattering can lead to a thermalization of
the electronic subsystem at a hot “electron temperature,” and
on the other hand, carriers can dissipate their initially high
kinetic energy through scattering with “external” degrees
of freedom such as spins or phonons. A large body of
theoretical work on photodoped Mott insulators has focused
on the latter relaxation processes involving scattering with
spins in an antiferromagnetic background [6–9] or coupling
to phonons [10–12]. In this paper we assume that electron-
electron scattering is the fast mechanism, so that we can
study the thermalization of isolated electrons and neglect
the aforementioned energy loss processes, which affect the
dynamics only on longer times; limits of this assumption are
discussed in more detail below. Generally, this assumption is
valid if the electron-phonon coupling strength is weak and if
there are no spin correlations, e.g., due to a high temperature
or large fluence.

In metals, rapid thermalization of the electronic system
is typically observed and underlies the assumption that a
quasiequilibrium picture or two-temperature model [13] can
be used for describing the dynamics already at very short times
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after an excitation. In an insulator, the thermalization and
relaxation involve an adjustment in the number of electron-
hole pairs, which can be a slow process in the presence of
a large gap. It was found that in a purely electronic model
(a paramagnetic Hubbard model with on-site repulsion U ),
the thermalization time depends exponentially on the gap size
and that even the relaxation of the distribution of photodoped
carriers within the Hubbard bands can be extremely slow [14].
The explanation for this is relatively simple. If the energy
U which is needed for the production of a single doublon-
hole pair is substantially higher than the typical kinetic
energy of a single doublon or hole, complicated multiparticle
scattering processes are needed for thermalization—hence the
exponential scaling with U [15]. For a similar reason, the
doublon-hole recombination via emission of magnons [16] or
phonons [17] becomes slow when the gap is large.

If the kinetic energy of the charge carrier (doublon or hole)
is higher than the size of the Mott gap, it is energetically
allowed to create an additional doublon-hole pair via two-
particle scattering. We call such processes “impact ionization,”
in analogy to similar processes in semiconductors [18] and
atoms [19]. Since a high excess kinetic energy is needed, one
may anticipate a strong dependence of the relaxation dynamics
on the pulse energy (for a fixed interaction or gap size). In
particular, we may encounter a situation where photodoped
doublons inserted at the upper edge of the upper Hubbard
band trigger a rapid increase in the number of charge carriers
through impact ionization, while for doublons inserted at the
lower band edge, the kinetic energy is not sufficient for impact
ionization, so that the doublon-hole production depends on
rare multiparticle scattering events.

Since impact ionization processes have the potential to
rapidly enhance the number of mobile carriers in the pho-
toinduced metal, an understanding of this physics is crucial
for possible applications of photoinduced metal-insulator
transitions in ultrafast switches or for the efficient operation of
photovoltaic devices. For example, impact ionization allows
us to create multiple doublon-hole pairs per photon and hence
to overcome the Schockley-Queisser limit for the efficiency of
solar cells [20,21].

In this paper we focus on a paramagnetic Mott-Hubbard
insulator with a relatively small gap and study in more
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detail the electronic thermalization processes, with the goal
of disentangling the fast impact ionization channel from
doublon-doublon scattering and slower multiparticle scat-
tering processes. As we will show, impact ionization can
be identified experimentally by characteristic signatures in
the time-resolved photoemission spectrum, in particular, its
energy and fluence dependence: (i) Impact ionization can
increase the number of doublons on the 10-fs time scale and,
thus, result in a rapid spectral weight increase of up to a
factor of 3 above the Fermi level. (ii) While the photoemission
spectral weight at high energies decreases as a function of
time, it increases more than proportionally at energies which
are lower by at least the size of the gap. (iii) The frequency of
the pump pulse needs to be higher than twice the gap; below
this threshold, impact ionization is not possible. (iv) Since
impact ionization involves only a single doublon or hole this
process does not depend strongly on the density of photodoped
carriers (or the fluence), while doublon-doublon and higher
order scattering processes will become more frequent if the
density of photoinduced carriers increases.

II. MODEL AND METHOD

We investigate and quantify the effect of impact ionization
by considering a Hubbard model,

H =
∑
ij,σ

vij c
†
iσ cjσ + U

∑
i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (1)

with on-site interaction U comparable to the bandwidth. The
operators ciσ create an electron at site i with spin σ , and
the hopping amplitude is vij . The model is solved on an
infinite-dimensional hypercubic lattice using nonequilibrium
dynamical mean-field theory (DMFT) [22,23] with a strong-
coupling perturbative impurity solver (noncrossing approx-
imation NCA) [24]. This lattice has a Gaussian density of
states, ρ(ε) = 1/(

√
πW ) exp(−ε2/W 2), and we use the width

W as our unit of energy. To simulate the photo-doping pulse,
we apply a few-cycle electric field pulse of the form

E(t) = E0e
−(t−tp)2/σ 2

sin (�(t − tp)), (2)

with tp = 6 and σ 2 = 6 in the body-diagonal of the lattice.
We use a gauge without a scalar potential, so that the field
is given by the time derivative of the vector potential A,
E(t) = −∂tA(t). Using the Peierls substitution, the field then
enters the Hamiltonian via a time-dependent shift of the
dispersion, εk → εk−A(t), where εk is the Fourier transform of
the hopping matrix. For details on our implementation of the
nonequilibrium DMFT equations, the treatment of the electric
field, and the noncrossing approximation impurity solver, we
refer to Refs. [14] and [23]. The double occupation at time
t , d(t), is a local observable which can be obtained directly
from the solution of the effective impurity model. Since we use
a strong-coupling impurity solver, d(t) = G<

|↑↓〉(t,t) is simply
the occupation of the pseudoparticle state corresponding to
doubly occupied sites [24]. Because d is nonzero already in the
initial Mott state due to virtual charge fluctuations, the number
of photoexcited doublons at a later time t is approximately
given by the difference d(t) − d(0). This number can also be

obtained spectroscopically, by integrating the photoemission
spectrum over the upper Hubbard band (see below).

The relaxation dynamics of photodoped carriers depends
crucially on whether or not the Mott insulator is antiferro-
magnetically ordered [7,8,25]. In the present study, we restrict
the calculations to paramagnetic photodoped Mott insulators
at elevated temperatures. The temperature considered in this
paper, i.e., T = 1/β = 1/5, is well above the highest DMFT
Néel temperature, TN = 1/7 [26]. Since DMFT overestimates
TN , we can be certain that also paramagnons are not important.
This is also supported by recent nonequilibrium cluster DMFT
calculations [8], which, for the two-dimensional Hubbard
model, showed that short-ranged spin correlations have an
important effect on the relaxation dynamics only below T =
(1/5) 4t∗ [27]. (For higher-dimensional lattices, the effect of
short-range correlations in the paramagnetic phase can be
expected to be even smaller.)

III. RESULTS

A. Pulse-frequency dependence

For the purpose of orientation we first plot the equilibrium
spectra for different values of U and inverse temperature
β = 5 (Fig. 1). The gap opens at U ≈ 2.5 and then grows
approximately linearly with U . In the insulating phase, the
shape of the Hubbard bands is almost independent of U ,
and they have a width of about 3. Since an impact ionization
process involves the scattering of a doublon at the upper edge of
the upper band to the lower edge and a simultaneous doublon-
hole excitation, it already becomes clear from the equilibrium
spectra that we can only expect these processes to be relevant
for interactions U � 4. For larger U values, the energy
associated with scattering between states within the band
is not enough to excite electrons across the gap. In the
following we thus focus on the interaction range 2.5 � U � 4.

For U = 2.5 and 3.5, the time evolution of the photodoped
doublon density D after pulses with frequencies in the
range 1.5π/2 � � � 3.5π/2 is plotted in the top panels in
Fig. 2. Here and in the following, we examine the change
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FIG. 1. (Color online) Equilibrium spectral functions of the Hub-
bard model for β = 5 and indicated values of U as calculated by
DMFT (with NCA impurity solver).

235102-2



ROLE OF IMPACT IONIZATION IN THE . . . PHYSICAL REVIEW B 90, 235102 (2014)

0

1

2

 0  10  20  30  40  50  60

D
(t

)/
D

(t
=

12
)

t

U=2.5

Ω=3π/2
Ω=2.5π/2

Ω=2π/2
Ω=1.5π/2

0

1

2

 0  10  20  30  40  50  60
D

(t
)/

D
(t

=
12

)
t

U=3.5

Ω=3.5π/2
Ω=3π/2

Ω=2.5π/2
Ω=2π/2

 0

 50

 100

 150

 200

 250

 2  2.5  3  3.5  4

re
la

xa
tio

n 
tim

e

Ω/(π/2)

U=4
U=3.5

U=3
U=2.5

U=2

FIG. 2. (Color online) Relaxation after pulse excitations at differ-
ent frequencies at an initial inverse temperature β = 5. The amplitude
of the pulses is adjusted such that the number of photodoped doublons
at t = 12 (shortly after the pulse) is 0.01. Top: Time evolution of the
normalized doublon density and expected thermal values (horizontal
lines) for U = 2.5 and 3.5. Bottom: Relaxation times (c) obtained by
fitting D(t)/D(t = 12) to the function a + b exp(−t/c) in the range
t ∈ [30,60]. The extrapolated long time values (a) from this fit are
indicated by arrows in the upper panels.

of double occupation with time, D(t) = d(t) − d(0). For a
better comparison between different band gaps and pulse
energies, the amplitude E0 of each pulse has been adjusted
such that at t = 12, shortly after the pulse, the density of
photodoped doublons is D(t = 12) = 0.01, and we normalize
the curves by this initial density. We see that during the
thermalization process, the number of doublons increases, i.e.,
excess kinetic energy of the photodoped carriers is transformed
into interaction energy. The thermal reference value can
be calculated by measuring the energy Ej = ∫

dt j (t) · E(t)
injected into the system by the pulse. Here, j = ∑

k nkσ vk is
the current, with nkσ (t) = −iG<

kσ (t,t) and vk(t) = ∂kεk−A(t).
By comparing the total energy after the pulse to that of an
equilibrium system, we can compute the temperature 1/βeff

and double occupancy which the system will reach, assuming
thermalization, in the long-time limit. The thermal values of
the double occupancy are indicated by the dashed horizontal
lines in Fig. 2.

If we fit the doublon curves in the range 30 � t � 60 to a
single exponential a + b exp(−t/c) we obtain the relaxation
times c plotted in the bottom panel in Fig. 2 and the long-time
values a indicated by the arrows in the top panels. For U � 3,

this extrapolated thermalized double occupation a is smaller
than its actual thermal value (dashed line in Fig. 2). Hence,
we can conclude that at least two relaxation mechanisms are
at work. We also note that the relaxation times c are much
faster than previously observed electronic thermalizations of
doublons [14,15] and strongly pulse-energy dependent: with
increasing pulse frequency, the initial growth of the doublon
population becomes faster (see upper right and lower panels
in Fig. 2). All of this suggests that the fast doublon production
is due to impact ionization, which requires that the excess
kinetic energy of the photodoped carriers is higher than the
gap. Once all carriers with a high kinetic energy have decayed,
this contribution disappears and the long-time thermalization
dynamics is controlled by slower multiparticle scattering
processes. In previous studies, this was the only relaxation
mechanism, since the pulse energy was too low (relative to the
gap) for impact ionization.

In order to show direct evidence for impact ionization, we
plot in Fig. 3 time-resolved photoemission spectra [28],

I (ω,t) = −i

∫
dt1dt2S(t1)S(t2)eiω(t1−t2)G<(t + t1,t + t2),

(3)
for a Gaussian probe pulse envelope S(t) =
exp(−t2/2δ2)�(1.5δ − |t |), which we cut off for |t | > 1.5δ.
Choosing δ = 12 and a pump-pulse lasting up to t = 12, this
means that for t > 30, there is no longer any overlap between
the pump and the probe pulse. A pulse width of δ allows
us to measure the relaxation of the system with an energy
resolution of ∼1/δ.

Let us first focus on the left panels in Fig. 3, which show
results for interaction U = 3, pulse amplitude 2, and pump
pulse frequency � = 3.5π/2. This pump pulse inserts the
doublons at the upper edge of the upper Hubbard band. As
the time increases, the spectral weight near the upper band
edge decreases, while the weight near the lower band edge
starts to increase. [Up to a constant offset, the total weight
in the upper Hubbard band reproduces d(t) − d(0) to a high
accuracy.] Since the energy difference between the upper and
the lower band edge is larger than the gap size in this example,
impact ionization processes can be expected to play a role in
the initial relaxation dynamics.

That these processes are indeed, to a large extent, responsi-
ble for the doublon production follows from the lower panel,
which plots the difference between the photoemission spec-
trum at time t and the measurement at time t = 24. The spectral
weight decreases with increasing time for ω � 1.9, with the
fastest decrease measured at energy ωloss = 2.55 (indicated
by an arrow in Fig. 3). From the lower band edge up to
ω � 1.9, we see an increase in spectral weight, with the fastest
doublon production at energy ωgain = 0.85. Impact ionization
can now be identified by analyzing the number of doublons
produced per decay of a high-energy doublon. Let us consider
the process of a high-energy doublon creating a doublon-hole
pair (doublonhigh → doublonlow + doublonlow + holelow) and
its symmetric counterpart (holehigh → holelow + holelow +
doublonlow). The net effect is the production of three low-
energy doublons per decay of a high-energy doublon. There-
fore, if impact ionization were the only relevant process on the
time scale in Fig. 3, we would expect that the increase in the
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FIG. 3. (Color online) Time-resolved photoemission spectra for pulse amplitude 2 and initial inverse temperature β = 5. Left: Results
for U = 3, � = 3.5π/2; initial photodoping concentration D(t = 12) = 0.0056. Right: Results for U = 3.5, � = 4π/2; initial photodoping
concentration D(t = 12) = 0.0021. Colored curves in the upper panels show the nonequilibrium photoemission spectrum I (ω,t) for indicated
values of t , while dashed black curves plot that of the initial equilibrium state. Solid arrows sketch the energy transfers associated with an
impact ionization process: left-pointing arrow—kinetic energy loss of a high-energy doublon; right-pointing arrow—excitation of an electron
across the gap. Bottom: Time-dependent change in the photoemission spectrum. The (red) arrows indicate the energies ωgain = 0.85 and
ωloss = 2.55 (U = 3; left) and ωgain = 1.05 and ωloss = 3.1 (U = 3.5; right). Shaded (red) areas correspond to the increase (decrease) in
low-energy (high-energy) doublons from t = 24 to t = 42. For U = 3, the increase in the number of low-energy doublons is about 2.7 times
as large as the decrease in the number of high-energy doublons, while for U = 3.5, the corresponding factor is about 2.3.

number of low-energy doublons would be three times larger
than the decrease in the number of high-energy doublons.
Computing the integrals over the positive and negative parts
of the curves displayed in the bottom panel [shaded (red)
areas], we find a ratio of 2.7. This indicates that besides the
impact ionization processes, there are also doublon-conserving
scattering processes which contribute to the redistribution of
spectral weight within the Hubbard band. We discuss some
key differences between these two relaxation channels, and
how they affect the time-resolved photoemission spectra, in
the section on the fluence dependence (Sec. III C).

A second observation is that the ratio in the positions
of the maxima of the gain and loss peak is approximately
ωgain/ωloss = 3. A tempting interpretation would be to say
that in an impact ionization process the shift of occupied
spectral weight within the upper Hubbard band from ωloss

to ωgain is associated with a transfer of occupation between
the Hubbard bands from −ωgain to ωgain (scattering process

indicated by arrows in the upper panel). However, in contrast
to a band insulator the first moment of the occupied density
of states in Mott insulators does not equal the total energy,
so that the aforementioned redistribution of occupied weight
would not be energy conserving. Doublon-hole excitations
lead to a reconstruction of the density of states and hence
a redistribution of weight over a larger ω region. Here we
do not analyze this effect in detail but, instead, focus on the
evolution of the spectral weight averaged over large energy
regions (high- and low-energy doublons).

The right-hand panels in Fig. 3 show analogous results for
U = 3.5, pulse amplitude 2, and pulse frequency � = 4π/2.
While the absorption is lower in this case, the parameters are
still compatible with impact ionization. Indeed, as shown in
the lower panel, the change in the spectral function is fastest
near the energies ωgain = 1.05 and ωloss = 3.1, which satisfy
ωgain/ωloss ≈ 3. The low-energy hump is, however, broader,
and the ratio between the shaded (red) areas is only 2.3, which
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suggests a larger role of doublon-doublon and doublon-hole
scattering processes in this case.

B. Two-step thermalization

At least in cases such as the setup discussed above, where
the high-energy and low-energy carriers can be relatively
clearly separated, one can try to reproduce the time evolution
of the doublon population with a simple model that describes
the decay of the high-energy doublons via impact ionization
with a relaxation time γ and the higher order scattering
processes with a different associated thermalization time τ .
We denote the slow processes with the subscript “therm”
and the fast ones with “imp” and split the total doublon
number D into a high-energy and a low-energy population,
D1 and D2, respectively. After thermalization, we assume
that only low-energy doublons are present and denote their
number Dth. The time evolution is then given by the equations
dD1
dt

= ( dD1
dt

)imp and dD2
dt

= ( dD2
dt

)therm + ( dD2
dt

)imp, where we
assume the simple rate equations(

dD1

dt

)
imp

= − 1

γ
D1, (4)

(
dD2

dt

)
imp

= −3

(
dD1

dt

)
imp

, (5)

(
d

dt
D2

)
therm

= 1

τ

(
Dth − D2

)
. (6)

The factor of 3 in Eq. (5) accounts for the production of
three low-energy doublons per decay of a high-energy doublon
(hole) in an impact ionization process, as explained above. The
equations governing the time evolution of the two components
thus read dD1

dt
= − 1

γ
D1,

dD2
dt

= 1
τ

(Dth − D2) + 3
γ
D1, and the

solution for the total doublon population for times t > ts
becomes

Dth − D(t) = 2τ + γ

τ − γ
D1(ts)e

−(t−ts )/γ

+
(

Dth − D(ts) − 2τ + γ

τ − γ
D1(ts)

)
e−(t−ts )/τ .

(7)

Here, ts is some time after the pulse (we choose ts = 15 in the
following analysis), Dth and D(ts) are known, and D1(ts), γ ,
and τ must be obtained by fitting.

For U = 2.5 the relaxation is well described by a single
exponential. This follows already from the data in the top left
panel in Fig. 2, which show that the extrapolated long-time
values from an exponential fit in the range t ∈ [30,60] correctly
predict the thermal doublon density. This is, however, a special
case, since the gap is just opening at U = 2.5. In this situation,
additional doublons can be easily generated and the relaxation
to the expected thermal value is fast.

For U = 3 and 3.5, a single-exponential model is not
appropriate anymore, but fitting of the data with the double-
exponential decay, Eq. (7), works rather well. We summarize
the results of this analysis in Table I. One finds fast relaxation
times of γ ∼ 15 and slow relaxation times of τ ∼ 60 for
U = 3, and fast (slow) relaxation times of approximately
40–50 (250–350) for U = 3.5. The (relative) initial excited

TABLE I. Relaxation times and initial excited populations D1(ts)
extracted from fits to model (7) in the range t ∈ [15,60] (ts = 15).
The doping concentration after the pulse is D(ts) = 0.010 in all cases.

U � Dth − D(ts)
D1(ts )
D(ts ) γ τ

2.5 3π

2 0.00448 0.0088 7.20 18.8

2.5 2.5π

2 0.00421 0.0067 7.75 19.0
2.5 2π

2 0.00348 0.0044 9.35 19.6

3 3.5π

2 0.00684 0.046 13.4 60.3
3 3π

2 0.00674 0.040 15.0 61.4

3 2.5π

2 0.00573 0.026 16.5 64.9

3.5 3.5π

2 0.00789 0.15 44.0 376
3.5 3π

2 0.00669 0.083 48.4 257
(4 4π

2 0.00820 0.19 86.9 5990)

population decreases as the pulse frequency is lowered, in
rough agreement with the time-resolved spectra. At the lowest
pulse frequencies considered, the separation between high-
energy and low-energy populations becomes blurred and our
model fit becomes less meaningful. For U = 4, all relaxation
times become rather long, and it is difficult to obtain reliable
fits. We find γ ≈ 90 and τ ≈ 6000 (with a large uncertainty).

While one should probably not consider more than the first
digit of the relaxation times and initial high-energy populations
in Table I, our model does provide a consistent description
of the doublon relaxation, and the results demonstrate that
impact ionization processes play a significant role in the
interaction range 3 � U � 4. In particular, they lead to a
two-step thermalization with a fast initial doublon production
and an associated transfer of spectral weight from the upper to
the lower band edge, followed by a much slower thermalization
of the relaxed distribution. The slow time scale τ grows
rapidly with increasing U , which is consistent with a previous
analysis based on single-exponential fits [14]. However, also
the relaxation time γ associated with the impact ionization
increases with U , which indicates that these processes become
less likely as the energy cost of producing a doublon-hole pair
increases. Note that the excess kinetic energy of the doublon
has to be higher than the Mott gap, which increases with U . On
the other hand, the kinetic energy of the photodoped carriers is
essentially bounded by the noninteracting bandwidth, which
is independent of U .

An instructive way to illustrate the two-step relaxation is to
plot the doublon production rate (d/dt)D(t) as a function of
the deviation of the doublon density from the thermal value,
Dth − D(t). In this case, our model predicts a crossover from
a small linear slope (corresponding to the slow long-time
thermalization process) to a steeper slope (corresponding to
the impact ionization processes). Indeed, for U � 3, the data
sets for different pulse energies fall roughly onto a single curve
which describes such a crossover (upper panel of Fig. 4). For
the data sets corresponding to the highest pulse frequencies,
we plot the fits to model (7) with dashed lines. These fits
also roughly reproduce the relaxation for the other pulse
frequencies, which shows that the model provides a consistent
description of the thermalization process.

In the lower panel in Fig. 4, we show the time evolution
for U = 3.5, � = 3π

2 , as predicted by the model (parameters
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FIG. 4. (Color online) Top: Doublon production rate plotted as
a function of Dth − D(t) for different pulse energies and indicated
values of U . Fits of model (7) to the curves corresponding to the
highest pulse energy are shown by dashed lines. Bottom: Time
evolution of the normalized doublon population as predicted from
the fit to model (7) for U = 3.5, � = 3.5 π

2 (ts = 15).

from Table I). One can clearly see the two-step relaxation to
the thermal value (dashed line), with a rapid initial increase
in the doublon density, linked to impact ionization, followed
by a much slower thermalization. Even though the relative
high-energy population is small (about 15% at ts = 15),
the impact ionization process contributes about half of the
additional doublons needed for thermalization.

C. Fluence dependence

The impact ionization processes can be distinguished
from the slower thermalization processes also by analyzing
the dependence of the relaxation times on the photodoping
concentration, or fluence. Since impact ionization involves
only a single doublon or hole in the initial state, we expect
a weak fluence dependence of the fast relaxation time γ .
On the other hand, the higher-order scattering processes that
increase the number of doublons involve several doublons
and/or holes. Hence these processes should exhibit a stronger
dependence on the photo-doping concentration, so that we
expect an increase in the slow relaxation time τ as the pulse
amplitude is decreased.

TABLE II. Relaxation times and initial populations extracted
from fits to model (7) in the range t ∈ [15,60] for U = 3, � =
3.5π/2, ts = 15, and the indicated pulse amplitudes.

Amplitude D(ts) Dth βth γ τ

0.25 0.000108 0.000236 4.884 19.9 214
0.5 0.000429 0.000917 4.593 19.5 194
1 0.00167 0.00334 3.879 18.3 147
2 0.00593 0.0105 2.854 15.6 85.0
6 0.0165 0.0252 1.996 11.2 46.1

We analyze the fluence dependence of the relaxation for
U = 3, � = 3.5π/2, and pulse amplitudes ranging from 0.25
to 6. The doping concentrations in the thermalized state and
at t = 15, shortly after the pulse, are given in Table II. For
a low pulse amplitude, the number of photodoped carriers
grows proportionally to the square of the pulse amplitude, as
expected. The thermalization in this regime leads to more than
a doubling of the mobile carriers. For pulse amplitudes � 2,
the number of carriers grows more slowly than the power of
the field pulse, and also the relative increase in the doublon
population associated with thermalization is smaller. To avoid
complications due to strongly nonlinear absorption processes,
we do not consider higher amplitudes.

The top panel in Fig. 5 shows the corresponding time
evolution of the doublon concentration, normalized at t = 15.
The results for amplitudes <2 all collapse onto a single curve.
This shows that in the initial stage of the relaxation, the
doublon-hole production becomes independent of the doping
concentration—a result consistent with a time evolution which
is dominated by impact ionization. To see that the slow
time scale is indeed more strongly dependent on the fluence,
we plot in the lower panel the difference from the thermal
value, Dth − D(t), on a logarithmic scale. To extract the two
relaxation times, γ and τ , we performed fits of the DMFT data
with model (7) and ts = 15. The slow time scale τ increases
from about 50 to about 200 as the pulse amplitude is lowered
from 6 to 0.25, while the fast time scale increases from about 10
to about 20 (Table II). For pulse amplitudes lower than 2, i.e., in
the low doping regime, the fast time scale becomes essentially
independent of the doping concentration, while the slow time
scale shows no sign of saturation and continues to increase with
decreasing doping concentration. [The relative high-energy
population, D1(ts)/D(ts), also increases.] The estimated value
of γ ≈ 20 � τ implies that the initial fast increase in the
doublon population evident in the upper panel in Fig. 5 is due
to impact ionization.

One also finds a fluence dependence in the time-resolved
photoemission spectra. If the bandwidth, gap size, and pump-
pulse energy are compatible with impact ionization, then these
processes dominate the doublon production and redistribution
of spectral weight if the density of carriers is low. As discussed
in Sec. III A, a characteristic signature in the photoemission
spectrum is an increase in spectral weight at an energy ωgain

near the lower band edge and a simultaneous decrease at
an energy ωloss, where about three low-energy doublons are
produced per high-energy doublon. This behavior is clearly
evident for pulses with a low amplitude in Fig. 6. The top
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FIG. 5. (Color online) Time evolution of the doublon concentra-
tion for U = 3, � = 3.5π/2, and different pulse amplitudes. Top:
Normalized doublon population. Bottom: Relaxation of the doublon
concentration to the thermal value. The curves for amplitudes <6 are
multiplied by an arbitrary factor, to enable a better comparison of
the long-time behavior. Dashed lines are fits to model (7) in the time
interval t ∈ [15,60].

panel shows results for U = 3.5 and � = 4π/2. For the blue
curve [D(t = 12) = 0.00015], the area under the positive
hump near the lower band edge is 2.5 times larger than
the area under the negative hump at high energies. For the
green curve [D(t = 12) = 0.0021] it is 2.3 time larger. This
means that for each doublon which disappears at high energy,
more than two doublons are created at low energy, and thus
we conclude that most of the doublons appearing near ωgain

are produced by impact ionization. A similar result is also
displayed in the lower panel (U = 4, � = 4π/2), where for
the lowest pulse amplitude [D(t = 12) = 0.0003] we see two
well-defined peaks with ωgain/ωloss ≈ 3.

With increasing fluence, the low-energy hump broadens,
which means that doublons appear at energies in the middle
of the band, which are no longer compatible with impact
ionization. They are instead the result of scattering processes
between high-energy and low-energy doublons (or holes)
which conserve the number of carriers. The red curve in
the upper panel in Fig. 6, which corresponds to D(t = 12) =
0.0065, and the green curve in the lower panel [D(t = 12) =
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FIG. 6. (Color online) Difference between the time-resolved
photoemission spectra measured at t = 36 and t = 24 for � = 4π/2
and the indicated values of the pulse amplitude. Top: U = 3.5.
Bottom: U = 4. For better comparison, curves have been normalized
such that the maximum difference is 1. For U = 3.5, the doublon
concentration at t = 12 is D = 0.0065, 0.0021, and 0.00015 for
amplitude 5, 2, and 0.5, respectively. For U = 4, the corresponding
numbers are D = 0.014, 0.0043, and 0.00030.

0.0043] show that these processes become relevant already at a
doublon density of ∼0.5%. In these simulations, the area under
the low-energy hump is about a factor of 2 larger than the area
under the negative hump, which indicates that for each impact
ionization process doublonhigh → 3 doublonslow, we have
approximately also one scattering between a high-energy and
a low-energy doublon (or hole), doublonhigh + doublonlow →
2 doublonsintermediate. Because the scattering probability of the
latter process is proportional to the carrier concentration, it
can dominate the redistribution of spectral weight at an even
higher fluence (see the red curve in the bottom panel).

We note that deviations from the universal low-fluence
evolution of the relative doublon concentration also appeared
for doping concentrations higher than ∼0.5% (see Fig. 5 and
Table II). Thus our analysis of the photoemission spectra
supports the interpretation that the universal curve is entirely
controlled by impact ionization, while the slower increase in
the relative doublon population seen for higher fluences is
the result of competing scattering processes which deplete the
high-energy population.

235102-7



PHILIPP WERNER, KARSTEN HELD, AND MARTIN ECKSTEIN PHYSICAL REVIEW B 90, 235102 (2014)

IV. DISCUSSION

In this study, we considered the thermalization dynamics
after a photodoping pulse in a purely electronic model without
magnetic order. For a photoexcited Mott insulator, it is
instructive to distinguish (i) relaxation processes within the
Hubbard band (which keep the number of doublon-hole pairs
fixed) and (ii) relaxation processes across the Mott gap (which
change the number of doublon-hole pairs). The simplest
relaxation process of type (i) is electron-electron scattering,
which here is a doublon-doublon, hole-hole, or doublon-hole
scattering. It keeps the number of doublons and holes fixed
but transfers energy from one doublon (hole) to another. This
process requires a second doublon (or hole), and hence the
corresponding relaxation rate of a carrier will be proportional
to the number of doublons (holes). Such processes redistribute
the energy among the doublons (holes) but do not change the
doublon number.

In order to change the number of doublons, type (ii)
processes are needed. Again, the simplest process is electron-
electron scattering, which in this case corresponds to impact
ionization: a doublon (or hole) excites an electron across the
Mott gap, creating an additional doublon-hole pair. From one
doublon, we obtain two doublons and one hole. If we also
consider the symmetric process for holes, impact ionization
leads to a threefold increase in the number of doublons and
holes. These processes do not involve other doublons (or holes)
but the doublon kinetic energy must exceed the size of the Mott
gap. If the doublon energy is not large enough, only less likely
multiscattering events can thermalize the number of doublons.

We have discussed the characteristic signatures of impact
ionization in situations where the pulse energy is high and the
gap is small, as in Fig. 3: In this situation the photoexcited
high-energy doublons create additional doublon-hole pairs so
that the number of doublons almost triples, and a second
peak develops in the photoemission spectrum at an energy
corresponding to about one-third of the photoexcited high-
energy peak. Our data analysis based on the model, Eqs. (4)–
(6), assumes that the high-energy doublon population D1

decays only via impact ionization and gives a good fit in
these cases. We also find that impact ionization is fast for
a Mott insulator. For a bandwidth W of the order of 1 eV,
corresponding to a unit of time of 0.66 fs, the fast relaxation
times in Table I are of the order of 5–70 fs.

We have also seen that processes of type (i) have
the potential to prevent impact ionization by lower-
ing the doublon energy before impact ionization occurs.
Doublon-doublon scattering processes become more im-
portant when the number of doublons is large (Fig. 6).
In this case the rate, Eqs. (4) and (5), should be ex-
tended to (dD1/dt)imp+scat = −(1/γ )D1 − (1/η)D1D2 and
(dD2/dt)imp+scat = +(3/γ )D1 + (1/η)D1D2, where η is the
relaxation time for scattering processes of type (i).

In a real material further relaxation processes not consid-
ered in our paper are possibly important, in particular, phonon
and (para)magnon scattering. In many cases, Mott gaps are of
the order of 1 eV so that phonons and magnons have a lower
energy and hence can contribute only to type (i) processes. But
as discussed above, this has the potential to prevent impact
ionization. In a Mott insulator with strong electron-phonon

coupling, the cooling rate associated with electron-phonon
scattering can be of the same order of magnitude as impact
ionization [12]. For most systems electron-phonon relaxation
occurs, however, only on the 0.1- to 1-ps time scale, which
means that these processes are slower than the observed impact
ionization in a Mott insulator. This is completely opposite
to the behavior in semiconductors, where impact ionization
has a much larger time scale than electron-phonon scattering
[20,30]. For semiconductors, electron-phonon coupling hence
prevents impact ionization altogether.

Even in a purely electronic system, additional relaxation
processes may come into play. At low temperatures, in the
magnetically ordered phase, spin-flip scattering provides a
particularly efficient dissipation channel, which can lead to
a fast redistribution of spectral weight within the Hubbard
bands. Exact diagonalization-based studies of the motion of a
single carrier in an antiferromagnetic background suggest that
the excess kinetic energy of a photodoped carrier is transferred
to the spin background within a few hopping times [9], and
recent DMFT studies of photodoped antiferromagnetic Mott
insulators revealed a very fast cooling of the photocarriers
[7,25]. Also, in the vicinity of an antiferromagnetic phase,
short-range spin correlations provide an efficient scattering
mechanism [8], whereas in one dimension the energy transfer
to the spin system seems to be inefficient [29].

In a model which takes into account the absorption of excess
doublon kinetic energy by phonon or magnon scattering,
we have a reduction in the high-energy population D1 and
a corresponding increase in the low-energy population D2.
However, this time these processes do not depend on the
number of doublons, hence Eq. (4) has to be modified
as (dD1/dt)imp+ph/mag = (−1/γ − 1/κ)D1, and Eq. (5) as
(dD2/dt)imp+ph/mag = (3/γ + 1/κ)D1, where κ is the corre-
sponding relaxation time. The efficient dissipation of kinetic
energy and the associated rapid decrease in the high-energy
population in an antiferromagnetic system is expected to
have a significant effect on the thermalization dynamics in
small-gap Mott insulators. It reduces the effectiveness of the
impact ionization process and leads to a slower adjustment
of the doublon population and, thus, a slower electronic
thermalization. In the present work, however, we have chosen
a high temperature at which spin correlations are reduced,
so that impact ionization can be more clearly identified. Our
results should also be relevant at higher fluences, independent
of magnetic ordering, because in this case the photodoping
leads to a rapid melting of antiferromagnetic correlations [7].

V. CONCLUSION AND OUTLOOK

The main finding of this study is that in situations where
the gap size is smaller than the width of the Hubbard bands,
the kinetic energy of the photodoped particles can be high
enough that impact ionization processes play an important
role in the initial relaxation. In fact, for the largest interactions
considered (U = 3.5–4), the doublon-hole production on the
computationally accessible time scales is almost entirely due
to impact ionization processes. We have demonstrated this
by analyzing the time-resolved photoemission spectrum and
by extracting the impact ionization and thermalization time
scales from fits to a model with two exponentials, which
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was found to provide a rather good description of the time
evolution of the doublon density. These time scales depend
on the gap size, with the slow time scale (related to higher
order scattering processes) growing much more rapidly with
gap size than the fast one (related to impact ionization), while
the pulse frequency mainly affects the relative population of
high-energy carriers which can trigger impact ionizations. The
two time scales also exhibit a different dependence on the
pulse amplitude (or density of photodoped carriers): impact
ionization processes are insensitive to the doping concentration
in the low-doping regime, while the slow time scale grows
rapidly with decreasing fluence. For higher photodoping,
impact ionization can be masked and suppressed by doublon-
doublon scattering.

Impact ionization may be relevant for Mott solar cell
applications. In the case of conventional semiconductor solar
cells, the Coulomb interaction is weak so that interaction
scattering (impact ionization) can hardly excite an electron
across the semiconducting gap, i.e., create an additional
electron-hole pair. Impact ionization only occurs on time scales
of 1–100 ps [30], which is much longer than the typical time
scales of 0.1–1 ps for electron-phonon scattering. Hence, for a
conventional semiconductor, almost all the excess kinetic en-
ergy of photoinduced carriers is transferred to lattice vibrations
(heat). Consequently, for each photoexcited electron-hole pair,
only the gap size is harvested as an electrical energy quantum,
independent of the energy quantum of the photon. This
severely restricts the efficiency of semiconductor solar cells
to about 31%, known as the Schockley-Queisser limit [20].
To overcome this limit, solar cell quantum dots, e.g., based
on PbSe nanocrystals, where larger Coulomb interactions
and phonon-bottlenecks effects can enhance impact ionization
have been proposed [31]. Also, for Mott insulators the

possibility of impact ionization has been discussed based on
Fermi’s Golden Rule calculations for the Hubbard model [21].

In our paper we have shown that impact ionization in
a Mott insulator can occur on time scales of the order of
10 fs, i.e., much faster than typical electron-phonon relaxation
times. Impact ionization processes are efficient only in Mott
insulators with a small gap relative to the width of the Hubbard
bands. This is quite difficult to realize for a one-band Hubbard
model. However, in multiband Hubbard models or in charge-
transfer insulators, the size of the gap can be much smaller
than the width of the Hubbard and charge transfer bands,
respectively. Whether or not impact ionization can contribute
significantly to the power produced by Mott solar cells such
as the recently proposed LaVO3-based heterostructure [32]
remains an open question. To address this issue one would have
to consider a realistic setup and, also, study the diffusion of
the photodoped carriers to the leads [33], the effect of the spin
background [7], and the coupling to phonons [34]. In any case,
our study has shown that impact ionization in Mott insulators
can be fast and can contribute effectively to the production of
carriers. Hence, Mott insulators have the potential to overcome
the Schockley-Queisser limit, by harvesting more than the gap
energy per photon. This class of materials can thus be expected
to play an important role in the future development of highly
efficient solar cells.
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