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Vanishing edge currents in non- p-wave topological chiral superconductors
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The edge currents of two-dimensional topological chiral superconductors with nonzero Cooper pair angular
momentum—e.g., chiral p-, d-, and f -wave superconductivity—are studied. Bogoliubov–de Gennes and
Ginzburg-Landau calculations are used to show that in the continuum limit, only chiral p-wave states have
a nonzero edge current. Outside this limit, when lattice effects become important, edge currents in non-p-wave
superconductors are comparatively smaller, but can be nonzero. Using Ginzburg-Landau theory, a simple criterion
is derived for when edge currents vanish for non-p-wave chiral superconductivity on a lattice. The implications
of our results for putative chiral superconductors such as Sr2RuO4 and UPt3 are discussed.
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I. INTRODUCTION

Two-dimensional topological chiral superconductors break
time-reversal symmetry by virtue of the fact that the Cooper
pairs have nonzero orbital angular momentum. For simple or-
bital eigenstates of the (z component of the three-dimensional)
angular momentum operator such as p-, d-, and f -wave states,
the Cooper pairs each carry m� of angular momentum, with
nonzero integer magnetic quantum numbers m. In a finite
sample of such a superconductor (for convenience, in this paper
we will not distinguish between chiral superconductors and
neutral chiral superfluids such as 3He, using “superconductor”
to describe both), this Cooper pair orbital angular momentum
is expected to give rise to a spontaneous edge current and
related to this, a nonzero total angular momentum.

For p-wave superconductors, both the edge current and total
angular momentum have been studied extensively (see, e.g.,
Refs. [1–5]), largely due to the fact the chiral p-wave A phase
of 3He is the only system which is known to be definitely chiral.
At the same time, the perovskite superconductor Sr2RuO4 is
widely believed to be chiral p wave [6–8], although magnetic
fields consistent with the expected edge current have yet to
be detected [9–11]. This last fact in particular has generated
considerable interest in the question of what exactly is the
relationship between topological chiral superconductivity and
edge currents. Although it can be strongly suppressed by
disorder [5,12] as well as gap anisotropy and band effects [13],
the edge current and total angular momentum of a chiral
p-wave superconductor are generically large, the latter for
instance being Lz = N�/2 [4,14] in the continuum limit for
an ideal surface at T = 0, where N is the total number of
fermions.

In this paper, we generalize previous studies of the edge
current in chiral p- and d-wave superconductors [15–18]. In
addition to being a problem of intrinsic theoretical interest,
giving greater insight into the nature of the edge current in
chiral p-wave superconductors for instance, this work will
be relevant in the quest to find non-p-wave chiral supercon-
ductors such as the possibly chiral f -wave superconductor
UPt3 [19,20]. In contrast to the generically large edge current in
chiral p-wave superconductivity, we find that the edge current
in states with higher orbital Cooper pair angular momentum

can vanish, depending on details of the lattice. All our results
are for unscreened currents.

Drawing on analytic semiclassical Bogoliubov–de Gennes
(BdG) and Ginzburg-Landau (GL) calculations for continuum
systems, we show that, amongst chiral pairing states that
are eigenstates of the angular momentum operator, only
chiral-p superconductors have a nonzero edge current. Our
results extend to three-dimensional (3D) superconductors by
considering eigenstates of the z-component L̂z of the orbital
angular momentum operator: only states with magnetic quan-
tum number m = 1 give rise to a nonzero edge current. This
means, e.g., that the 3D f -wave state k2

z (kx + iky) with m = 1
has an edge current, but the m = 2 state kz[(k2

x − k2
y) ± 2ikxky]

does not. The latter is the continuum analog of a possible order
parameter for UPt3.

Turning to lattice models, numerical BdG and GL calcu-
lations are used to understand how these results carry over
from the continuum. Away from the continuum limit, the edge
current along axes of high symmetry can be nonzero even for
non-p-wave chiral states, although for all cases studied, it is
reduced as compared to that for chiral p wave on a square
lattice. In some cases, such as chiral f wave on a triangular
lattice, we find that the integrated current is extremely small.
In all cases where we find such a small integrated current, the
local current oscillates over a small length scale comparable
to the lattice spacing with an amplitude that decreases linearly
with �0/EF [18] and hence, vanishes in the weak-coupling
limit. A general condition for which the edge current vanishes
consistent with our BdG results is derived within GL theory.

We start in Sec. II by presenting our semiclassical analysis
for systems in the continuum limit. The implications of our
results for the problem of the total angular momentum are
discussed in Sec. III. There, a Chern-Simons-like [4,13,21,22]
expression for the current is also discussed in connection with
the possibility of a “soft” edge, where the density vanishes
slowly as compared to the coherence length. Apart from this
section, and also a brief discussion given in Sec. V, we leave
implicit that all our results are for a sharp edge, where the
density vanishes over a distance on the order of the mean
interparticle spacing k−1

F .
Turning our focus to lattice models, in Sec. IV, results are

given for numerical BdG calculations of the edge current for
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chiral p-, d-, and f -wave order parameters in some representa-
tive lattice systems: px + ipy on a square lattice, dx2−y2 + idxy

on square and triangular lattices, and fx(x2−3y2) + ify(3x2−y2)

on a triangular lattice. In Sec. V, we reproduce our continuum
as well as numerical lattice BdG results using GL theory.
A summary of our results is given in Sec. VI along with a
discussion of their relevance for systems such as Sr2RuO4

and UPt3, which have been proposed as candidate chiral
superconductors.

II. EDGE CURRENT IN THE CONTINUUM LIMIT OF
CHIRAL SUPERCONDUCTORS

We begin by using semiclassical Bogoliubov–de Gennes
calculations to understand properties of the edge current for
an edge in two-dimensional continuum chiral superconductors.
For continuum systems, the Cooper pair eigenstates

�k = �0

(
kx + iky

kF

)m

≡ �0(k/kF )meimθ , m = 1,2, . . .

(1)
of the 2D angular momentum operator are characterized by
the magnetic quantum number m. θ is defined such that k =
k[cos θ, sin θ ]. Not only does the magnetic quantum number
give the angular momentum m� per Cooper pair, it also is
equal to the Chern number (or skyrmion number of the BdG
Hamiltonian) [23],

m = C ≡ 1

4π

∫
d2k ĥ · (

∂kx
ĥ × ∂ky

ĥ
)
, (2)

which counts the number of zero-energy edge modes. Here �h =
{Re[�k], − Im[�k],ξk} and ĥ = �h/|�h|, with ξk ≡ ε(k) − μ

the single-particle dispersion.
The Bogoliubov–de Gennes (BdG) equation for the order

parameter (1) is[
h0 �0

(
k
kF

)m
eimθ

�0
(

k
kF

)m
e−imθ −h∗

0

] [
u

v

]
= E

[
u

v

]
, (3)

where h0 ≡ − �
2

2m∗ ∇2 − μ and we have used m∗ to denote the
fermion mass to avoid confusion with the magnetic quantum
number. We seek solutions of (3) for the situation where
there is an edge parallel to the x axis, at y = 0. This edge is
implemented using the boundary condition u(y = 0) = v(y =
0) = 0.

A spontaneous current arises at an edge due to both current-
carrying Andreev-scattered edge states as well as the reflection
of continuum states [4]. The corresponding solutions

�̂ =
∑
σ=±

σ

[
aσ (y)
bσ (y)

]
eikF x cos θ+iσkF y sin θ (4)

of the BdG equations are thus completely parametrized by the
incident angle θ ; see Fig. 1. In (4), the σ = ± components
of the solution represent the transmitted (specular reflection)
and reflected (Andreev reflection) solutions, respectively. Note
that for our chosen geometry, this angle is the same as the one
that enters the order parameter (1). The minus sign (σ = −1)
attached to the reflected solution means that the vanishing
of the wave function at the edge becomes �̂−(0) = �̂+(0),
where �̂†

σ ≡ [aσ ,bσ ]. The current density per spin component

FIG. 1. Specular (t) and Andreev (r) reflection of a quasiparticle
off an ideal edge at y = 0. Adapted from Ref. [4].

corresponding to this solution is thus

jx(y > 0) = �

4m∗i
[�̂†∂x�̂ − (∂x�̂

†)�̂]

= �kF cos θ

2m∗
∑
σ=±

�̂†
σ �̂σ . (5)

As noted in Ref. [4], the seemingly extra factor of 1/2 in this
expression is needed to compensate the double counting in the
particle-hole basis spanned by �̂.

To solve the BdG equations, (3) and (4), we adopt the
elegant approach used by Stone and Roy [4] to solve the m = 1
problem and map these equations onto the one-dimensional
“twisted mass” Dirac problem. The density

∑
σ �̂†

σ �̂σ of
quasiparticle states receives contributions from the bound
edge state as well as the “charge” Qm(θ ) arising from
the phase-shifted bulk continuum states that accumulates
at the edge. Each bound state has unit normalization and
thus its contribution to the integrated current is obtained by
integrating (5) over the values of θ for which the edge mode
spectrum is negative (i.e., occupied):

Jedge =
∫

occupied

kF sin θdθ

2π

(
�kF cos θ

2m∗

)
. (6)

The contribution to the current from bulk continuum states is
similarly

Jbulk =
∫ π

0

kF sin θdθ

2π
Qm(θ )

(
�kF cos θ

2m∗

)
. (7)

In Appendix A we use the solutions of the twisted-mass Dirac
problem to show that the edge mode spectrum and accumulated
charge are given by piecewise functions

E(0) = (−1)j�0 cos(mθ ) for
(j − 1)π

m
� θ <

jπ

m
(8)

and

Qm(θ ) = mθ

π
− j for

(j − 1)π

m
� θ <

jπ

m
, (9)

with j = 1 . . . m. The edge mode dispersion means that
the occupied edge states correspond to incident angles θ ∈
[0,π/2m],[π/m,3π/2m],..., [(m − 1)π/m,(m − 1/2)π/m],
and (6) becomes

Jedge = �k2
F

16πm∗

m∑
j=1

[
cos

(2j − 2)π

m
− cos

(2j − 1)π

m

]
.

(10)
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Using (9) in (7), the bulk state contribution to the current is

Jbulk = − �k2
F

4πm∗

m∑
j=1

[
m

8π

(
sin

(2j − 2)π

m
− sin

2jπ

m

)

+ 1

4
cos

(2j − 2)π

m

]
. (11)

For chiral p wave (m = 1), the bulk contribution is half
in magnitude as the current carried by the chiral edge states,
and flows in the opposite direction: Jedge = �k2

F /(8πm∗) and
Jbulk = −�k2

F /(16πm∗) [4]. The total edge current per spin
component can thus be written as J = n�/4m∗, where n =
k2
F /4π is the number density per spin component. This value

is consistent with numerical BdG calculations in the continuum
limit of lattice models [13] (for simple lattice models at least,
iterating BdG to full self-consistency has negligible impact on
our results). It is also the edge current needed to produce a
macroscopic angular momentum N�/2 for N fermions in a
disk [4] (see below).

On the other hand, the edge state and continuum state
contributions (10) and (11) vanish independently for all
m > 1, a fact that can be proved by induction. Thus the total
edge current is identically zero for any chiral superconductor
with Cooper pair angular momentum >�. Note that although
multiple chiral edge branches with the same chirality exist for
m > 1, the contributions to the current exactly cancel among
those chiral branches. In the continuum at least, p wave is
special [13]! As noted in the Introduction, this result extends
to 3D superconductors by considering eigenstates of the z

component L̂z of the orbital angular momentum operator:
only states with magnetic quantum number m = 1 give rise
to a nonzero edge current.

III. TOTAL ANGULAR MOMENTUM

Before discussing how the continuum limit results carry
over to lattice models of chiral superconductivity, we briefly
touch on a problem of some historic interest, namely the
angular momentum carried by a disk of a neutral chiral
superfluid [24]. The fact that the edge current vanishes for
m > 1 Cooper pair states means that a superfluid of N fermions
arising from these states will not have a macroscopic total
angular momentum

Lz = N�m

2
. (12)

Such a macroscopic angular momentum would arise if there
is a local current density [4,5] j (x) ∼ NmvF �0 exp(−x/ξ0)
confined within a coherence length of the edge at weak
coupling. It is moreover the expected result in the strong-
coupling “BEC limit” [2,25], where the number of Cooper
pairs (i.e., the condensate occupation) asymptotes to N/2.
For p-wave pairing, the edge current indeed gives rise to
a total angular momentum given by (12) for both an ideal
sharp edge [4,5] as well as a soft one [14]. For higher-angular
momentum pairing, however, our BdG results suggest that (12)
is not true in general.

We define the total angular momentum of a disk of radius
R as

Lz =
∫

r�R

drm∗(r × j)z. (13)

Recall that m∗ is the fermion mass. A nonzero local current
j(r) only arises if the density or order parameters components
vary in space. Thus, for a disk having a sharp edge, wherein
the density vanishes over an atomic scale at the edge, the
only current is the edge current we have discussed in previous
sections. For higher-angular momentum Cooper pair states
with m > 1, the total angular momentum is zero.

At the same time, if the edge is softened, such that the
density vanishes over a length scale much longer than the BCS
coherence length, the local edge current per spin component
is given by [4,13,21,22]

j(r) = −�C

8π
( ẑ × ∇)A0(r). (14)

Here A0(r) is an external potential that gives rise to the slow
density variation and C is the Chern number (2) which, as
noted earlier, is equal to the magnetic quantum number m in
continuum systems for Cooper pair states that are eigenstates
of the angular momentum. We have confirmed using numerical
BdG (not shown) that the current is restored as the edge is
softened, in agreement with the lattice discretized form of (14),
with ∂xA0(x) → A0(xi+1) − A0(xi). Some discussion of the
origin of this “Chern-Simons-like” contribution is given in
Sec. V.

Using (14) in (13), for a rotationally invariant potential
A0(r) = A0(r), and using the equilibrium condition ∂rA0(r) =
(∂μ/∂n)∂rn(r) with μ = 2πn/m∗, the total angular momen-
tum is

Lz = −�Cm∗

4

∫ R

0
drr2 (∂μ/∂n) ∂rn(r) = N�C

2
, (15)

where N = 2π
∫ R

0 drrn(r). Thus, equating the Chern number
with the magnetic quantum number m, when the density varies
slowly, one recovers (12) for all cases with nonzero Cooper
pair angular momentum. It is only when the density varies
sharply that the total angular momentum vanishes for all states
except p wave.

We note in passing that (14) is equivalent to the “intrinsic
pair angular momentum” identified by Mermin and Muzikar,
arising from the orbital angular momentum of the Cooper
pairs. It indeed conspires to produce the expected macroscopic
angular momentum (12) but only in general when the density
varies slowly as compared to the BCS coherence length ξ0.
Such a situation can arise, for instance, in an ultracold atomic
gas chiral superfluid confined in harmonic traps [14].

IV. EDGE CURRENT FOR LATTICE MODELS

We now turn to the question of whether our central
continuum-limit result—the vanishing of the edge current
in non-p-wave chiral superconductors—survives outside of
this limit. Some indication of the answer can be found in
the literature, which has largely focused on the possibility of
chiral d-wave superconductivity in the cuprates [15–17] but
also, more recently, chiral d-wave order in graphene [26–28]

224519-3



WEN HUANG, EDWARD TAYLOR, AND CATHERINE KALLIN PHYSICAL REVIEW B 90, 224519 (2014)

and other materials [18,29,30]. A small (but nonzero) edge
current along the [11] surface was reported in Ref. [16] for
chiral dx2−y2 + idxy superconductivity on a square lattice. It
is unclear, however, whether the calculation reported there
allowed for the possibility that d + is order (expected to
produce a nonzero edge current [16,17]) develops near the
surface. In lattices with hexagonal symmetry, away from
the continuum limit, Ref. [18] finds a finite but small local
current. Nonzero edge currents are also found for chiral d-wave
superconductivity on a honeycomb lattice [28].

Here we expand on these results, presenting numerical BdG
calculations of the unscreened edge current in a few representa-
tive one-band models: chiral p and d wave on a square lattice,
as well as chiral f and d wave on a triangular lattice. The
last has been proposed as a possible superconducting state in
NaxCoO2 · yH2O [29] and SrPtAs [30]. In contrast to p-wave
pairing which has a large edge current along the axes of a
square lattice, we find that the integrated edge current along
the same axes is very small for dx2−y2 + idxy order, consistent
with previous work [17]. The edge current is substantial for this
state when placed on a triangular lattice, however. Considering
chiral f -wave pairing on a triangular lattice, we find a very
small integrated current. In all cases where we find such a small
integrated current, the local current varies rapidly over a scale
∼k−1

F with amplitude decaying linearly with �0/EF , similar
to that in Ref. [18]. We thus take our results to be indicative of
a vanishing edge current in the weak-coupling limit of these
cases.

Our BdG calculations are carried out in the standard
way (see, e.g., Ref. [31] for details) using a strip geometry,
with edges at y = 0 and y = 300 (in units where the lattice
spacing is 1), and periodic boundary conditions imposed along
x. Iterations are carried out to self-consistency. Although
subdominant orders can often be induced at the surface, we
ignore these for simplicity. For chiral px + ipy and dx2−y2 +
idxy pairing on a square lattice, we use �k = �0(sin kx +
i sin ky) and �k = �01(cos kx − cos ky) + i�02 sin kx sin ky ,
respectively. These are allowed by the underlying tetragonal
point group (D4h) symmetry of the lattice; they reduce to
(kx + iky)/kF and (kx + iky)2/k2

F in the continuum limit.
Note the two d-wave components are in general nondegenerate
on a square lattice and �01 	= �02. Using the same interaction
strength for both channels, however, we find the dxy component
to be too small to reliably carry out calculations. To avoid
this difficulty, we tune the interactions to give �01 
 �02.
Changing these values does not affect our conclusion in
cases where the edge current vanishes, however. In addition,
the numerical calculations we present are for systems with
one electronlike Fermi surface around the 
 point. However,
we have also done calculations for other scenarios and the
discussion and conclusions which follow apply equally well
to all cases.

The local currents near the edge at y = 0 for these two
models are shown in Fig. 2. The local current for chiral d

wave oscillates with an amplitude that decays linearly with
�0 [18]. In units of the lattice hopping t , the integrated current
shown in Fig. 2 is J 
 0.006t , as compared to J 
 0.12t

for p wave, and we expect that in the �0 � t limit, the
integrated current vanishes for chiral d wave on a square
lattice. This is true despite the fact that there are two chiral

FIG. 2. Spatial dependence of the local edge current jx(y) for
chiral p- and d-wave order parameters on a square lattice with
hopping t . The edge is at y = 0 and the local currents extend over
several coherence lengths ξ0 ≡ t/�0 ∼ 5 (in units of the lattice
spacing). Calculations are done using μ = −t in conjunction with
the order parameters described in the text for a strip of width 300
lattice sites along y and with periodic boundary conditions along x.

zero-energy (Majorana) bound-state modes present on each
edge; see Fig. 3. In fact, for the contribution to the edge current
from the chiral edge modes, it is precisely because there is
more than one edge state that the contribution vanishes as a
result of canceling contributions. As much is evident from the
continuum-limiting expressions (8) and (10) (we note that the
former well describes the in-gap dispersion shown in Fig. 3
and also the spectra shown in Fig. 4 for d- and f -wave pairing
on a triangular lattice).

For the triangular lattice, the chiral d-wave order takes
the form of �k = �0[cos kx − cos(

√
3ky/2) cos(kx/2)] +

i�0

√
3 sin(

√
3ky/2) sin(kx/2), which also reduces to (kx +

iky)2 in the continuum limit. A chiral f -wave state
of the form �k = �01[sin(2kx) − 2 cos(

√
3ky) sin kx] +

i�02[2 sin(
√

3
2 ky) cos( 3

2kx) − sin(
√

3ky)] can be realized on a
triangular lattice with second and third neighbor odd-parity
pairing. This gap function reduces to (kx + iky)3 in the

FIG. 3. (Color online) Low-energy dispersion of a one-band chi-
ral d-wave model on a square lattice calculated using the same
parameters used in Fig. 2. The arrows point to the chiral edge modes
belonging to the same edge.
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FIG. 4. Edge dispersion of the chiral d- and f -wave models on a
triangular lattice with the same parameters used in Fig. 5.

continuum limit where the two components become degen-
erate. Outside the continuum limit, the two order-parameter
components are not in general degenerate and �01 	= �02.
As with d wave on a square lattice, we tune the interactions
such that �01 
 �02. In Fig. 5 we plot the edge currents
of the chiral d- and f -wave models on a triangular lattice
with an edge along one side of the triangles. For comparison,
we also plot the edge current of a chiral p-wave supercon-
ductor, with �k = �0{sin(

√
3ky/2) cos(kx/2) + i√

3
[sin kx +

cos(
√

3ky/2) sin(kx/2)]}. As with d wave, the two order-
parameter components are degenerate on a triangular lattice.
While the p- and d-wave models do not yield vanishing
edge currents, the local edge current for the chiral f -wave
state oscillates rapidly about zero, integrating to a small
value, J 
 0.017t , much smaller than the corresponding value
(J 
 0.15t) for p wave and about half the size of the value
(J 
 0.036t) for d wave. As with our chiral d-wave results
on a square lattice, we interpret this result as meaning that the
edge current vanishes in the weak-coupling limit for chiral f

wave on a triangular lattice.
Even though the edge current for chiral d wave on a

triangular lattice is nonzero, it is smaller than that for p wave.
Moreover, consistent with our semiclassical analysis and also
Ref. [18], it vanishes in the weak-coupling, continuum limit,
as μ approaches the bottom of the band.

FIG. 5. Spatial dependence of the local edge current jx(y) for
chiral p-, d-, and f -wave order parameters on a triangular lattice
with hopping t . Calculations are done using μ = 0 and �0 ≈ 0.2t

(ξ0 ≡ t/�0 ≈ 5) in conjunction with the order parameters described
in the text for a strip with the same size as that used for the square
lattice calculations.

V. GINZBURG-LANDAU THEORY

We now seek insight into our BdG results from Ginzburg-
Landau (GL) theory. The current arises from gradient terms
in the GL free-energy density. For a system with two
(complex) component order parameters ψ1 and ψ2, ignoring
the possibility of an external potential, A0(r) = 0, the terms
responsible for the current are [32]

fGL = k3(∂xψ
∗
1 ∂yψ2 + c.c.) + k4(∂yψ

∗
1 ∂xψ2 + c.c.) + · · · ,

(16)

where the ellipsis denotes higher-order terms. Making contact
with our microscopic results, the complex order parameter is

[ψ1(r),ψ2(r)] ≡ [�01(r),i�02(r)] exp[iθ (r)], (17)

where θ (r) is the U(1) phase and �01(r) and �02(r) are the
purely real, spatially varying amplitudes, reducing to the bulk
values �01 and �02 away from an external potential and far
from the edge.

We emphasize that even though the notation of (16) is
usually reserved for systems with tetragonal symmetry (see,
e.g., Table VII in Ref. [32]), one can always construct an
expression of the form given by (16) and it is valid for
systems with arbitrary lattice symmetry. Adopting the notation
in Ref. [32] for instance, our k3 and k4 are equal to K3 and
K4 for a tetragonal lattice; for a hexagonal lattice, terms of the
form (16) also arise however one instead has k3 = K1 − K3

and k4 = −K2 + K3. Moreover, to leading order in the gap
amplitudes �0, k3 and k4 are equal [33].

Using (17), the μ component of the current (where
it appears as a Cartesian index, μ,ν = 1,2 denote the
x,y axes) is

jμ = ∂fGL

∂(∂μθ )
= k3εμν(�0μ∂ν�0ν − �0ν∂ν�0μ), (18)

where εμν is the 2D Levi-Civita symbol. Hence, a vanishing
edge current along one of the crystalline axes is associated
with the vanishing of the k3 GL coefficient.

As in Ref. [33], the GL expression (18) serves as an
alternative and more phenomenological description of the BdG
current. Although (18) is only rigorously valid close to Tc and
does not give the exact current at low temperatures, it has been
well established that GL theory provides a reliable qualitative
description of the current in BdG calculations [31,33,34], and
this is also confirmed here.

The gradient terms (16) in the GL free energy density lead
to the following microscopic expression for k3:

k3 = k4 = ∂2

∂qxqy


−1
12 (q,0)

∣∣∣∣
T =Tc

, (19)

where


−1
αβ (q,0) = −

∑
k

hα(k)hβ(k)(1 − fk − fk−q)

ξk + ξk−q
+ δαβ

g
(20)

is the inverse of the static particle-particle vertex function in
the α-β Cooper pair channel. hα(k) are the dimensionless
form factors that arise in the order-parameter components,
��k = [�01h1(k),i�02h2(k)], and also the attractive inter-
action Vα(k,k′) = −ghα(k)hα(k′) in the relevant channel;
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fk = [exp(βξk) + 1]−1 is the Fermi occupation. Applying (19)
to (20) gives

k3 =
∑

k

h1(k)h2(k)

8ξ 3
k

{
vxvy

[
βcXYξ 2

k + Yξk − 2X
]

+ (
∂kx

vy

)[
2Xξk − Yξ 2

k

]}
. (21)

Here, vi ≡ ∂ki
ξk, X ≡ tanh(βcξk/2), and Y ≡ βcsech2

(βcξk/2), with βc ≡ T −1
c .

Of all eigenstates of the z component of the angular
momentum operator L̂z, (21) confirms that chiral p wave,
with eigenvalue m = 1, is special. Using the continuum-limit
form (1), h1(k) = cos mθ and h2 = sin mθ . Using vx ∝ k cos θ

and vy ∝ k sin θ , k3 can be written as

k3 = I (μ,Tc)
∫ 2π

0
dθ sin θ cos θ sin mθ cos mθ, (22)

where I (μ,T ) is an integral over the radial part of k. This
shows explicitly that k3 vanishes in the continuum limit for
all m except 1 [35], in agreement with our semiclassical BdG
results in Sec. II, showing that the edge current vanishes for
all m 	= 1.

Moving away from the continuum limit, (21) remains valid
for lattice systems using the appropriate forms for h1, h2, and
ξk. The condition for k3 to vanish becomes more complicated
than the continuum result (22), however. More generally,
noting that the integrand in (21) is strongly peaked about
the Fermi surface and that the second line vanishes under
particle-hole symmetry, GL theory predicts that the edge along
a crystalline axis vanishes when

k3 ∝ 〈h1(k)h2(k)vx(k)vy(k)〉FS (23)

does. Here 〈· · · 〉FS denotes an integral over the Fermi surface.
For a dx2−y2 + idxy order parameter on a square lattice,

h1 = cos kx − cos ky , h2 = sin kx sin ky , and (23) vanishes by
symmetry. Turning to a triangular lattice, aligning one of the
symmetry axes with the x axis, vx = ∂kx

ξk and vy = ∂ky
ξk with

ξk = −2t[2 cos(
√

3ky/2) cos(kx/2) + cos kx]. Using the same
forms for the order parameters as we used in our numerical
BdG calculations, we find that (23) vanishes for f wave, but
not chiral p and d wave, consistent with our numerical BdG
results.

Also consistent with our numerical results, the full GL
coefficient (21) for chiral d wave is much smaller than that
for chiral p wave, suggestive of a smaller current. In GL, this
suppression is due to the multiple sign changes of the d-wave
order parameter around the Fermi surface, leading to a partial
cancellation. In the continuum limit, this partial cancellation
becomes complete, tying into our continuum BdG results.

To make contact with the total angular momentum discus-
sion in Sec. III and the “Chern-Simons-like” current (14), we
now discuss the modifications to GL for the case where there
is a spatially varying A0(r). A relevant discussion can be found
in Ref. [33]. The disinterested reader may pass over this and
proceed directly to the Discussion without losing continuity.

The presence of a spatially varying potential A0(r) leads to
new gradient terms in the GL expansion of the form

fGL = c
μν
αβ [ψ∗

α (∂μψβ)(∂νA0) + c.c.] + · · · , (24)

in addition to (16). Here, μ,ν denote Cartesian coordinates
(e.g., x and y) while α,β = 1,2 denote the components of
the order parameter. The real-valuedness of the free energy in
conjunction with U(1) gauge symmetry requires c

μν
αβ ≡ cμνεαβ ,

where εαβ is again the 2D Levi-Civita symbol. The current
arising from this is

jμ = ∂fGL

∂(∂μθ )
= −2cμν�01�02(∂νA0). (25)

Equation (24) leads to the following microscopic definition:

cμν ≡ 1

2�01�02
lim
q→0

∂χ0μ(q)

i∂qν

∣∣∣∣
�01=�02=0

. (26)

Here χ0μ ≡ (2β)−1 ∑
k,ωn

vμ(k)tr[Ĝ0(k + q
2 ,iωn)τ̂3Ĝ0(k −

q
2 ,iωn)] is the static current-charge correlator per spin, where
Ĝ0(k,iωn) is the appropriate matrix Nambu-Gorkov Green’s
function (as a function of the Matsubara frequency ωn) and
τ̂3 is the Pauli spin matrix. This correlation function is readily
evaluated at all temperatures:

lim
q→0

∂χ0μ(q)

i∂qν

=�01�02

∑
k

vμ(k)

4E3
k

tanh(βEk/2)

× [
h2

(
∂kν

h1
) − h1

(
∂kν

h2
)]

, (27)

where Ek ≡
√

ξ 2
k + |�k|2 is the bulk BCS quasiparticles

dispersion.
Using (2), (27), and ∂χ0μ/∂qν = −∂χ0ν/∂qμ, one sees that

at T = 0, modulo terms O(�2
0/E

2
F ) that vanish in the weak-

coupling limit, the Chern number is given by

C

8π
= lim

q→0

∂χ0μ(q)

2i∂qν

ενμ. (28)

Combining this result with (25) and (26) gives the result (14)
for the T = 0 current.

At T = Tc, (26) and (27) give

cμν =
∑

k

vμ(k)

4ξ 3
k

tanh(βcξk/2)
[
h2

(
∂kν

h1
) − h1

(
∂kν

h2
)]

. (29)

In conjunction with (25), this shows that the “Chern-Simons”
current (14) at T = 0 smoothly evolves into a contribution
∝ cμν�01(T )�02(T ) near Tc. The momentum-space integrand
involved with cμν has the same structure as that for the Chern
number in the weak-coupling limit and as a result, cμν will
not vanish as long as the Chern number does not. Moreover,
in the soft edge limit, the two components of order parameter
have the same spatial variation and the contribution to the
current from (18) vanishes. In this limit, the current is given
by (25) and does not vanish for any nonzero m. It is only in the
sharp edge case, where A0 = 0 in the superconductor, that (23)
provides the condition for the edge current to vanish.

VI. DISCUSSION

Using semiclassical Bogoliubov–de Gennes (BdG), we
have shown that the edge current for any chiral superconductor

224519-6



VANISHING EDGE CURRENTS IN NON-p-WAVE . . . PHYSICAL REVIEW B 90, 224519 (2014)

TABLE I. Order-parameter (OP) and lattice symmetries and their
relation to the existence of an integrated current. By “degenerate,” we
mean that the two order-parameter components transform with the
same two-dimensional irreducible representation; details are given in
the text. For chiral states in the continuum, all states with m > 1 have
vanishing edge currents.

OP symmetry; lattice Integrated current? Degenerate?

p wave; continuum yes yes
d wave; continuum no yes
p wave; square yes yes
d wave; square no no
p wave; triangle yes yes
d wave; triangle yes yes
f wave; triangle no no

other than p wave vanishes exactly in the weak-coupling,
continuum limit. Using numerical BdG and Ginzburg-Landau
(GL) calculations, this result was generalized to a variety
of lattice models. Specifically, we find nonzero integrated
currents for px + ipy on square and triangular lattices, and
dx2−y2 + idxy on a triangular lattice. We find very small
integrated currents (which vanish in the limit �0/EF → 0,
neglecting the possible growth of subdominant order parame-
ters near the surface) for dx2−y2 + idxy on a square lattice, and
fx(x2−3y2) + ify(3x2−y2) on a triangular lattice. Noting that our
zero-temperature BdG results are in complete agreement with
GL on the matter of which systems we have studied exhibit
edge currents, we expect that the vanishing of the Fermi-
surface integral (23) gives a simple condition for the edge cur-
rent to vanish in both continuum and lattice systems. Although
we have not explored mixed states such as chiral dxy + is

which are not eigenstates of L̂z, (23) also shows that this state
will give rise to a nonvanishing edge current in the continuum,
as expected from semiclassical BdG analyses [16,17].

For the combinations of superconducting states and lattices
that have been studied, the existence of an edge current
for a particular state coincides with the order-parameter
components both transforming like basis functions of the same
2D irreducible representation of the lattice symmetry group
(see Table I). On the square lattice, for instance, px and py

form a basis for the 2D representation E, whereas dxy and
dx2−y2 are bases for two different representations, B1 and B2.
Generally one would expect chiral states to be energetically
favorable only when the two components are degenerate or
nearly degenerate, and our calculations suggest they will
generally have nonzero currents under such conditions, albeit
reduced currents for angular momenta greater than 1.

In the remainder of this concluding section, we discuss
possible implications of our results for some candidate chiral
superconductors.

After superfluid 3He-A, the most studied candidate chiral
superconductor to date is unquestionably Sr2RuO4 [6–8].
While μSR [36] and Kerr effect [37] measurements are
strongly suggestive of spontaneous time-reversal symmetry
breaking below Tc, as noted in the Introduction, superconduct-
ing quantum interference device magnetometry measurements
have not seen evidence for edge currents [9]. Away from the
clean-edge limit explored in the present paper, disorder [12],

gap anisotropy [13], and other edge effects [5,31,34,38] can
have pronounced effects on the edge current, reducing them
significantly. Here we speculate on another possibility, that
Sr2RuO4 is a chiral superconductor, but not p wave. We
emphasize that while we know of no microscopic reason why,
e.g., chiral f -wave pairing should be favored on a square
lattice such as that for Sr2RuO4 (emphasizing that the order-
parameter components are not expected to be degenerate), this
scenario would not necessarily be incompatible with the above
experiments.

There exist some early proposals for chiral f -wave states
such as (k2

x − k2
y)(kx + iky), kxky(kx + iky), and k2

z (kx + iky)
in Sr2RuO4 [39–42]. These correspond to m = 1, however, and
hence, are expected to give rise to substantial edge currents.
On the other hand, the 3D chiral fz(x+iy)2 state would exhibit
the same (vanishing) edge current properties as a dx2−y2 +
idxy state on a square lattice, although as noted before, the
components are not expected to be degenerate on such a lattice.

The vanishing of the edge current for such a state need not be
incompatible with μSR experiments, generally interpreted in
terms of spontaneous edge currents at domain walls separating
regions of opposite chirality [36], as well as around impurities,
including the muons themselves. The irregular structure of
the domain walls as well as the local nature of perturbing
impurities means that some local currents would likely arise
along irregular edges. As much has been seen in BdG studies
of chiral d + id-wave [43] and d + is [44] superconductors. In
Appendix B, we show how to extend the GL theory presented
here to describe edge currents along noncrystalline axes. For
situations where the edge current vanishes along a crystalline
axis, it does not vanish along other edges.

Another major piece of evidence in favor of time-reversal
symmetry-breaking superconductivity in Sr2RuO4 is the ap-
pearance of a Kerr effect below Tc [37] (also seen in UPt3 [20]).
In continuum systems, similar to our results for the edge
current, this effect vanishes for all chiral states except for chiral
p wave [45]. Away from the continuum limit, however, an
intrinsic Kerr effect arises from multiband transitions [46,47].
Although we cannot make any definitive statement about
whether multiband chiral f -wave superconductivity on a
square lattice would allow for a Kerr effect without a specific
model, we note that the Fermi-surface integral (23) involved
with the edge current is quite different than that involved in
the intrinsic Kerr effect [47].

Some other candidate chiral superconductors that have re-
cently attracted interest are UPt3 [19], NaxCoO2 · yH2O [29],
and SrPtAs [30], all of which are conjectured to be either
chiral d-wave or f -wave superconductors with an in-plane
chiral d-wave component. Without detailed knowledge about
the structure of the order parameters, we again cannot draw any
firm conclusions about the edge currents for these candidate
gap symmetries. Our results suggest that one would expect
such states to exhibit edge currents, albeit reduced from that
of chiral p-wave pairing.

Note added. As this paper was being prepared for
submission, a preprint [48] appeared which has some overlap.
Focussing on the problem of the total angular momentum
in the continuum limit, the authors of Ref. [48] find that the
total angular momentum vanishes to order �0/EF in the
weak-coupling BCS limit for all states with m > 1, consistent
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with our results. They also extend these results to the BEC
limit of the crossover, where they derive the result given
by (12) for all m. These results have also been commented on
by Volovik [49].

ACKNOWLEDGMENTS

We thank G. Luke and J. Berlinsky for helpful discussions.
This work was supported by NSERC and CIFAR and by the
Canada Research Chair and Canada Council Killam programs
and the National Science Foundation under Grant No. NSF
PHY11-25915 (C.K.).

APPENDIX A: DIRAC EQUATION

In this section, we show how to map the semiclassical limit
of the BdG equations (3) and (4) onto the one-dimensional
twisted-mass Dirac equation [4] and use its solution to
derive (8) and (9).

Substituting (4) into (3) and making the usual
weak-coupling and semiclassical approximations [μ =
EF ,∂2

y aσ (y) � kF ∂yaσ (y),∂2
y bσ (y) � kF ∂ybσ (y)], the BdG

equation reduces to the two one-dimensional Dirac equations(
−iσ∂x �0e

imθ

�0e
−imθ iσ∂x

)
�̂σ = E�̂σ , (A1)

where, as before, �̂†
σ ≡ [aσ ,bσ ], σ = ±, and we have defined

x ≡ y/�vF sin θ, (A2)

with vF ≡ �kF /m∗. Taking the complex conjugate of the σ =
− Dirac equation, these two equations can be combined into a
single “twisted mass” Dirac equation,(

−i∂x �0e
iφ(x)

�0e
−iφ(x) i∂x

)
�̄ = E�̄, (A3)

for the composite spinor �̄ ≡ �(−x)�̂−(x) + �(x)�̂+(x),
where

φ(x) = −�(−x)mθ + �(x)mθ. (A4)

The two-dimensional edge problem has thus been mapped
onto a one-dimensional problem where the phase of the
order parameter is twisted across a domain at x = 0 from
φL = −mθ on the left-hand side to φR = mθ on the right. The
boundary condition �̂+(y = 0) = �̂−(y = 0) in the original
two-dimensional problem gets mapped onto the condition that
�̄(x) is continuous across x = 0. The integrated quasiparticle
density

∑
σ �̂†

σ �̂σ needed to calculate the edge current is
given by the “charge” Qm ≡ ∑

n

∫ ∞
−∞ dx|χn(x)|2 accumulated

in the vicinity of the domain wall, where χn are the eigenstates
of (A3) for a given magnetic quantum number m.

The solution of (A3) is discussed at length in Ref. [4].
The only difference in our case is that the phase is twisted
between −mθ and mθ instead of between −θ and θ . This
difference manifests itself in two ways. First, everywhere in the
appendix of Ref. [4] where � ≡ φL − φR appears, we replace
this with −2mθ . Second, for the calculation of the edge state
properties, the mismatch between the sin θ factor that arises
when mapping back to the original y coordinate [cf. (A2)] and
the sin mθ, cos mθ factors that arise in the solutions of (A3)

and (A4) leads to piecewise constraints when m 	= 1. (A3), for
instance, supports a bound-state solution [4]

χ0(x > 0/x < 0) ∝
[
E(0) ± iκ + �0

E(0) ∓ iκ + �0

]
e∓κx, (A5)

with κ = �0 sin mθ . Using (A2) and (A5), boundedness in the
original y space means that κ/ sin θ = �0(sin mθ/ sin θ ) must
be positive for all θ . This constraint (sin mθ/ sin θ > 0) plus
continuity [χ0(0+) = χ0(0−)] leads to the result (8).

Turning to the continuum bulk states, the charge Qm is
calculated in exactly the same way as in Ref. [4] with the
replacement � ≡ −2mθ in, e.g., their Eq. (A13). The same
considerations that lead to Eq. (A16) in Ref. [4] yield (9).

APPENDIX B: GINZBURG-LANDAU THEORY FOR
EDGES NOT ALIGNED WITH THE CRYSTALLINE AXES

Here we generalize the GL expression (21) to allow for
the possibility of currents along edges that are not parallel
with crystalline axes. Implicit in the appearance of k3 in the
GL free energy density (16) is that it describes the energy
cost associated with a spontaneous current [U(1) phase] along
the y axis and spatial modulation of the amplitude of the
order parameter along x (and vice versa), as would happen
if there was an edge parallel to the y axis (x axis). One can
generalize the definition of k3 to allow for arbitrary orientation
of the amplitude gradient, with the edge and resulting current
perpendicular to this: k3(φ) ≡ ∂2
−1

12 (q,0)/∂q ′
x∂q ′

y , where
q′ ≡ [q ′

x,q
′
y] is rotated by φ with respect to q. This leads to

k3(φ) ≡ sin φ cos φ

[
∂2
−1

12

∂q2
x

− ∂2
−1
12

∂q2
y

]

+ (cos2 φ − sin2 φ)
∂2
−1

12

∂qx∂qy

. (B1)

This describes the current along an edge oriented by an angle
φ with respect to a crystalline axis.

In the vicinity of an edge that is not parallel with a
crystalline axis, we expect the order parameter to reorient itself
to lower gradient energies, meaning that the h1 and h2 that
enter this expression will be different. For an edge not along
an axis of symmetry of the crystal, an additional calculation
would be required to compute the resulting order parameter.
Otherwise, symmetry and energetic arguments can be used
to infer the correct form. As an example, a sin kx + i sin ky

order parameter on a cubic lattice will become sin kx cos ky −
cos kx sin ky + i(sin kx cos ky + cos kx sin ky) in the vicinity of
the [11] edge; that is, it will simply be rotated in momentum
space by π/4. Likewise, assuming that the dx2−y2 + idxy

order parameter on a cubic lattice is rotated by π/4 gives
h1 = sin kx sin ky and h2 = (sin kx cos ky)2 − (cos kx sin ky)2.
The second line in (B1) vanishes for φ = π/4 while the first
line involves a Fermi-surface average of h1(k)h2(k)(v2

x − v2
y),

which also vanishes. Thus, the generalized GL expression (B1)
predicts a vanishing edge current along the [11] edge as well as
the [01] edge for a dx2−y2 + idxy order parameter on a square
lattice. We have also used (B1) to confirm that s + idx2−y2 on a
square lattice supports a current along [11], even though there
is none along [01] [17].
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