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Nature and Raman signatures of the Higgs amplitude mode in the coexisting
superconducting and charge-density-wave state
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We investigate the behavior of the Higgs (amplitude) mode when superconductivity emerges on a preexisting
charge-density-wave state. We show that the weak overdamped square-root singularity of the amplitude
fluctuations in a standard BCS superconductor is converted in a sharp, undamped power-law divergence in
the coexisting state, reminiscent of the Higgs behavior in Lorentz-invariant theories. This effect reflects in a
strong superconducting resonance in the Raman spectra, both for an electronic and a phononic mechanism
leading to the Raman visibility of the Higgs. In the latter case, our results are relevant to the interpretation of the
Raman spectra measured experimentally in NbSe2.

DOI: 10.1103/PhysRevB.90.224515 PACS number(s): 71.45.Lr, 74.20.−z, 74.25.nd

I. INTRODUCTION

The emergence of collective excitations after spontaneous
breaking of a continuous symmetry is the mechanism at the
heart of the mass generation for scalar and vector bosons in
the standard model [1,2]. Its direct analogous in condensed
matter physics is the appearance of two collective modes as
fluctuations of the macroscopic (complex) order parameter
in a superconducting (SC) system [3]. Indeed, amplitude
fluctuations, which are energetically costly, represent the
analogous of the Higgs field, and phase fluctuations, which
are massless at long wavelengths, represent the Goldstone
mode that can be gauged away to make the electromagnetic
field massive, leading to the Meissner effect. Interestingly, the
first experimental evidence of the Higgs particle [2] occurred
simultaneously to a renewed interest in the literature on the
behavior of the Higgs mode in condensed-matter systems [4],
such as, e.g., superfluid cold atoms [5–9], where it can be
excited by shaking the optical lattice [8,9].

On the other hand, in conventional BCS superconductors,
the Higgs mode is usually very elusive, for two concomitant
reasons. From one side, in contrast to Lorentz-invariant
bosonic theories, in BCS superconductors the amplitude
fluctuations do not identify a sharp power-law resonance,
but only a weak square-root singularity at twice the SC
gap � [10,11], that is strongly overdamped by quasiparticle
excitations. Thus, even in a fully gapped superconductor,
the Higgs-mode spectral function is a broad feature peaked
exactly at the edge 2� where also single-particle excitations
start to develop. In addition, in the weak-coupling BCS limit,
the Higgs mode is expected to couple weakly to typical
spectroscopic observables, like the current, probed by means
of optical measurement, and the charge, probed by means
of Raman spectroscopy. Indeed, the Higgs mode is a scalar,
so it does not couple directly to the current, unless disorder
breaks translational invariance [12], and it couples weakly
to the charge, due to the intrinsic particle-hole symmetry
enforced by the BCS solution. Thus, unless one strongly
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perturbs the system out of equilibrium [13–15], the Higgs
resonance remains hidden in conventional superconductors.

An exception to this rule seems to be the case of NbSe2,
a low-temperature superconductor (Tc = 7 K) where super-
conductivity emerges after a charge-density-wave (CDW)
transition at higher temperature TCDW = 33 K. In this material,
a strong resonance in the Raman response [16,17] appears
below Tc at about 2�. As suggested long ago within a
phenomenological model by Littelewood and Varma [18],
and within a more microscopic approach by Browne and
Levin [19], this peak can be assigned to the Higgs mode.
Indeed, according to this interpretation, the preexisting CDW
state provides a soft phonon, Raman active already below
TCDW [20], that below Tc couples also to the Higgs mode.
As a consequence, the phonon response itself carries out a
signature of the SC amplitude mode, that becomes sharp since
it is pushed slightly below the threshold 2� of quasiparticle
excitations. In other words, the current theoretical understand-
ing is that the preexisting CDW state is crucial to provide a
mechanism of Raman visibility of the Higgs mode, but it does
not change its nature.

This interpretation seems to be supported by the recent
observation [17] that no sharp peak appears in the isostructural
superconducting NbS2, which lacks CDW order. On the
other hand, the overall strength of the Higgs resonance in
the experiments is much larger than what was predicted by
the previous theoretical work [18,19], especially when one
takes into account residual damping effects, neglected so far.
In addition, the Higgs signature shows a still unexplained
dependence on the Raman light polarization [17] that could be
used instead to solve the still ongoing debate on the symmetry
of the CDW and SC gaps in this material [21–25].

In this paper, we address the above issues by unveiling the
real character of the Higgs fluctuations in the mixed CDW-SC
state. As a first result, we show that in a CDW superconductor
the CDW contributes crucially to modify the Higgs mode itself,
making its detection easier whatever is the mechanism making
it physically observable. By computing the Higgs mode in
a microscopic CDW+SC model, we show that the presence
of a CDW gap above the SC one pushes the quasiparticle
continuum away from the Higgs pole at 2�, transforming the
weak (overdamped) square-root singularity of a conventional
BCS superconductor in a well-defined power-law divergence.
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Thus, even in the weak-SC-coupling limit, the amplitude
mode in the CDW+SC state resembles closely the one
found in Lorentz-invariant relativistic theories, suitable in
the bosonic limit [5–7]. This result has its own interest in
the current discussion on the nature of Higgs fluctuations
in condensed-matter systems, and it could be further tested
by nonequilibrium spectroscopy, where a direct nonlinear
coupling of the electromagnetic field to the amplitude mode
can be generated [15]. Second, we compute explicitly the
Raman response of the Higgs mode both in the absence
and in the presence of an intermediate CDW phonon. In
the former case, the coupling of the amplitude fluctuations
to the Raman response is not zero when computed in a lattice
mode, but still very small. While in an ordinary superconductor
this would still lead to a negligible visibility of the strongly
overdamped Higgs mode, in the CDW case the modified
Higgs spectral function will emerge naturally as a strong
resonance. In the case where a CDW phonon is also present the
computation of the Raman response requires one to account
for the intermediate electronic processes that make the CDW
phonon itself Raman visible below TCDW. This mechanism
is analogous to the one discussed, e.g., for the Raman-active
phonons in CDW dichalcogenides [26,27] or for the optical-
active phonons in carbon-based compounds [28] and few-layer
graphene [29–31]. When this effect is taken into account,
one finds that the double-peak (phonon+Higgs) Raman struc-
ture emerging below Tc has in general a nontrivial temperature
and polarization dependence. These results suggest that the
recent observations of a polarization dependence of the Higgs
signatures in the Raman spectra of NbSe2 [17] can be used to
disentangle the underlying symmetry of the two CDW and SC
order parameters in this material.

The structure of the paper is the following. In Sec. II, we
introduce the microscopic SC+CDW model and we compute
the Higgs spectral function in the mixed state, showing
its remarkable difference with the case of a conventional
superconductor. In Sec. III, we analyze instead the Raman
response, in the case where the CDW has an electronic
(Sec. III A) or phononic (Sec. III B) origin. In both cases,
we explain all the microscopic mechanisms making the Higgs
and/or the phonon Raman visible, and we stress the effect
of a modified Higgs mode on the Raman response. The final
remarks are discussed in Sec. IV. In Appendix A, we discuss
the differences and analogies between the coupling of the
Higgs mode to the charge density and the Raman density,
respectively. Finally, Appendix B contains some results for the
present model away from half-filling to show the robustness of
our conclusions in a regime where an analytical interpretation
of the numerical results cannot be given.

II. HIGGS MODE IN THE COEXISTING CDW+SC STATE

As discussed in the Introduction, to make progress with
respect to previous work [18,19] we need two ingredients:
(i) an overlap bewteen the SC and CDW gaps and (ii) a lattice
model, crucial to account for the Raman-polarization effects.
To minimize the resulting technical complications, we choose
here a single-band model on the square lattice (lattice spacing
a = 1) with band dispersion ξk ≡ εk − μ = −2t(cos kx +
cos ky) − μ, where t = 1 is the hopping (that fixes the

energetic units from now on) and μ is the chemical potential.
Near half-filling (μ = 0), the nesting of the Fermi surface at
the CDW vector Q = (π,π ) allows for a CDW instability to
occur, with new bands ξ± = −μ ∓

√
ε2

k + D2
0γ

2
k . Here, we

model it with an order parameter D0 = W
∑

kσ 〈γkc
†
kσ ck+Qσ 〉,

where the γk = | cos kx − cos ky | factor modulates the CDW
in the momentum space, so that below TCDW the Fermi
surface consists of small pockets around (π/2,π/2). This
feature is reminiscent of the situation in NbSe2, where ARPES
experiments [21–25] reported the presence of ungapped Fermi
arcs below TCDW. Here, the coupling W can be thought
to originate either from an electronic interaction or from
the coupling to a phonon, as we shall discuss in Sec. II B.
The superconductivity originates from a BCS-type interac-
tion term HSC = −(U/N )

∑
q �

†
�(q)��(q), where ��(q) ≡∑

k c−k+q/2↓ck+q/2↑ is the pairing operator and N is the
number of lattice sites. When treated at mean-field level it leads
to the following Green’s function G−1

0 (k,iωn), defined on the
basis of a generalized 4-component Nambu spinor 


†
k(iωn) ≡

[c†k↑(iωn),c†k+Q↑(iωn),c−k↓(−iωn),c−k−Q↓(−iωn)] that ac-
counts for the CDW band folding:

G−1
0 (k,iωn) ≡ iωn −

(
ĥ −�0σ0

−�0σ0 −ĥ

)
, (1)

where �0 is the SC gap, σi denotes the Pauli matrices, and ĥ

is a 2 × 2 matrix:

ĥ =
(

εk − μ −D0γk
−D0γk −εk − μ

)
. (2)

The eigenvalues of the matrix ĥ represent the two CDW bands
ξ±, while in the SC state the full Green’s function (1) has four
possible poles, corresponding to the energies ±E±(k), with
E± =

√
ξ 2
± + �2

0 . We note in passing that a similar model
(but with d-wave symmetry of the SC order parameter) has
been the subject of intense investigation in the past within the
context of cuprate superconductors, as a potential model for a
CDW-like pseudogap phase [32].

To study the SC fluctuations, we derive the effective action
for the collective modes by means of the usual Hubbard-
Stratonovich decoupling of HSC [33]. After integration of
the fermions, one is left with an action S = SMF + SFL for
the collective SC degrees of freedom only, where SMF =
N�2

0/T U − Tr ln G−1
0 is the mean-field action and SFL[�,θ ]

is the action for the amplitude � and phase θ fluctuations
around the BCS solution (1) above. With respect to the usual
case here the presence of a CDW instability introduces in
general in SFL a finite coupling between the SC fluctuations
at q and q + Q (see Appendix B). However, one can show
that this coupling vanishes at half-filling, so for the sake
of simplicity we will discuss in the following this case. At
the same time, in the SC+CDW state, the amplitude and
phase/charge fluctuations remain decoupled at Gaussian level,
as it occurs in the usual weak-coupling SC state [18,33], so
we can neglect them in what follows (see also discussion
in Appendix A). The Gaussian action for the amplitude SC
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fluctuations then reads as

SFL = 1

2

∑
q

(
2

U
+ χ��(q)

)
|�(q)|2, (3)

where χ�� is the response function for the amplitude operator
�� and q = (q,n), with n bosonic Matsubara frequencies.
The behavior of the amplitude fluctuations is controlled by
the function X�� ≡ 2/U + χ�� in Eq. (3) since 〈|�(q)|2〉 =
1/X��. In analogy with the usual SC case [11], one can replace
the term 2/U = 2

∑
k tanh(βEk/2)/Ek by means of the self-

consistent equation for �0, in order to get

X�� = 2

U
+ χ�� = 2

N

∑
k

(in)2 − 4�2
0

Ek
[
(in)2 − 4E2

k

] tanh(βEk/2),

(4)

where the summation is restricted to the reduced Brillouin zone
and Ek = E± =

√
ε2

k + �2
0 + D0γ

2
k . In first approximation

one can estimate the integral (4) at T = 0 by assuming that both
the density of states N0 and the CDW gap are constant [i.e.,
γk = 1]. In this case, one can easily obtain that, for ω � 2�0,

X′
�� 
 (

4�2
0 − ω2

) N0atan(�0/D0)

ω

√
4D2

0 + 4�2
0 − ω2

. (5)

In the pure SC case (D0 = 0), the denominator diverges as
a square root at ω = 2�0 [11], signaling the proliferation of
single-particle excitations above this threshold, and X′

�� ∼√
4�2

0 − ω2 near the Higgs mass ω = 2�0. In contrast, in the
mixed state the CDW gap pushes the quasiparticle continuum
away from the Higgs mode, leading to a finite denominator
in Eq. (5). This implies a linear vanishing of X′

�� at 2�0

and suppresses its imaginary part �� ≡ −X′′
��. These simple

estimates are confirmed by the numerical calculation done
for the real band dispersion, as shown in Figs. 1(a) and 1(b),
where we report both X′

�� and �� in the two cases, with and
without preformed CDW state. To account also for residual
quasiparticle scattering, we added a finite constant broadening
γ in the response functions. As one can see in Fig. 1(a), in
the SC+CDW state X′

�� vanishes approximately linearly, in
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FIG. 1. (Color online) Frequency dependence of the real (a) and
imaginary (b) parts of the Higgs spectral function (c) at T = 0 in
the presence (SC+CDW) and in the absence (SC only) of CDW, for
a quasiparticle damping γ = 0.016�0 (solid lines) and γ = 0.1�0

(dashed lines). Here, �0 = 0.025, as in Fig. 2.

contrast to the square root of the usual SC case [11] computed
with the same �0, and �� [see Fig. 1(b)] develops smoothly
above 2�0 since only few quasiparticle excitations in the
regions with small CDW gap contribute to it. These two
concomitant effects lead to a dramatic sharpening of the Higgs
spectral function A�(ω) = (1/π )ImX−1

��(in → ω + iO+)

A� ≡ 1

π

��(ω)

X
′2
��(ω) + �2

�(ω)
, (6)

shown in Fig. 1(c) for the case γ = 0.1�. While in the
ordinary SC state we recover the typical overdamped structure
of the amplitude fluctuations, in the CDW+SC state the Higgs
mode becomes a well-defined excitation, rather insensitive to
residual quasiparticle excitations, that are pushed away from
the Higgs pole by the CDW gap. As we show in Appendix B,
the same qualitative features survive also at finite doping, even
if part of the Fermi surface remains ungapped below TCDW.
The strong modifications of the Higgs spectral function shown
in Fig. 1(c), due to the emergence of superconductivity on the
preexisting CDW state, represent the first crucial result of our
work. Indeed, they imply that whatever is the mechanism that
couples the Higgs mode to a physical observable, its detection
in the mixed state becomes easier since the mode itself is much
sharper than in an ordinary superconductor. As an example of
this mechanism, we will discuss in the next section the case of
the Raman response.

III. RAMAN SIGNATURES OF THE HIGGS MODE

A. Electronic mechanism

We first compute the Raman spectra in the case where the
CDW has an electronic origin, so that the Raman visibility of
the Higgs can only be due to a direct coupling between the
SC amplitude fluctuations and the Raman charge fluctuations.
Within the effective-action formalism, the Raman response
can be computed by introducing in the fermionic model
a source term ρR coupled to the Raman density operator
�R(q) ≡ ∑

kσ �(k)c†k−q/2,σ ck+q/2,σ . Here, �(k) is the Raman
vertex, determined by the polarization of the incident and
scattered photon [34]. After integration of the fermions, ρR

appears as an additional bosonic field in the action SFL, that
now reads as

SFL = 1

2

∑
q

{(
2

U
+ χ��(q)

)
|�(q)|2

+ 2ρR(q)�(−q)χR�(q) + |ρR(q)|2χ0
RR(q)

}
. (7)

Here, χAB(q) denotes the response functions computed with
the A,B operators, where R identifies the Raman density �R ,
� the pairing operator ��, and χ0

RR represents the BCS Raman
response function in the absence of the collective modes.
Notice that even if one included explicitly the Coulomb forces
the Raman response here would be unaffected since phase
fluctuations do not couple to the Raman response at q = 0,
while charge fluctuations, that in general screen χ0

RR in the
symmetric A1g channel [34], are ineffective in the present
model since the charge-Raman coupling vanishes exactly
at half-filling because of particle-hole symmetry. Finally,
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the Raman response is obtained by analytical continuation
in → ω + i0+ as SR = − 1

π
[1 + n(ω)]χ ′′

RR(q = 0,ω), where
n(ω) is the Bose-Einstein distribution and χRR is the Raman
susceptibility, computed from Eq. (7) as

χRR(q) =
[

δ2SFL

δρR(−q)δρR(q)

]
ρR=0

. (8)

By integrating out explicitly the amplitude fluctuations in
Eq. (7), we are then left with the Raman response

χRR = χ0
RR − χ2

R�/X��, (9)

where the second term, depicted in Fig. 3(a), is equivalent
to compute the random phase approximation (RPA) vertex
corrections due to amplitude fluctuations [34]. The coupling
of the Higgs to the Raman density is mediated by the fermionic
susceptibility χR�:

χR� = 8�0

N

∑
k

�(k)εk tanh(βEk/2)

Ek
[
(in)2 − 4E2

k

] , (10)

that is finite in the A1g channel where �(k) = (cos kx +
cos ky) ∝ εk. Since in the A1g channel the BCS contribution
χ0

RR is negligible, for this symmetry the Raman response
probes essentially the spectral function A� of the Higgs mode
given by Eq. (6):

χ ′′
RR 
 πχ

′2
R�(ω)A�(ω), (11)

leading to the results of Fig. 2 for the CDW+SC (solid lines)
and SC only (dashed lines) case. As we discuss in detail in
the Appendix A, the coupling χR� of the Raman response
to the Higgs is in general different from the coupling of
the real charge density to SC amplitude fluctuations, that
vanishes at weak coupling due to the approximate particle-hole
symmetry of the BCS solution [18,33]. On the other hand,
in an ordinary SC state even if this is a finite quantity it
multiplies a strongly overdamped Higgs spectral function [see
dashed lines in Fig. 1(c)], so the overall Raman signature
of the Higgs is the broad and weak feature represented by
dashed lines in Fig. 2. This justifies on microscopic grounds
the general expectation [4] that the Higgs mode is irrelevant in
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FIG. 2. (Color online) Electronic Raman response in the A1g

channel in the coexisting (solid lines) and pure (dashed lines) SC
state as a function of temperature. Inset: temperature evolution of the
SC gaps �0 and of the CDW gap D0.

FIG. 3. (Color online) Feynman diagrams representing the elec-
tronic processes responsible for the Raman visibility of (a) the
Higgs mode when g = 0 and (b) the CDW phonon above Tc. Here,
the dashed lines represent the incoming electromagnetic radiation,
the full lines the electronic Green’s functions G0, the red and
green wavy lines the Higgs propagator X−1

��(ω) and the phonon
one D(ω), respectively. In the coexistence state for g �= 0 the two
processes become interconnected since both the phonon propagator
[see Eq. (15)] and the χRD [see Eq. (17)] are renormalized by the
coupling between the Higgs fluctuations and the CDW amplitude
fluctuations.

the Raman spectra of an ordinary superconductor. However,
in a CDW+SC state the situation is radically different since
the spectral function itself of the Higgs mode is sharper than
usual. Thus, even if in the coexisting state the χR� prefactor in
Eq. (11) is smaller than in the usual SC state (see Appendix B),
the modifications of the Higgs spectral function A�(ω) shown
in Fig. 1 lead to the sharp resonance at 2�0(T ) shown in
Fig. 2. In other words, the CDW state is not modifying the
mechanism coupling the Higgs to the Raman probe, but it is
changing dramatically the nature of the Higgs mode itself,
making it detectable.

B. Phononic mechanims

A second possible mechanism that makes the Higgs mode
visible in Raman is the one proposed long ago in the case
of NbSe2 [18,19], where Higgs fluctuations come along with
the CDW phonon. To explore also this possibility we then
consider the case where the CDW instability is driven by the
microscopic coupling of the electrons to a phonon of energy
ω0, HI = g

∑
kσ γkc

†
k+Qσ ckσ (b+

Q + b−Q), so that 4g2/ω0 is
equivalent to the coupling W used so far. At mean-field level,
the description of the CDW+SC state is then identical to the
one of Sec. II, and the SC amplitude fluctuations are described
by the same effective action (3) derived above, leading to
the results of Fig. 1. However, in the calculation of the
Raman spectra, we should account for two additional effects:
(i) the Raman response of the CDW phonon itself [26,27]
and (ii) the coupling between the phonon and the Higgs, that
reflects in a renormalization of the phonon propagator [18,19].
Since all these issues have been discussed only in part in the
previous literature, we will outline the basic steps leading to
the calculation of the Raman response in this case.

Let us first focus on the regime below TCDW but above Tc.
When the CDW is driven by a lattice instability, the energy ω0

of the phonon is renormalized to the value 0 by the amplitude
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FIG. 4. (Color online) Temperature evolution of the phonon
spectral function (a) and of the Raman response (b) of the CDW
phonon between TCDW and Tc = 0.4TCDW.

fluctuations of the CDW [35]. The renormalized phonon
propagator below TCDW is then D−1(in) = −(2

n + 2
0)/2ω0

with

2
0 = ω2

0

[
1 + 2g2

ω0
χDD

]

= 4g2ω0

N

∑
k

γ 2
k

(in)2 − 4D2
0γ

2
k

Ek
[
(in)2 − 4E2

k

] tanh(βEk/2),

(12)

where, in accordance to our notation, the subscript D labels the
CDW amplitude operator �D = ∑

kσ γk(c†kσ ck+Qσ + H.c.).
The second line of Eq. (12) has been derived by using
the self-consistency equation for the CDW gap, i.e., 1 =
(4g2/ω0N )

∑
k[γ 2

k tanh(βEk/2)]/Ek. By comparison with
Eq. (4), one sees that 2

0 scales as the inverse propagator
of the CDW amplitude fluctuations, that is itself massless at
about 4D0 (where the additional factor of 2 comes from the
γk modulation factor). As a consequence, the renormalized
phonon energy also follows the T dependence of the CDW
order parameter, so it vanishes at T = TCDW and it is reduced
with respect to ω0 at T = 0 [35], as shown by the phonon spec-
tral function AD(ω) = −(1/π )ImD(in → ω + iδ) reported
in Fig. 4(a). Notice that, in contrast to previous work [19,35],
we retained here the full frequency dependence of 0, crucial
as T increases and D0 → 0. Thus, the pole of the phonon
propagator is determined self-consistently after analytical
continuation as as a solution of the equation ω2 − 2

0(ω) = 0.
The formation of the CDW state is also responsible for the

Raman visibility of the phonon. Indeed, in analogy with what is
suggested for CDW dichalcogenides [26,27], the particle-hole
excitations at q = 0 probed by Raman couple to the electronic
CDW fluctuations at Q, that in turn can decay in a phonon, as
depicted by the process of Fig. 3(b). The Raman response of
the phonon above Tc is then given by

χRR(in) = −g2χ2
RDD(in) = − 2g2ω0χ

2
RD

2
0 − (in)2

, (13)

where

χRD = 8D0

∑
k

�(k)γ 2
k εk

Ek
[
(in)2 − 4E2

k

] tanh(βEk/2). (14)

In full analogy with the case of the χR� function that makes the
Higgs mode Raman visible, the χRD susceptibility depends on
the combined symmetry of the Raman polarization, controlled
by �(k), the lattice structure, and the CDW symmetry. In
the present case, one can easily see that Eq. (14) is different
from zero only in the A1g channel, where �(k) ∝ εk. Since
χRD scales as the CDW order parameter D0, the overall
temperature evolution of the Raman response (13) of the
phonon, shown in Fig. 4(b), differs considerably from the
one of the spectral function. Indeed, as T → TCDW the χRD

vanishes rapidly [see inset of Fig. 6(a)] and the Raman
response is completely suppressed, in agreement with the
experimental observation in NbSe2 [20]. It is also worth noting
that the crucial role played by the intermediate particle-hole
excitations to control the spectroscopic visibility of a phonon
is a well-known effect in the literature. For example, in the
context of optical conductivity, this is the so-called charged-
phonon effect, originally introduced by Rice for carbon-based
compounds [28], and widely discussed in the last few years
within the context of few-layer graphene [29–31]. In this case,
it has been shown that the strong doping dependence of the
phonon-peak intensity and its Fano-type shape [29,30] can be
explained by computing the optical visibility of the phonon
coming from the process analogous to the one depicted in
Fig. 3, with the Raman vertex replaced in this case by the
current vertex [31].

Below Tc, the opening of the SC gap modifies both the
Raman response, that now includes also the contribution (9)
of the Higgs mode, and the phonon propagator itself, that
gets renormalized by the SC amplitude fluctuations [18,19].
The latter mechanism was proposed originally by Littlewood
and Varma (LV) [18], who introduced a phenomenological
coupling g� between the Higgs and the phonon. By following
the language of LV, one can then write the phonon propagator

D in the mixed state as D−1(n) = −2
n+̃2

0
20

, where ̃2
0 =

2
0[1 − 2��/0] is the phonon energy renormalized by the

coupling of the phonon to Higgs fluctuations, so that ��(ω) =
−2g2

�χ��(ω)/UX��. Since near 2�0 one has χ ′
�� 
 −2/U

while X′
�� → 0, as shown in Fig. 1, the pole of the phonon

propagator determined as usual by ω2 − ̃2(ω) = 0 has a new
solution around the frequency of the Higgs mode [see Figs. 5(a)
and 5(c)]. Once more the nature of the Higgs, encoded in X′

��

and ���, gives qualitative and quantitative differences if one
applies the above phenomenological approach by using the
standard form of the Higgs fluctuations, as done by LV, or the
real one in the coexisting SC+CDW state. These differences
are elucidated in Fig. 5, where we show the renormalized
phonon frequency ̃0 and the phonon spectral function for two
values of the phenomenological coupling g� and a residual
phonon broadening δ = 0.1�0 above Tc. Here, the Higgs
fluctuations in the two cases (SC and SC+CDW) correspond
to the calculations shown in Fig. 1 for γ = 0.1�0. As one
can see, for the same remaining parameters, a weak feature
found for conventional Higgs fluctuations turns out in a strong
feature when the Higgs is computed in the mixed state [37].
Notice that the crucial role of the residual damping γ has been
neglected so far [18,19], while it is certainly present in real
materials and suppresses the signature of a conventional Higgs
mode even when the coupling to the phonon moves it inside the
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FIG. 5. (Color online) Renormalization of the phonon frequency
(a), (c) and of the phonon spectral function AD (b), (d) due to the
Higgs mode according to the phenomenological approach by LV [18],
where the phonon self-energy is �� = −2g2

�χ��/UX��. The Higgs
fluctuations X�� are computed in the two cases, with (solid red lines)
or without (dashed blue lines, as done in Ref. [18]) a preformed CDW,
and correspond to the data of Fig. 1 for γ = 0.1�0. Here, the CDW
phonon has energy 0 = 4�0 and δ = 0.1�0, leading to the spectral
function at T > Tc shown by the thin orange line in panels (b) and
(d). When entering the SC phase, the phonon peak at 0 gets broader
and slightly displaced, while a second peak develops below 2�0 due
to the Higgs self-energy ��, that causes a second intersection for the
curve ω2 − ̃2

0 in the inverse phonon propagator.

quasiparticle continuum. Thus, already this phenomenological
approach shows that it is crucial to retain the real nature of the
Higgs mode in the coexisting state in order to explain the
strong signatures observed experimentally [17].

As shown later on by Browne and Levin (BL), the
effective coupling g� between the phonon and the Higgs arises
microscopically from the coupling between the amplitude
fluctuations of both the CDW and SC order parameters, so
that the phonon propagator below Tc reads as

D−1(in) = −2
0 − (in)2 − 2g2ω0χ

2
D�/X��

2ω0
, (15)

where the function

χD� = −8D0�0

∑
k

γ 2
k

Ek
[
(in)2 − 4E2

k

] tanh(βEk/2) (16)

is the one that mediates the effective coupling between the
phonon and the Higgs fluctuations. It is worth noting that in
their paper, BL use a model where the SC and CDW order
parameters coexist only on some fraction η (γ in the notation
of Ref. [19]) of the Fermi surface. In the limit when η → 0,
BL notice that their result reproduces the one by LV: indeed, in
this limit the Higgs mode is the standard one since in Eq. (5)
above there is no CDW gap above the SC one to push the
quasiparticle continuum away from the Higgs pole. When
instead η increases, BL observe some numerical difference
with respect to the results of LV, that they incorrectly attribute
to a larger value of the effective coupling to the phonon, i.e.,
the function χD� in Eq. (16). However, this is not the case:
indeed, even if a larger overlap between the SC and CDW order
parameters leads to an increase of χD�, the stronger effect
in the formation of the coexistence state is in the profound
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FIG. 6. (Color online) Raman response in the A1g channel in the
mixed CDW+SC state according to Eq. (17), both in the presence
(a) and in the absence (b) of the direct Raman coupling to the Higgs,
encoded in χR�. The double-peak structure found below Tc in the
phonon spectral function, shown in panel (c) is weighted in the Raman
response by the two polarization functions χR� and χRD . Their value
at ω = 0 is shown in the inset of panel (a), along with the coupling χD�

between the two order parameters responsible for the Higgs signature
in the phonon mode. (d) Temperature evolution of the Raman spectral
weight integrated between ω = 0 and 0.15, for the two cases of panels
(a) and (b).

modification of the Higgs spectral function. This is clearly
shown in Fig. 5, where the two cases (Higgs mode computed
with or without the CDW gap) are compared by keeping the
same effective coupling g� of the phonon to the Higgs.

Once clarified the role of the modified Higgs fluctuations
on the phonon spectral function, we now present the results
for the Raman response in the coexisting state. As one can
easily see, the coupling (16) between the two order parameters
renormalizes also the intermediate process χRD making the
phonon Raman visible, so that the full Raman response reads
as

χRR = − χ2
R�

X��

− 2g2ω0
[
χRD − χR�χ�D

X��

]2

2
0 − (in)2 − 2g2ω0χ

2
D�/X��

, (17)

where the first term corresponds to the response (9) of the
Higgs alone and the second one accounts for the response (13)
of the phonon mode, renormalized by the Higgs fluctuations
according to Eq. (15). The temperature evolution of the Raman
spectra is shown in Fig. 6(a) for the �0, D0 appearing in Figs. 1
and 2. In agreement with the discussion above, the phonon
spectral function, shown in Fig. 6(c), shows a double-peak
structure evolving with temperature, one around 0 and one
below 2�0, that is the signature of the Higgs mode. However,
the way these two peaks appear in the Raman response depends
crucially on the polarization functions χRD and χR� [see
Figs. 6(a) and 6(b)]. In particular, by comparing the results
of Fig. 6(a) with the ones in Fig. 6(b), where we put by hand
χR� = 0, one sees that the direct coupling χR� of the Higgs
to the light is crucial to establish the Raman spectral-weight
distribution below Tc. Indeed, when χR� = 0 the Higgs feature
at T = 0 is stronger than in the case of χR� �= 0, shown
in Fig. 6(a), and the broadening of the phonon peak is also
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smaller. Both effects are due to the vanishing of the second
term in square brackets of Eq. (17), that partly screens out the
response at the Higgs when present. Nonetheless, the increase
of the Raman spectral weight integrated up to ω 
 0.15, shown
in Fig. 6(d), is larger when χR� �= 0, due to a larger broadening
of the phonon in this case. Notice also that from Eq. (17) one
immediately sees that the peak at the Higgs due to the first
term of Eq. (17), and represented in Fig. 2 for the case g = 0,
cancels out here with the second term. Thus, in this case the
Higgs becomes visible only through its coupling to the phonon,
but its direct visibility χR� still influences the overall shape of
the Raman spectra.

The crucial difference between the behavior of the Ra-
man response and the behavior of the phonon propagator
in a phonon-induced CDW transition has been completely
overlooked in the previous work [18,19]. For example, the
claim usually done [18,19] that the transfer of spectral weight
between the two peaks in the phonon spectral function AD

must be found also in the Raman spectra is not correct. In
general, this is not the case, as the comparison between the
Figs. 6(a)–6(c) clearly demonstrates. This simple fact can
also be used to explain the polarization dependence of the
Higgs signatures reported recently in NbSe2 [17]. Indeed, even
though our model is not intended to give a realistic description
of NbSe2, nonetheless some general conclusions can be drawn
from our results that can be used to interpret the Raman
experiments. The general results of our calculations in the case
of a phonon-mediated Higgs response can be summarized in
two separate items. First, the overlap bewteen the CDW and
SC order parameter in part of the Fermi surface is necessary to
give rise to a finite χD� function in Eq. (16), that controls the
effective coupling between the CDW phonon and the Higgs
[see Eq. (15)]. In turn, larger is the fraction of Fermi surface
where the overlap occurs and stronger is the enhancement of
the Higgs mode itself, shown in Fig. 1, that helps its visibility.
Second, both the phonon and the Higgs become Raman
visible through intermediate electronic processes, given by
χRD and χR�, respectively (see Fig. 3). These two functions
depend on the combined symmetry of the (CDW or SC) gap
and of the Raman light polarization. Thus, different Raman
symmetry will give in general a different result since both
functions will acquire a specific frequency and temperature
dependence. As a consequence, the differences observed
experimentally in NbSe2 by means of the various Raman
symmetries [17] can be used to extract specific information on
the response functions χRD and χR�, and in turn on the gaps
themselves.

IV. DISCUSSION AND CONCLUSIONS

This work focuses on two different problems: the nature
of the Higgs mode in the coexisting CDW+SC state, and the
issue of its detection in Raman spectroscopy. The first result,
discussed in Sec. II, is that in the coexisting CDW+SC state the
CDW gap pushes the quasiparticle excitations away from the
Higgs pole. Thus, in contrast to the usual SC case, the Higgs
mode presents a sharp spectral function, whose detection can
be easier, whatever is the mechanism that couples it to a
physical observable. It is also interesting that the power-law
divergence of the amplitude fluctuations at twice the SC gap

value resembles the behavior of the Higgs mode predicted in
relativistic O(N ) theories [5–7], that are expected to work for
superfluids or strongly coupled superconductors. A possible
way to test directly our prediction could be, for example,
an out-of-equilibrium optical experiment, where a nonlinear
coupling of the current to the Higgs can be generated [15].
Indeed, in this case we expect that the strongly reduced
damping of the Higgs mode in the coexisting state will lead
to a much slower decay of the amplitude oscillations with
respect to the conventional superconductors investigated so
far [13,15]. It is worth noting that the mechanism outlined
here can also have a potential impact on the detection of
the Higgs mode in other families of superconductors. For
example, in cuprate superconductors, where signatures of
a 2�0 oscillation in out-of-equilibrium spectroscopy have
been also reported [14], the pseudogap in the quasiparticle
excitations present already above Tc could contribute to
enhance the Higgs fluctuations. Indeed, as mentioned above,
a model similar to the one studied in this paper has been
studied long ago as a simplified phenomenological description
of a CDW-like pseudogap phase [32]. The quantitative effect
on the Higgs should be, however, estimated within realistic
models since in these materials the quasiparticle continuum
extends up to zero frequency due to the d-wave nature of
the order parameter. Finally, it can be worth exploring also
the nature of the Higgs fluctuations in the coexisting spin-
density-wave and superconducting state, a situation realized
nowadays is some families of iron-based superconductors
[38].

The second part of the paper focuses on the Raman detection
of the Higgs mode. Here, the final results depend crucially
on the nature of the CDW instability itself, as due to an
electronic interaction or to the coupling to a phonon. In the
former case, one probes directly the Higgs spectral function,
so a signature at 2�0 appears in the Raman response, while
in the latter case the Higgs signature moves below 2�0 due to
the coupling to the phonon. In both cases, one sees that when
damping effects, neglected in the previous literature [18,19],
are taken into account, it is crucial to consider the modified
nature of the Higgs mode in the coexisting state in order to
resolve the Higgs signatures in the experiments. Moreover, we
clarified how the Raman response depends crucially on the
intermediate electronic processes that make the Higgs or the
phonon Raman visible. This issue, that is often overlooked
in the literature [4,18,19], explains the origin of the direct
Raman visibility of the Higss and the transfer of spectral
weight between the phonon and Higgs peak. In particular,
we suggest that our results can be used as a guideline to infer
useful information on the still unsolved issue of the symmetry
of the CDW and SC gaps in NbSe2.
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APPENDIX A: COUPLING OF THE HIGGS MODE TO
RAMAN IN A LATTICE MODEL

In this Appendix, we clarify the role played by the
intermediate electronic process χR� that couples the Higgs
mode to the Raman charge density [see Fig. 3(a)]. In particular,
we show that at weak SC coupling the coupling of the
SC amplitude fluctuations to the Raman charge fluctuations
(χR�) or to the real charge fluctuations (χρ�) can be different
from each other. Such a difference is crucial since these two
quantities play, as we shall see, a quite different role.

Let us first discuss the coupling of the Higgs mode to real
charge fluctuations in an ordinary SC, i.e., without preformed
CDW state. By means of the standard definition of charge
operator ρ(q) ≡ ∑

kσ c
†
k−q/2,σ ck+q/2,σ , one can easily find the

well-known [33,36] result that

χρ� = 4�0

N

∑
k

ξk tanh(βEk/2)

Ek
[
(in)2 − 4E2

k

] , (A1)

where ξk = εk − μ is a generic band dispersion and Ek =√
ξ 2

k + �2
0 . In the weak-coupling limit, the above integral is

dominated by the region around the Fermi level ξk = 0. As a
consequence, for any band structure one can assume that the
above integral vanishes because of the particle-hole symmetry
of the integration limits enforced by the BCS solution, that
allows one to put χρ� 
 N0�0

∫ ∞
−∞ dξ ξ/[

√
ξ 2 + �2

0(ω2 −
4ξ 2 − 4�2

0)] = 0. In general, the particle-hole symmetry of
the fermionic bubbles in the BCS limit is also evocated to
guarantee that amplitude and charge/phase fluctuations are
uncoupled at Gaussian level, as we mentioned above Eq. (3),
allowing one to study the amplitude sector independently from
the charge one. The situation is instead radically different at
strong coupling, as discussed, e.g., in Refs. [33,36].

When one computes instead the coupling of the
Higgs mode to the Raman charge fluctuations ρR(q) ≡∑

kσ �(k)c†k−q/2,σ ck+q/2,σ one should consider the additional
momentum modulation of the charge provided by the
polarization-dependent factor �(k). Thus, even remaining
within a BCS scheme χR� can be different from zero even if
χρ� 
 0. This can be seen easily in our model, where the two
quantities χR� and χρ� at half-filling are given, respectively,
by Eq. (10) and

χρ� = 4�0

N

∑
k

εk tanh(βEk/2)

Ek
[
(in)2 − 4E2

k

] , (A2)

where now Ek =
√

ε2
k + �2

0 + D0γ
2
k . As a consequence in our

case, where the band structure is particle-hole symmetric, at
half-filling χρ� is exactly zero and it remains negligibly small
away from it. On the other hand, as we mentioned in the text,
in the A1g channel where �(k) = (cos kx + cos ky) ∝ εk the
integral (10) that defines χR� is finite. Indeed, for a constant
CDW gap, Eq. (A2) at T = 0 can be approximately estimated
as χρ� ∼ �0N0

∫
dε ε/[

√
ε2 + R2(ω2 − 4ε2 − 4R2)] = 0

while χR� ∼ �0N0
∫

dε ε2/[
√

ε2 + R2(ω2 − 4ε2 − 4R2)] �=
0, where R2 = �2

0 + D2
0. Notice that to appreciate this

difference, it is crucial to retain a full lattice description of the
problem, that has been neglected in the previous theoretical
approach [18,19].
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FIG. 7. (Color online) Real part of the Raman response function
χR� at T = 0 in the pure SC and in the coexistence SC+CDW state
for a residual γ = 0.1�0, as in Figs. 1 and 2. As one can see, in
the mixed CDW+SC case χ ′

R�, that appears as a prefactor in the
Raman susceptibility (11), is featureless at the frequency 2�0 where
the Higgs spectral function shown in Fig. 1(c) has a maximum.

In summary, in our description of the CDW+SC state, we
can still safely neglect all the complications [33,36] of the
coupling between the amplitude mode and the charge density
one since we are still in a weak-coupling scheme where χρ� 

0 at all dopings, but we can retain a finite coupling of the Higgs
to the Raman probe, encoded in χR� �= 0. In this respect, the
general claim done in Ref. [4] that the Higgs mode is decoupled
by the Raman spectra because of particle-hole symmetry is
formally uncorrect. However, it is still true that χR� is a small
quantity, so when the Higgs is an overdamped mode, as in
an ordinary superconductor, the overall effect of amplitude
fluctuations on the Raman response will be negligible (see
dashed lines in Fig. 2). In the CDW+SC state instead the
modifications of the Higgs spectral function A� can make
this small coupling χR� crucial, leading to the strong Raman
response represented by the solid lines in Fig. 2. We notice
also that the enhancement of the Raman response in the mixed
state occurs here despite the fact that χR� itself is smaller in
the coexisting state, as shown in Fig. 7, due to the presence of
the CDW gap. In other words, as we emphasized above, the
crucial role of the CDW for what concerns the Raman response
is not to enhance the visibility itself of the Higgs, encoded in
the electronic process χR� (that is indeed even suppressed).
The CDW changes crucially the nature of the Higgs spectral
function, making the Higgs detectable even in the presence of
a small coupling to the Raman light.

APPENDIX B: VARIATION OF THE HIGGS
MODE WITH DOPING

To elucidate the effect of the CDW gap on the Higgs
mode in the case where a larger part of the Fermi surface
remains ungapped below TCDW, we show here the analogous
calculations of Fig. 2 of the paper away from half-filling. In our
model, the CDW gap decreases when one moves away from
half-filling, due to the lack of perfect nesting. If one keeps the
SC coupling U fixed, this reflects also in a rapid increase of the
SC order parameter at T = 0, as shown in Fig. 8(a). However,
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at T = 0 in the case of a constant (a) or varying (b) SC coupling U .
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at μ = 0 (see inset), in order to reproduce a weaker increase of �

with doping.

in order to make the comparison between different dopings
meaningful, we decided here to reduce also U with doping,
in order to retain an almost constant SC gap [see Fig. 8(b)].
This allows one to compare the effects on the Higgs mode due
only to the increase of the quasiparticle contribution starting
at 2�0, while keeping �0 almost fixed.

As mentioned in Sec. II, when one moves away from
half-filling the general form of the effective action is more
complicated than Eq. (7) since one should retain in principle
also the coupling of the amplitude mode at q = 0 and Q. One
can then show that the Raman response reads as

χRR(q) = [
M0

RR(q) − M�R(q)M−1
��MT

�R(−q)
]

11, (B1)

where the matrices M0
RR , M�R , and M�� correspond to the

BCS term, to the Higgs-Raman coupling, and to the Higgs
fluctuations, respectively, with

M0
RR(q) ≡

[
���

3333(q) ��̃�
1333(q)

���̃
3313(q) ��̃�̃

1313(q)

]
, (B2)

M�R(q) ≡
[
��

0133(q) ��
1133(q)

��̃
0113(q) ��̃

1113(q)

]
, (B3)

M��(q) ≡
[

2
U

+ �0101(q) �1101(q)

�0111(q) 2
U

+ �1111(q)

]
. (B4)

The fermionic susceptibilities �ijkl(q) are defined as

�ijkl(q) ≡ T

N

∑
k

Tr[G0(k + q)σi ⊗ σjG0(k)σk ⊗ σl],

(B5)

and the superscripts �,�̃ refer to the insertion of a Raman
vertex �(k) or �̃(k) ≡ �(k + Q/2).

The element [M��]11 ≡ X�� corresponds at half-filling
to the inverse Higgs propagator given by Eq. (5). Moreover,
at μ = 0 in the A1g channel the off-diagonal elements of both
M�R and M�� vanish, and one is left with the Eq. (9) of
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FIG. 9. (Color online) Frequency dependence of the real (a) and
imaginary (b) parts of the inverse amplitude mode at T = 0 for
different doping levels. In the CDW+SC state (solid lines) the gaps
are taken from Fig. 8(b), while in the pure SC case (dashed lines) U is
tuned to have the same �0 at T = 0. The resulting Raman response is
shown in panel (c), while panel (d) shows the Raman-Higgs coupling
function, that is always smaller in the coexistence state.

Sec. II above. At μ �= 0, we computed the full expression (B1),
even though we verified that the main contribution of the Higgs
fluctuations to the Raman response comes from X��, whose
real and imaginary parts are displayed in Figs. 9(a) and 9(b).
As one can see, even though at finite filling a finite Fermi
surface exists above Tc, leading to a larger contribution of
the quasiparticle continuum above 2�0, still the Higgs mode
preserves a strong relativistic character near the pole, with
a progressively larger damping above it. Thus, when one
compares again the results in the pure SC and in the mixed
CDW+SC state [Fig. 9(c)], in the latter case the Higgs spectral
function leads to a stronger feature in Raman. In full analogy
with the case of Fig. 2, this enhanced Raman response is not
due to the prefactor, represented in the case of Eq. (B1) by
the matrix M�R , whose largest contribution χR� ≡ [M�R]11

is shown in Fig. 9(d). Once more, the enhancement of the
response in the mixed state reflects the enhancement of the
Higgs fluctuations due to the preformed CDW gap, even when
this leaves a larger part of the Fermi surface ungapped. We
checked that the present results hold also when the Coulomb
interaction is explicitly taken into account since both the
BCS term M0

RR and the screening term coming from charge
fluctuations [34] are always much smaller than the contribution
of the Higgs. Finally, we note that even though this paper is
not intended to give a quantitative description of NbSe2, the
persistent anomalous character of the Higgs mode with doping
shown in Fig. 9 is an encouraging suggestion that the same
results will hold also with a more general band structure as
the one of NbSe2, where finite portions of the Fermi surfaces
are ungapped by the CDW. In addition, Fig. 8(b) shares
also some similarity with the experimental phase diagram
under pressure of NbSe2 [39,40], suggesting that the present
approach could also be used in the future for a qualitative
understanding of the evolution of the Raman spectra under
pressure.
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