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On the basis of coupled Ginzburg-Landau equations we study nonhomogeneous states in systems with two
order parameters (OPs). Superconductors with a superconducting OP � and a charge- or spin-density wave with
amplitude W are examples of such systems. When one OP, say �, has a form of a topological defect, like, e.g.,
a vortex or domain wall between the domains with the phases 0 and π , the other OP W is determined by the
Gross-Pitaevskii equation and is localized at the center of the defect. We consider in detail the domain-wall
defect for � and show that the shape of the associated solution for W depends on temperature and doping (or
on the curvature of the Fermi surface) μ. It turns out that, provided the temperature or doping level is close to
some discrete values Tn and μn, the spatial dependence of the function W (x) is determined by the form of the
eigenfunctions of the linearized Gross-Pitaevskii equation. The spatial dependence of W0 corresponding to the
ground state has the form of a soliton, while other possible solutions Wn(x) have nodes. The inverse situation
when W (x) has the form of a topological defect and �(x) is localized at the center of this defect is also possible. In
particular, we predict a surface or interfacial superconductivity in a system where a superconductor is in contact
with a material that suppresses W . This superconductivity should have rather unusual temperature dependence
existing only in certain intervals of temperature. Possible experimental realizations of such nonhomogeneous
states of OPs are discussed.

DOI: 10.1103/PhysRevB.90.224512 PACS number(s): 71.45.Lr, 71.55.−i, 74.81.−g, 74.72.−h

I. INTRODUCTION

Materials with two order parameters (OPs) have long
been known. For example, superconductivity in stoichiometric
ternary compounds ErRh4B4 and MxMo6S8 (with M meaning
Ho, Dy, or Er and x = 1 or 1.2) coexists with a helical magnetic
order [1]. In the last decades interest in the systems with two
OPs has increased drastically in connection with the discovery
of high-Tc superconductors (see, e.g., [2–8]). Very recently,
it has been experimentally established that, in cuprates, the
superconducting OP � coexists with a state with a charge
modulation (see recent papers [9–18] and references therein).

In another class of recently discovered superconductors—
the so-called Fe-based pnictides—superconductivity may co-
exist with a spin-density wave (SDW) (for a review see
Refs. [19,20]).

Coexistence of OPs of different types results in several
interesting phenomena. One can mention the enhancement of
the London penetration depth [21–23], the peak in the specific-
heat jump [24,25] at the doping level at which the SDW is
formed, and the peculiar dynamics of the OPs (see recent
papers [26,27] and references therein).

Nonhomogeneous states in systems with two OPs are
also very interesting and unusual. For example, a CDW
arises in the center of vortices in cuprates [28]. Nonho-
mogeneous states in superconductors may arise even in the
absence of magnetic field. For example, Fulde-Ferrel-Larkin-
Ovchinnikov (FFLO) states may appear in superconductors
in the presence of an exchange field [29] and the so-
called amplitude solitons can be energetically favorable in
conductors with CDWs or SDWs. The latter have been
predicted in Refs. [30,31] and observed in Ref. [32] in systems
with a single OP—in quasi-one-dimensional conductors with
a CDW.

Amplitude solitons in systems with a CDW mean that the
amplitude W (x) of the CDW drops to zero at some point, and
a local energy level ε0 arises in the system [33]. For example,
if W = W∞ tanh(x/

√
2ξw), the phase χ of W changes from

χ = 0 at x = ∞ to χ = π at x = −∞. The energy level ε0

may vary in time when a sufficiently high current passes
through the system. In this case, the stationary state is
unstable and one deals with a dynamical amplitude soliton
with ε0(t) [34]. Another case of a nonstationary (moving)
soliton was studied in a recent work [35,36]. In both cases,
the structure of the amplitude soliton can be found analytically
from a solution of microscopic equations [34,35]. It is relevant
to mention the stripes in high-Tc superconductors [37–41]
that are higher-dimensional relatives of the solutions of
Refs. [30,31].

Fulde-Ferrel-Larkin-Ovchinnikov states in superconduc-
tors coexisting with other OPs, such as CDW or SDW, were
studied recently in several works [42,43]. In particular, it has
been pointed out in Ref. [43] that the states similar to the FFLO
state are possible in superconductors competing with CDW or
SDW. Note that another type of nonhomogeneous states in
systems with two OPs has been studied in Refs. [44–46] using
the so-called Brazoskii-type model [47]. In particular, it has
been shown that a “glassy” phase may arise in these systems.

However, the FFLO-like state may arise, e.g., in Fe-based
pnictides, only at low enough temperatures T when the
dependence of W on the curvature μ is a multivalued func-
tion [48–50] which is in a full analogy with superconductors
with an exchange field h. In the latter case, the dependence
�(h) at low T is a multivalued function in a certain interval of
h [29]. Spatial dependence of � and W can be described
by a generalized Eilenberger equation complemented by
self-consistency relations [50] but their analytical study is not
simple.
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In this paper, we analyze nonuniform states of the OPs on
the basis of the Ginzburg-Landau (G-L) equations that are
considerably more transparent than the Eilenberger equation.
We are interested in nonuniform states corresponding to
topological defects. We concentrate here on one-dimensional
structures and consider the dependence only on one coordinate
x. This means that we consider a situation when the supercon-
ducting OP � changes its phase from 0 to π across this defect,
while the amplitude of the CDW (or SDW) W (x) is localized
at the center of the defect decaying to zero away from this
point. Of course, the opposite situation is also possible, i.e.,
when the function W (x) changes sign having opposite values
at −∞ and ∞ and �(x) is a localized function.

Using a system of coupled Ginzburg-Landau equations we
show that, while the superconducting OP may vary in space
as �(x) = �∞ tanh(x/

√
2ξs), the form of the amplitude W (x)

depends on temperature or doping. It is described by the Gross-
Pitaevskii equation resulting in a peculiar quantization of the
solutions for W (x). The function W0(x) corresponding to the
ground state has the form of a soliton whereas the functions
Wn(x) corresponding to excited states have nodes.

In the opposite case, when a solution W (x) =
W∞ tanh(x/

√
2ξw) is brought about, the superconducting OP

� is localized near the point x = 0 and changes its form with
variation of temperature in a rather unusual way.

The nonuniform states considered in this paper may arise in
the bulk, near the surface, or in heterostructures consisting of
materials with two OPs. In the latter cases such states appear
necessarily because of boundary or matching conditions
imposed on the OPs. Note that the interesting and novel
phenomena arising at the surface or in heterostructures are
already known. A new type of superconductivity (triplet odd
frequency) in a superconductor/ferromagnet bilayer in the
ferromagnet [51] and the appearance of bound edge states
with possible formation of Majorana fermions at the surface
of superconductors [52] are remarkable examples of these
phenomena.

II. FREE-ENERGY AND GINZBURG-LANDAU
EQUATIONS

We consider a model which is described by the G-L
equations. As has been shown in Ref. [27], it is applicable
to quasi-one-dimensional superconductors with a CDW and
to two-band superconductors with a SDW. The latter model
has been developed in detail in Refs. [48,49] for Fe-based
pnictides. After certain modification, this model can be applied
also to cuprates [27]. On its basis, one can derive G-L equations
for the OPs � and W . We neglect space variations of the phases
of � and W and consider these OPs as real quantities.

To make the physical meaning of the coefficients in the G-L
expansion more transparent, we write the G-L equations first
for the case of superconductors with a CDW (or SDW). In the
notation of Refs. [48,49], these equations have the form

−ξ 2
s ∇2� + �

[
W 2s2m + �2s3 − ln(Ts/T )

] = 0, (1)

−ξ 2
w∇2W + W

[〈
2μ2s1m

〉 + W 2s3m

+ �2s2m − ln(Tw/T )
] = 0, (2)

where ξ 2
s,w are the coherence lengths (at low temperatures) for

� and W , respectively, and Ts,w are, respectively, the critical
temperatures for the transition into the pure superconducting
state or into a state with a CDW or a SDW only. In other
words, Tw is the critical temperature for the transition into
the charge-ordered state in absence of � and μ, while Ts is
the superconducting transition temperature in absence of W .
The angle brackets mean the angle averaging (in Fe-based
pnictides) or integration along the sheets of the Fermi surfaces
in quasi-one-dimensional superconductors. The functions s1m,
s2m, etc., are functions of the normalized curvature (see the Ap-
pendix) m = μ/(πTs) and μ = μ0 + μϕ cos[(p2

y + p2
z )1/2a] is

a curvature in quasi-one-dimensional superconductors with a
doping-dependent value of μ0. It is assumed that the Fermi
surface of these superconductors consists of two slightly
curved sheets which are perpendicular to the x axis [27]. In the
case of Fe-based pnictides, μ = μ0 + μϕ cos(2ϕ) is a quantity
that describes an elliptic (μϕ �= 0) and circular (μϕ = 0) Fermi
surface of electron and hole bands [48,49]. All quantities—�,
W , and μ—are measured in units of πTs . The expressions for
the coefficients in the G-L expansion accounting for impurity
scattering have been calculated in Ref. [53] (see also Ref. [53]).

Replacing the derivative ∇ → ∇ − i2πA/�0, one can use
Eqs. (1) and (2) to describe vortices in superconductors with a
CDW [54], where �0 is the magnetic flux quantum and A is
the modulus of the vector potential of a magnetic field.

As it is seen from Eq. (2), the critical temperature Tw

depends on doping, i.e., on the parameter μ. We choose this
parameter μ = μc in such a way that Tw(μc) = Ts . This means
that at T = Ts the quantities � = W = 0 and, thus, μc obeys
the equation 〈

2μ2
cs1m(μc)

〉 = ln(Tw/Ts) ≡ ln r, (3)

where r = Tw/Ts and μc is a function of two parameters, i.e.,
μc = μc(μ0,μϕ).

Then, we expand the function s1m(μ,T ) in the devi-
ations δ[μ2] = μ2 − μ2

c and δT = Ts − T , thus obtaining
s1m(μ,T ) = s1m(μc,Ts) + β1δT + 〈β2δ[μ2]〉, and use Eq. (3)
to obtain equations in a general standard form (assuming that
all the functions depend only on one coordinate x):

−ξ 2
s �′′ + �[−as + bs�

2 + γW 2] = 0, (4)

−ξ 2
wW ′′ + W [−aw + bwW 2 + γ�2] = 0, (5)

with �′ and W ′ as well as �′′ and W ′′ denoting the first
and second derivatives with respect to x, respectively. These
equations determine extrema of the free-energy functional:

F = 1

2

∫
dx

{
ξ 2
s �′2 − as�

2 + bs

2
�4 + γ�2W 2

+ ξ 2
wW ′2 − awW 2 + bw

2
W 4

}
(6)

with respect to � and W , and the corresponding coefficients of
the G-L expansion are related to variables in Eqs. (1) and (2)
via as = η, bs = s3 � 1.05, aw = η(1 − β1) − 〈β2δ[μ2]〉,
bw = s3m, and γ = s2m, where η = 1 − T/Ts . The expressions
for β1,2 are given in the Appendix.

The coupled G-L Eqs. (4) and (5) are, of course, not
new and have been used long ago in, e.g., Ref. [55] for
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studying competition between superconductivity and CDW
in the presence of disorder or commensurability.

III. SOLITONLIKE SOLUTIONS AT QUANTIZED
TEMPERATURES AND DOPING

Our aim now is to find new nontrivial inhomogeneous
solutions of Eqs. (4) and (5). For simplicity, we consider the
case when the last term in Eq. (4) can be neglected, which is
legitimate when the coupling constant γ or a small amplitude
W is small (we will see that at temperatures T or doping
level μ near some critical values TN and μN the amplitude W

is indeed small). In the zero-order approximation we obtain
for �(x)

−ξ 2
s �′′

0 + �0
[
�2

0bs − as

] = 0. (7)

Equation (7) has the well-known nonuniform solution (see, for
example, Ref. [56])

�0(x) = �∞ tanh(κsx), (8)

where �∞ = √
as/bs and κ2

s = as/2ξ 2
s . This equation de-

scribes, for instance, the behavior of �(x) in the vicinity of an
S/N interface at the superconductor side, where N is a normal
metal with a strong depairing. We consider this solution in an
infinite superconductor.

Substituting this expression into Eq. (5), we obtain an
equation for the amplitude of the CDW or SDW:

ξ̃ 2
wW ′′ + W [E + Uw cosh−2(κsx)] = gW 3, (9)

where E = awbs − asγ , Uw = asγ , g = bsbw, and ξ̃ 2
w = ξ 2

ws3.
These quantities may be written in notations used for quasi-
one-dimensional superconductors and Fe-based pnictides as
E = η[s3(1 − β1) − s2m], Uw = ηs2m, g = s3s3m. Equation (9)
for spatial variation of the CDW amplitude W has the form of
the well-known Gross-Pitaevskii equation [57,58]. Solutions
of this equation can be written rather easily in limiting cases.
We consider the simplest situation when the right-hand side of
Eq. (9) is small, i.e., gW 2 � Uw.

We are interested in solutions with �(x) given by Eq. (8)
and W (x) decaying to zero at x → ±∞. In particular, the
solution for W (x) may have the form of a soliton. Such a state
with a finite � and zero W at infinity is stable if the condi-
tions ∂2F/∂�2 > 0 and ∂2F/∂W 2 > 0 at � = �∞ �= 0 and
W = 0 are satisfied. One can see that ∂2F/∂�2|W=0 ∼ bs is
always positive and ∂2F/∂W 2|W=0 ∼ aw − asγ /bs ∼ −E/bs

is positive if the quantity E is negative. We will see that, only
at negative E , Eq. (9) has a solution in the form of a soliton.

In zero-order approximation we obtain for W0

ξ̃ 2
wW ′′

0 + W0[E + Uw cosh−2(κsx)] = 0. (10)

This equation is integrable and its solutions ψn corresponding
to a discrete spectrum of En are expressed in terms of
hypergeometric functions [59]. In our notations, the “energy”
levels of the discrete spectrum are given by [59]

En = −asbs

ξ 2
w

8ξ 2
s

[
−(1 + 2n) +

√
1 + 8γ ξ 2

s

ξ 2
wbs

]2

, (11)

and their maximal number nmax is determined by
2nmax �

√
1 + 8γ ξ 2

s /ξ 2
wbs − 1. Note that in Fe-based pnic-

tides ξs/ξw � Tw/(Tss3m) = r/s3m in the ballistic case.
We expand the correction δW to the zero-order solution W0

in terms of the normalized eigenfunctions ψn of the operator
L̂ = −ξ̃ 2

w∂2
xx − Uw cosh−2(κsx). These functions obey the

equation

L̂ψn = Enψn. (12)

Solutions of Eq. (9) can be written explicitly if the quantity
E = E(η,δ[μ2]) is close to a certain energy level En, say to
EN , such that E � EN = E(ηN,δ[μ2

N ]) (in the language of the
original electronic model, the “temperature” η or doping δ[μ2]
should be chosen properly). We write Eq. (9) in the form

L̂W = ENW + R(W ) (13)

with R = gW 3 + (E − EN )W and represent W as W (x) =
cNψN (x) + δWN (x), where δWN (x) = ∑′

n cN,nψn(x), and the
summation runs over all n except the term n = N . We
substitute this W (x) into Eq. (13) and multiply this equation
first by ψN and then by ψn with n �= N , then integrating the
obtained result each time over x. Thus, taking into account
the orthogonality of different eigenfunctions, we find the
coefficients cn:

c2
N = E − EN

g
〈〈
ψ4

N

〉〉 , (14)

cN,n = gc3
N

〈〈
ψ3

Nψn

〉〉
En − EN

with n �= N, (15)

where 〈〈f (x)〉〉 = ∫ ∞
−∞ dx f (x), where the double angle

brackets are used to distinguish this operation from the aver-
aging over the angles introduced in the Appendix. Obviously,
in Eq. (15), ψn and ψN have to have the same parity (both even
or both odd).

The obtained expressions are valid provided the condition
|E − EN | � |En − EN | is satisfied. This condition means that if
the temperature η or doping δ[μ2] is chosen in such a way that
the quantity E(η,δ[μ2]) is close to EN , i.e., the difference on the
left-hand side of this condition is smaller than the difference
between any energy level En and EN , the spatial dependence
of W (x) is given by the leading order while the second term,
δWN (x), gives a small correction. Since we assumed that the
right-hand side of Eq. (9) is small compared to the term as�,
the condition |E − EN | � asbsbw/γ should be also satisfied.

The ground state is realized if at some temperature η0 the
quantity E(η0) is close to E0(η0). In this case, W0(x) has the
form of a soliton. If E(η1) is close to E1, the amplitude of the
CDW is an odd function of x. For the ground state, Eq. (11)
yields(

A2 + 〈δ[μ2]B2〉
η0

)
= s3

s3m

8r2

[√
1 + 8r2s2m

s3ms3
− 1

]2

, (16)

where A2 = s2m − s3(1 − β1) and B2 = s3β2. At a given
δ[μ2] = μ2 − μ2

c , that can be both positive and negative, this
equation determines the temperature η0 at which the solution
of the Gross-Pitaevskii equation has a solitonlike solution W0.
Similarly, setting n = 1 in Eq. (11), one can find a temperature
η1 corresponding to the first excited state with an odd function
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FIG. 1. (Color online) Coordinate dependence of W0 (red), W1

(black), W2 (green), and W3 (blue) near the corresponding “energy”
levels EN for the case when the superconducting state is favored far
from the defect at x = 0. Exactly at EN , as follows from Eqs. (14)
and (15), W = 0. Note that in the opposite case when the CDW
or the SDW state is more favorable at x → ∞ one needs to make
the exchange � ↔ W and, correspondingly, Uw ↔ Us and κs ↔ κw ,
and the shown curves will describe the dependence �(x) while
W = W∞ tanh(κwx).

of the OP W1(x), etc. In Fig. 1 we plot the spatial dependence
of the CDW amplitude W (x) for n = 0, 1, 2, and 3. Note that
if r2s2m/(s3ms3) < 1 only a single solitonlike solution exists.

As an example, we calculate for the ground state the
dependence of η0 on δ[μ2]. It follows from Eq. (16) that,
assuming δ[μ2] independent on ϕ,

η0 = Cδ[μ2], (17)

where the coefficient C is given by

C = 〈B2〉
[
s3s3m

8r2

(√
1 + 8r2s2m

s3s3m

− 1

)2

− A2

]−1

. (18)

The coefficient C depends on μc defined by Eq. (3). It is
negative and, thus, since η > 0, δ[μ2] should also be negative.
We plot the dependence of C on μc in Fig. 2. More precisely,
the critical doping μc is calculated from Eq. (3) and represents
a line in the (μϕ,μ0) plane (the upper part of Fig. 2). Projecting
this line onto the μϕ axis and inserting the corresponding
values of μ0 we obtain the plot of C = C(μc) ≡ C(μ0,μϕ)
presented in the lower part of Fig. 2.

Consider the temperature interval where the solitonlike
solution for W (x) exists. As follows from Eq. (14), the
difference E − E0 must be positive if the constant g = bsbw is
positive. This implies that the differenceE − E0 = A2(T − T0)
has to be positive as well (at A2 > 0). Therefore, at T < T0,
no W appears at the topological defect, but at T > T0,
a solitonlike solution for W (x) arises with the amplitude
W (0) ∼ √

(T − T0). On the other hand, as follows from
Eq. (16), the temperature T0 is less than the temperature
T2 ≡ cμB2/A2, where cμ = −δ[μ2]. This means that the

FIG. 2. (Color online) The coefficient C in Eq. (17) on μc for
r = 5.0. The critical doping μc is calculated from Eq. (3) and
represents a line in the (μϕ,μ0) plane, which is shown in the upper
part of the figure. In the lower part, the value of C along the obtained
μc line is presented as a function of μϕ (inserting the corresponding
value of μ0). The coefficient C is negative; thus, as η > 0 due to
conditions of realization of the superconducting state far from the
topological defect, from Eq. (17) it is seen that δ[μ2] < 0.

solitonlike solution for W as well as solutions corresponding
to excited states exist in the interval

T0 < T < T2. (19)

The solutions found above are valid if the free en-
ergy Fs of the superconducting state at x → ±∞ is
lower than Fw for a state with W �= 0. This is possi-
ble if Fs − Fw ∼ (�4 − W 4) ∼ [as(η)/bs − aw(η)/bw] < 0.
This condition determines a temperature interval in which our
considerations are valid.

If the difference Fs − Fw is positive, then the same
procedure of finding solutions of G-L equations can be re-
peated with an exchange � ↔ W adapting correspondingly En

and other quantities. In particular, W = W∞ tanh(κwx), with
W∞ = aw/bw and κw = √

2aw/ξw, and the superconducting
OP �(x) is expressed in terms of hypergeometric functions;
i.e., it is localized at x = 0. Consider, for example, an N/S
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system where in the superconductor S there exists not only the
superconducting OP � but also a density wave W , and N is
a normal metal with a strong suppression of W (for example,
with a strong interband impurity scattering which suppresses
the OP W [53,60]). Then, at the S side, the dependence
W (x) is determined by the above written expression, and at a
certain temperature, which may be even higher than Ts , at the
N/S interface superconductivity may arise, spreading over a
distance ∼ ξs from the interface.

Note that the found nonhomogeneous solutions for �(x)
and W (x) are energetically favorable in comparison with
uniform solutions, �∞ and W∞, provided the energy loss [due
to the gradient of �(x)] δFs ∼ ∫

dx �4
∞[1 − tanh4(κsx)] ∼

�4
∞ξs/

√
as is less than the energy gain (due to the appearance

of W ) δFw ∼ ∫
dx W 4(x) ∼ W 4

∞ξw. This cannot occur in the
considered case of small W . However, in heterostructures, like
an N/S system, the solution Eq. (8) (at x > 0) is dictated
by a boundary condition in case of strong depairing in
the N metal and, therefore, there is no energy loss in the
superconducting part of the free energy. Thus, the considered
states may be realized in heterostructures. The case of uniform
superconductors with a not small OP W requires a separate
consideration.

IV. CONCLUSION

On the basis of Ginzburg-Landau equations we studied the
possibility of nonhomogeneous states in systems with two
OPs. Materials where the superconducting OP � and the OP
W related to a CDW (or a SDW) may exist belong to this
class of systems. In the situation when the superconducting
state is more favorable, the Ginzburg-Landau equations have
nonhomogeneous solutions which describe �(x) in the form
of a topological defect, Eq. (8), and W (x)—in the form of a
function localized near the center of the defect, x = 0. The
form of W (x) is described by the Gross-Pitaevskii equation
and depends essentially on the proximity of the function
E(η,δ[μ2]) to the eigenvalues EN of the linearized Gross-
Pitaevskii equation. If E(η,δ[μ2]) = EN at some temperature
TN = (1 − ηN )Ts and doping δ[μ2

N ], then the amplitude of
the function W (x) turns to zero and increases as W ∼√

|EN − E(η,δ[μ2])| when η or δ[μ2] deviates from ηN and
δ[μ2

N ]. At a given temperature T in the interval Eq. (19), there
are, generally speaking, several solutions for W (x). The most
stable one is the solution which corresponds to the ground state
(solitonlike solution). Therefore, in the equilibrium case one
can observe only this solution for W (x). Other solutions may
affect the response of the system to the influence of fluctuations
or of external perturbations.

On the other hand, if the state with W �= 0 and � = 0
corresponds to a minimum of the free energy, then nonhomoge-
neous solutions are possible with W (x) determined by Eq. (8)
(correspondingly adapted as � → W , ξs → ξw) and �(x) is
localized near the point x = 0. In principle, such solutions
may arise in the bulk (especially near some defects) and in
heterostructures of type N/Ns,w, where Ns,w is a material
under consideration in which � and/or W may exist, and N

is a material with a strong depairing toward the OPs � and
W . For example, in a N/Nw heterostructure, the OP in the
vicinity of the interface has inevitably the form of Eq. (8) and
a localized �(x) �= 0 arises at the interface. In this case, one

deals with a localized interfacial superconductivity. This type
of superconductivity has been studied very actively in recent
years and has been observed in different materials including
cuprates and Fe-based pnictides (see recent papers [61–63]
and references therein). Several proposals have been made to
explain this phenomenon, but most experimental observations
remain unexplained. The mechanism considered here may be
responsible for interfacial superconductivity in systems with
two OPs, but applicability of this mechanism to real materials
deserves a separate consideration.

ACKNOWLEDGMENTS

We appreciate the financial support from the Deutsche
Forschungsgemeinschaft via Project No. EF 11/8-1; K.B.E.
gratefully acknowledges the financial support of the Ministry
of Education and Science of the Russian Federation in
the framework of the Increase Competitiveness Program of
National University of Science and Technology “MISiS”
(Grant No. K2-2014-015).

APPENDIX: COEFFICIENTS IN THE
GINZBURG-LANDAU EQUATIONS

The free energy has the form (see also Refs. [48,49])

�(�,W,μ) = −(2πT )
EM∑
ω=0

�(P ) + �2

2λSC
+ W 2

2λDW
, (A1)

where P =
√

(ςSCω + iμ)2 + W 2, ςSCω = √
ω2 + �2, and ω

is the Matsubara frequency with a cutoff EM ; λSC and λDW are
the interaction constants of the superconductivity and spin- or
charge-density wave, respectively. Expanding this expression
in � and W and performing variation with respect to these
variables, we come to Eqs. (1) and (2) with the coefficients
defined as

s3 =
∞∑

n=0

(2n + 1)−3, (A2)

s1m =
∞∑

n=0

(2n + 1)−1[(2n + 1)2t2 + m2]−1, (A3)

s2m =
∞∑

n=0

〈[(2n + 1)2 − m2](2n + 1)−1[(2n + 1)2 + m2]−2〉,

(A4)

s3m =
∞∑

n=0

〈(2n + 1)[(2n + 1)2 − 3m2][(2n + 1)2 + m2]−3〉,

(A5)

β1 =
∞∑

n=0

〈4m2(2n + 1)[(2n + 1)2 + m2]−2〉, (A6)

β2 =
∞∑

n=0

2(2n + 1)−1[(2n + 1)2 + m2]−1, (A7)

where t = T/Ts and the angle brackets denote the angle aver-
aging (in Fe-based pnictides) or integration along the sheets of
the Fermi surfaces in quasi-one-dimensional superconductors.
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[6] H. Meier, C. Pépin, M. Einenkel, and K. B. Efetov, Phys. Rev.
B 89, 195115 (2014).

[7] Y. Wang and A. Chubukov, Phys. Rev. B 90, 035149 (2014).
[8] E. Fradkin, S. A. Kivelson, and J. M. Tranquada,

arXiv:1407.4480.
[9] G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa,

C. Mazzoli, N. B. Brookes, G. M. De Luca, A. Frano, D. G.
Hawthorn, F. He, T. Loew, M. M. Sala, D. C. Peets, M. Salluzzo,
E. Schierle, R. Sutarto, G. A. Sawatzky, E. Weschke, B. Keimer,
and L. Braicovich, Science 337, 821 (2012).

[10] J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen,
J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy,
A. Watenphul, M. v. Zimmermann, E. M. Forgan, and S. M.
Hayden, Nat. Phys. 8, 871 (2012).

[11] E. H. da Silva Neto, P. Aynajian, A. Frano, R. Comin, E.
Schierle, E. Weschke, A. Gyenis, J. Wen, J. Schneeloch, Z. Xu,
S. Ono, G. Gu, M. Le Tacon, and A. Yazdani, Science 343, 393
(2014).

[12] R. Comin, A. Frano, M. M. Yee, Y. Yoshida, H. Eisaki, E.
Schierle, E. Weschke, R. Sutarto, F. He, A. Soumyanarayanan,
Y. He, M. Le Tacon, I. S. Elfimov, J. E. Hoffman, G. A.
Sawatzky, B. Keimer, and A. Damascelli, Science 343, 390
(2014).

[13] T. Wu, H. Mayaffre, S. Kramer, M. Horvatic, C. Berthier, W. N.
Hardy, R. Liang, D. A. Bonn, and M.-H. Julien, Nature (London)
477, 191 (2011).

[14] T. Wu, H. Mayaffre, S. Kramer, M. Horvatic, C. Berthier, P. L.
Kuhns, A. P. Reyes, R. Liang, W. N. Hardy, D. A. Bonn, and
M.-H. Julien, Nat. Commun. 4, 2113 (2013).

[15] D. LeBoeuf, S. Kramer, W. N. Hardy, R. Liang, D. A. Bonn,
and C. Proust, Nat. Phys. 9, 79 (2013).

[16] E. Blackburn, J. Chang, A. H. Said, B. M. Leu, R. Liang,
D. A. Bonn, W. N. Hardy, E. M. Forgan, and S. M. Hayden,
Phys. Rev. B 88, 054506 (2013).

[17] M. Le Tacon, A. Bosak, S. M. Souliou, G. Dellea, T. Loew, R.
Heid, K.-P. Bohnen, G. Ghiringhelli, M. Krisch, and B. Keimer,
Nat. Phys. 10, 52 (2014).

[18] T. P. Croft, C. Lester, M. S. Senn, A. Bombardi, and S. M.
Hayden, Phys. Rev. B 89, 224513 (2014).

[19] P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog.
Phys. 74, 124508 (2011).

[20] A. Chubukov, Annual Review of Condensed Matter Physics 3,
57 (2012).

[21] K. Hashimoto, K. Cho, T. Shibauchi, S. Kasahara, Y. Mizukami,
R. Katsumata, Y. Tsuruhara, T. Terashima, H. Ikeda, M. A.
Tanatar, H. Kitano, N. Salovich, R. W. Giannetta, P. Walmsley,
A. Carrington, R. Prozorov, and Y. Matsuda, Science 336, 1554
(2012).

[22] A. Levchenko, M. G. Vavilov, M. Khodas, and A. V. Chubukov,
Phys. Rev. Lett. 110, 177003 (2013).

[23] D. Chowdhury, B. Swingle, E. Berg, and S. Sachdev, Phys. Rev.
Lett. 111, 157004 (2013).

[24] P. Walmsley, C. Putzke, L. Malone, I. Guillamón, D. Vignolles,
C. Proust, S. Badoux, A. I. Coldea, M. D. Watson, S. Kasahara,
Y. Mizukami, T. Shibauchi, Y. Matsuda, and A. Carrington,
Phys. Rev. Lett. 110, 257002 (2013).

[25] D. Kuzmanovski, A. Levchenko, M. Khodas, and M. G. Vavilov,
Phys. Rev. B 89, 144503 (2014).

[26] W. Fu, L.-Y. Hung, and S. Sachdev, Phys. Rev. B 90, 024506
(2014).

[27] A. Moor, P. A. Volkov, A. F. Volkov, and K. B. Efetov, Phys.
Rev. B 90, 024511 (2014).

[28] M. Einenkel, H. Meier, C. Pépin, and K. B. Efetov, Phys. Rev.
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