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The hidden order (HO) in URu2Si2 has been determined as a high-rank multipole formed by itinerant 5f

electrons with distinct orbital structure imposed by the crystalline electric field. Because this can lead to a
considerable number of different multipoles, it is of great importance to use microscopic techniques that are
sensitive to their subtle physical differences. Here, we investigate whether the quasiparticle interference (QPI)
method can distinguish between the two most frequently proposed HO parameter models: the even rank-4
hexadecapole and the odd-rank-5 dotriacontapole model. We obtain the quasiparticle dispersion and reconstructed
Fermi surface in each HO phase adapting an effective two-orbital model of 5f bands that reproduces the main
Fermi surface sheets of the para phase. We show that the resulting QPI spectrum reflects directly the effect of
fourfold symmetry breaking in the rank-5 model, which is absent in the rank-4 model. Therefore we suggest that
the QPI method should give the possibility of a direct discrimination between the two most investigated models
of HO in URu2Si2. Furthermore, the signature of proposed chiral d-wave superconducting (SC) order parameter
in QPI of the coexisting HO + SC phase is investigated.
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I. INTRODUCTION

The nature of hidden order (HO) in URu2Si2 is considered a
central topic in the investigation of strongly correlated electron
systems [1]. For its theoretical analysis several fundamental
issues arise. Initially, the HO was described in terms of
tetragonal crystalline electric field (CEF) split localized 5f 2

(U4+) states [2]. Their localized multipoles would then
experience effective RKKY-type intersite interactions leading
to their long-range order below THO = 17.5 K. In fact,
the thermodynamic properties of the HO transition may be
described within the localized context [2].

However, later ARPES experiments [3] and theoretical
analysis [4] suggested that the 5f electrons have itinerant
character and their Fermi surface (FS) reconstruction below
THO plays an essential role in the HO mechanism. The hidden
order parameter then should be constructed from itinerant 5f

basis states rather than localized ones. This was carried out
by Ikeda et al. [5] within an extended many-body model
starting from band structure calculations. It was found that
the antiferro-type HO evolves due to a nesting between �-
and Z-centered electron and hole pockets with a wave vector
Q = (0,0,1). Because they are mainly formed by orbitals
with a large total angular momentum (j = 5

2 ) component,
M = ± 3

2 , ± 5
2 , the dominating AF hidden order parameter

is a multipole of rank-5 (E−) type, which breaks translational,
c-axis C4 rotational, and time-reversal symmetries. As an
alternative possibility, we also include the rank-4 (A2+)
hexadecapole order [2,6] in our treatment, which breaks
translational and diagonal in-plane reflection symmetries but
preserves C4 rotations and time reversal. The evolution of
hidden order leads to a characteristic reconstruction of the
Fermi surface: due to doubling of the unit cell, the Z-point
hole pocket is downfolded to the � point of the Brillouin zone
(BZ) and electron and hole pockets are broken into the smaller
FS sheets at their crossing points. Concurrently a HO gap
evolves in the density of states (DOS).

Deep inside the HO phase, unconventional heavy fermion
superconductivity appears at Tc = 1.45 K, which was sug-
gested to have chiral d-wave symmetry [7], but this, so far,
remains a conjecture. It coexists homogeneously with HO
and vanishes at the same critical pressure pc � 0.75 kbar.
Recently, the quasiparticle interference (QPI) method has been
proven very successful in unraveling the gap symmetry of
heavy fermion superconductors [8–10]. Already before [11]
the method was demonstrated in the HO phase of URu2Si2
but not yet in the coexistence region with superconductivity
(SC + HO).

Here, we present a theoretical analysis of QPI both in the
HO state and coexisting HO + SC phase. Our main goal is
to understand the principal effects that the FS reconstruction
due to HO has on the QPI and whether this holds any clue
to the symmetry of the HO phase. For that purpose, we
make a comparative analysis of reconstructed bands and Fermi
surfaces as well as QPI spectra for the most frequently involved
HO symmetries, namely, the doubly degenerate rank-5 E−
dotriacontapole [5] and the nondegenerate antiferro-type rank-
4 hexadecapole [2,6] introduced above.

For this purpose, we start from an effective 5f electron band
model describing the � and Z-point electron and hole pockets
(but not the small pockets on the A and M points of folded
BZ corners), which was introduced by Rau and Kee [12].
We give closed expressions for the reconstructed quasiparticle
bands in the HO phase for both models in the whole BZ.
Using this result, we can calculate with high accuracy the
expected QPI spectrum, map its characteristic structures and
relate them to the reconstructed HO Fermi surface. We also
discuss possible connections to the experimental results [11].
Finally, we include a BCS term for the reconstructed HO
bands with a SC gap symmetry of the chiral d-wave type.
This allows us to predict the QPI spectrum in the coexisting
HO + SC phase, which has not yet been performed exper-
imentally. We will finally discuss the features in QPI that
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may be taken as typical consequence of the chiral d-wave
symmetry.

II. TWO-ORBITAL MODEL OF HEAVY
ELECTRON BANDS IN URu2Si2

In this work, we are interested in the very low energy
(�1 meV) quasiparticle spectroscopy of URu2Si2, therefore
it is reasonable to start with an effective low-energy model of
the heavy electron bands. It should be simple enough to enable
analytical representation of the dispersion and high-resolution
computation of the QPI spectrum. But it must also have enough
complexity to allow for modeling of realistic Fermi surface
features, in particular, the electron hole nesting property at
wave vector Q = (2π/c)ẑ = (0,0,1) in r.l.u. (reduced lattice
units) because the latter leads to the staggered hidden order
parameter. The kinetic energy may be constructed from
hopping terms using the jj -coupled single electron 5f states
(j = total angular momentum) with incorporated spin-orbit
(s.o.) coupling and orbital symmetries that are adapted to the
local tetragonal crystalline electric field (CEF) potential at U
sites. Such a procedure has been used successfully before in
Refs. [5,13–15]. Since the s.o. splitting of U is very large, the
j = 7/2 orbitals are neglected, taking only the j = 5/2 states,
which are CEF split into three Kramers doublets �

(α)
7 (α = 1,2)

and �6. For the formation of high-order multipoles discussed
here, a further restriction to the two �

(α)
7 doublets is possible.

This is also suggested by ab initio calculations of electron and
hole pockets close to the Fermi surface [4,5]. These basis states
are then created by f †

ασ where σ is the pseudospin (σ = ±) of
the doublets. They are related to the free ion states with total
angular momentum component jz = M (|M| � 5/2) via the
transformation(

f1±
f2±

)
=

(
cos θ sin θ

− sin θ cos θ

) (
f± 5

2

f∓ 3
2

)
, (1)

where the mixing angle θ is determined by the tetragonal CEF
parameters. A minimal kinetic energy model involving CEF
splitting and effective hopping up to second nearest neighbors
(see Appendix) was introduced by Rau and Kee (Ref. [12])

and is given by

H0 =
∑
kσ

(A1kf
†
1σkf1σk + A2kf

†
2σkf2σk)

+
∑

k

[Dk(f †
1+kf2−k − f

†
2+kf1−k) + H.c.], (2)

where the kinetic energy functions Aαk and Dk are defined
in Appendix. The above Hamiltonian directly parametrizes
the heavy 5f quasiparticle states that form the electron and
hole pockets. Therefore the hybridization with light electrons
does not appear explicitly any more. In QPI spectroscopy, this
constrains us to the low-energy region below the hybridization
gap. The hybridization effects on local DOS were studied in
Ref. [16]. The model band structure and Fermi surface with
electron pocket around � point and hole pocket around Z
(0,0,0.5) are shown in Fig. 1.

III. THE HIDDEN MULTIPOLAR ORDER PARAMETERS

The first step in the identification of spontaneous order,
whether hidden or not, is the determination of broken
symmetries. In URu2Si2, these are [15,17] (i) translational
symmetry breaking due to the antiferro-HO wave vector Q
(from band folding along kz observed in ARPES [3,18]),
(ii) broken C4 rotational symmetry (from torque oscilla-
tions [19], cyclotron resonance splitting [20], and high-
resolution x-ray diffraction [21]), and (iii) time reversal
symmetry breaking (from NMR [22] and μSR [23] experi-
ments). It was concluded in Refs. [5,15,17] that the rank-5
dotriacontapole is the most plausible candidate. However,
frequently the rank-4 hexadecapole was also proposed [6,24]
as a candidate, although it breaks only translational symmetry
and reflectional in-plane symmetry but not time reversal. We
will discuss both possibilities in this work.

First, we give a prescription how to construct the multipolar
order parameters and their molecular fields from the f -electron
basis operators. It was demonstrated [13,15] that all physical
f -electron multipoles up to highest rank 5 can be expressed in
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FIG. 1. (Color online) (a) Fermi surface sheets of URu2Si2 in the extended simple tetragonal (st) BZ with an electron sheet at �(0,0,0) and
a hole sheet around Z(0,0,2π/c) (c ≡ 1). The two sheets are nested by Q = (0,0,1). FS cuts with kz = 0 (b) and ky = 0 (c) in the reduced st
BZ (Z-point folded onto �). The momentum range in (b) and (c) is given by −π � ki � π .
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terms of the charge operator

ραα′ = 1

2

∑
σ

f †
ασ fα′σ , (3)

and the pseudospin operator given by

Si
αα′ = 1

2

∑
σσ ′

f †
ασ σ i

σσ ′fα′σ ′ , (4)

where generally α = 1,2,3 denote the �
(1),(2)
7 and �6 orbitals,

respectively, and σ i denotes a Pauli matrix with Cartesian
index i = x,y,z. Since we restrict to the former, only multi-
poles with α,α′ = 1,2 can be constructed. The two candidates
discussed here belong to this class. The explicit forms of the
one- and two-dimensional multipole representations at site i

are given by

hexadecapole, rank 4: φ̂A2+
z (i) = i√

2

(
Sz

12 − Sz
21

)
i

(5)

and

dotriacontapole, rank 5:

{
φ̂

E−
x (i) = 1√

2

(
Sx

12 + Sx
21

)
i

φ̂
E−
y (i) = 1√

2

(
S

y

12 + S
y

21

)
i

. (6)

To clarify the meaning of the multipoles, it is instructive to
transform back to the free ion states using Eqs. (4) and (1).
For simplicity, we choose the nondegenerate A2+ state. For
the Fourier transform

φ̂A2+
z (q) = 1

N

∑
i

exp(iq · Ri)φ̂
A2+
z (i),

we obtain

φ̂A2+
z (Q) = φ̂A2+

z (−Q)†

= −iκ
1

N

∑
k

∑
|M|= 3

2 , 5
2

σMf
†
M−4σM ;kfM;k+Q

= iκ
1

N

∑
k

(
f

†
5
2 k

f− 3
2 k+Q + f

†
3
2 k

f− 5
2 k+Q

− f
†
− 5

2 k
f 3

2 k+Q − f
†
− 3

2 k
f 5

2 k+Q

)
, (7)

where σM = sign(M) = ±1 and κ = 1/(2
√

2) = 0.35. This
explicit representation shows that the A2+ hexadecapole (rank
4) is formed by condensation of electron-hole pairs with
momenta (k, k+Q) in basis states that differ in angular
momentum component by 
M = ±4, leading to the high
multipole property. The common antiferromagnetic order
(rank 1) would be formed by pairs that differ by 
M = ±1.
Similarly, one may show that the E− dotriakontapole (rank 5)
is due to the condensation of pairs with a maximum angular
momentum difference 
M = ±5. The effective interaction
between f quasiparticles leads to the instability in these mul-
tipole channels [5]. The ordered phase is then described by an
additional molecular field term in the Hamiltonian controlled
by the multipole expectation values φ�

n (Q) = 〈φ̂�
n (Q)〉, where

� denotes the representation and n is its degeneracy index.

Using Eq. (4), these terms may be written as

A2+ : Hφ = −iκφQ
z

∑
k

(f †
1kσzf2k+Q − f

†
2kσzf1k+Q) + H.c.,

E− : Hφ = −κφQ ·
∑

k

(f †
1kσf2k+Q + f

†
2kσf1k+Q) + H.c.

(8)

Here, we introduced f
†
αk = (f †

α+k,f
†
α−k) with α = 1,2 and

σz = ± denoting band index and Kramers pseudospin, re-
spectively. Furthermore, φQ = (φQ

x ,φQ
y ) is the HO vector that

expresses the twofold degeneracy of the E− representation.
Therefore right at THO the HO phase has continuous U(1)
symmetry, which is lifted by higher order terms in the free
energy below THO. Commonly, a phase with equal components
φQ

x = φQ
y called E−(1,1) phase or with only one nonzero φQ

x

or φQ
y component called E−(1,0) or E−(0,1), respectively, is

stabilized. In both cases, different domains are possible. For
a discussion of the domain issue, we refer to Refs. [14,15]. A
nonzero third component φQ

z of the HO vector φ [replacing
x,y → z in Eq. (6)] would correspond to a different A2−
representation [5,12] that will not be considered here. We
introduce the 2 ⊗ 4 spinor basis �

†
k = (ψ†

ak,ψ
†
bk) with effective

Kramers degenerate a,b components defined below for each
HO symmetry separately. The total mean-field Hamiltonian,
including the HO molecular fields may be written as

H = H0 + Hφ =
∑

k

�
†
khk�k; hk = hak ⊗ hbk. (9)

In the following, we will diagonalize this Hamiltionian
consisting of two 4 × 4 blocks (a,b) explicitly in analytical
form to calculate the reconstructed quasiparticle bands and the
necessary Green’s functions for QPI.

IV. QUASIPARTICLE EXCITATIONS IN THE HO PHASE

The HO molecular fields result in a splitting of Fermi
surface states connected by a nesting vector. This will
reconstruct the Fermi surface and equal energy surfaces
close to the hot spots of the nesting. The details of the FS
reconstruction should leave its imprint in the QPI spectrum.
Since the reconstruction depends on the symmetries of HO, the
QPI characteristics may allow to discriminate between them,
in the same way as it does for different gap symmetries in an
unconventional superconductor. For clarity, this analysis will
be done separately for both HO candidates.

A. Dotriacontapole E− phase

In this representation, it is most convenient to express the
Hamiltonian in the spinor basis:

ψ
†
ak = (f †

1+k,f
†
2−k,f

†
1+k+Q,f

†
2−k+Q),

ψ
†
bk = (f †

1−k,f
†
2+k,f

†
1−k+Q,f

†
2+k+Q),

(10)

where it factorizes into two Kramers degenerate (a,b) 4 ⊗
4 blocks. The generally two-component order parameter
is given by φ = (φx,φy) (with ordering wave vector Q
now suppressed). The resulting quasiparticle energies are
the eigenvalues of h̃k = (hk − ωI ) = h̃ak ⊗ h̃bk. The 4 ⊗ 4
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Hamiltonian blocks in spinor basis are given by

h̃ak =
(

âk λ̂a

λ̂a âk+Q

)
; âk =

(
Ã1k Dk

D∗
k Ã2k

)
;

(11)

λ̂a =
(

0 −κ(φx − iφy)
−κ(φx + iφy) 0

)
,

with Ãαk = Aαk − ω where Aαk and Dk are defined in
Appendix. The secular equation |h̃ak| = 0 for the eigenvalues
is obtained as

|Dk|2(Ã1kÃ2k + Ã1k+QÃ2k+Q) − [(Ã1kÃ2k+Q − κ2|φ|2)

× (Ã2kÃ1k+Q − κ2|φ|2) + |Dk|4] − 2κ2|φ|2D̃k = 0,

(12)

where we defined the real function

D̃k = 1
2

(
c2D2

k + c∗2D∗2
k

)
,

and c = (φ̂x + iφ̂y) with |c|2 = 1. Solving this fourth-order
equation leads to the closed solution for the four HO
quasiparticle bands (i = 1–4) valid for general k (± chosen
independently):

εik = ε±
1,2(k) = A⊥

k ± (
ω2

0 ± ω̃2
0

) 1
2 ,

ω2
0 = Az2

k + 
⊥2
k + |Dk|2 + κ2|φ|2, (13)

ω̃2
0 = 2

[
Az2

k

(

⊥2

k + |Dk|2
) + κ2|φ|2ζk

] 1
2 ,

or, explicitly (i = ±,1,2) ≡ (i = 1 − 4)

εik = ε±
1,2(k) = A⊥

k ± {(
Az2

k + 
⊥2
k + |Dk|2 + κ2|φ|2)

± 2
[
Az2

k

(

⊥2

k + |Dk|2
) + κ2|φ|2ζk

] 1
2
} 1

2 , (14)

where on the left-hand side (l.h.s.) ± corresponds to the second
and 1,2 to the first ± on the right-hand side (r.h.s.), respectively.
Here, we defined |φ| = (φ2

x + φ2
y)

1
2 as the order parameter

amplitude with φ̂ = φ/|φ| = (φ̂x,φ̂y) and A
z,⊥
k , 
⊥

k and Dk
are given in Appendix. Furthermore, with Dk = D′

k + iD′′
k

we introduce the azimuthal function ζk, which leads to the
breaking of fourfold C4 symmetry in the HO phase. Its general
form is given by

ζk = 1
2 (|Dk|2 − D̃k)

= 1
2

[
D′

k
2 + D′′

k
2 + (D′

kφ̂y + D′′
kφ̂x)2 − (D′

kφ̂x − D′′
kφ̂y)2].

(15)

In the normal state where ζk = 1
2 |Dk|2, the C4 symmetry

is preserved. This is no longer true in the HO phase due
to the terms ∼φ̂x,y . In the context of a Landau expansion
of the free energy below THO, it is concluded that only
phases φ̂ = (φ̂x,φ̂y) are stable where both components have the
same modulus (φ̂x, ± φ̂y) = 1√

2
(1, ± 1) denoted by E−(1,1)

and E−(1,1̄) or one of the component vanishes (φ̂x,φ̂y) =
(1,0),(0,1), denoted by E−(1,0) and E−(0,1). In each case,
the two possibilities are two different domains of the same
phase. The single component phase has been ruled out by

torque experiments [14,19] therefore we will only consider
the two component phase in the following. We get

E−(1,1) : ζk = 1

2
(D′

k + D′′
k)2

= 32t2
12 cos2 a

2
kx sin2 a

2
ky sin2 c

2
kz,

E−(1,1̄) : ζk = 1

2
(D′

k − D′′
k)2

= 32t2
12 sin2 a

2
kx cos2 a

2
ky sin2 c

2
kz. (16)

This (positive) function breaks fourfold C4 rotational symme-
try under a coordinate rotation k → k′ by π/2 with k′

x = ky ,
k′
y = −kx . Therefore the in-plane symmetry is reduced to

twofold rotations C2 generally since ζ−k = ζk. The different
domains correspond to a π/2 rotation of k and therefore
to a relative π/2- shift of the fourfold symmetry breaking
effects [14]. In the following, we will mostly discuss the
E−(1,1) domain of the two component phase. We note that the
C4 symmetry breaking, due to terms ∼φ̂x,y in ζk, is directly tied
to the interorbital hopping t12, because the order parameter is
an interorbital electron hole condensate. Therefore it is absent
for kz = 0.

The second 4 × 4 block in Eq. (9), h̃bk, is obtained from
h̃ak by replacing âk → b̂k as obtained from Dk → −D∗

k and
in addition replacing λ̂a → λ̂

†
a = λ̂b. Since |h̃bk| ≡ |h̃ak| the

resulting quasiparticle dispersion from |h̃bk| = 0 is identical
to ω±

1,2(k) in Eq. (14). Therefore, altogether, each of these
four branches (due to two orbitals and the unit cell doubling
by ordering vector Q) is in addition twofold degenerate.
This degeneracy is due to the invariance under combined
time reversal and translation by Q (under the presence of
inversion symmetry), therefore the a,b equivalence is an
effective Kramers degeneracy not lifted by the antiferrotype
order, although time reversal symmetry itself is broken. This
is similar to the quasiparticle bands in the itinerant 2D
antiferromagnet where the same symmetry also leads to a
Kramers-type degeneracy of these bands reconstructed by the
AF order parameter [25].

B. Hexadecapole A2+ phase

The order parameter φz of this phase [Eq. (8)] is nondegen-
erate. Similar to the previous case, the full Hamiltonian may
be given in block form as in Eq. (11), but with a different
spinor basis and a molecular field part: we now use the
reordered basis (the Kramers index in the last pair in a,b is
interchanged):

ψ
†
ak = (f †

1+k,f
†
2−k,f

†
1−k+Q,f

†
2+k+Q),

(17)
ψ

†
bk = (f †

1−k,f
†
2+k,f

†
1+k+Q,f

†
2−k+Q),

then we obtain

h̃ak =
(

âk λ̂a

λ̂
†
a â∗

k+Q

)
; âk =

(
Ã1k Dk

D∗
k Ã2k

)
;

(18)

λ̂a =
(

0 −iκφz

−iκφz 0

)
.
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The second block h̃bk is obtained from h̃ak by replacing âk →
b̂k through Dk → −D∗

k and in addition λ̂a → −λ̂a = λ̂b. The
secular equation |h̃ak| = 0 is similar to Eq. (12):

|Dk|2(Ã1kÃ2k + Ã1k+QÃ2k+Q) − [(Ã1kÃ2k+Q − κ2|φz|2)

× (Ã2kÃ1k+Q − κ2|φz|2) + |Dk|4] − 2κ2|φz|2|Dk|2 = 0.

(19)

Again, the four quasiparticle bands (i = 1 − 4) in the A2+ HO
phase may be obtained in closed form as

εik = ε±
1,2(k) = A⊥

k ± (
ω2

0 ± ω̃2
0

) 1
2 ,

ω2
0 = Az2

k + 
⊥2
k + |Dk|2 + κ2|φz|2,

ω̃2
0 = 2

∣∣Az
k

∣∣[
⊥2
k + |Dk|2

] 1
2 ,

(20)

or, explicitly (i = ±,1,2) ≡ (i = 1 − 4)

εik = E±
1,2(k) = A⊥

k ±
√

Az2
k + 
⊥2

k + |Dk|2 + κ2|φz|2 ± 2|Az
k|

√

⊥2

k + |Dk|2. (21)

The four branches from |h̃bk| = 0 are identical to those of
|h̃ak| = 0 leading to a Kramers degeneracy similar as before
(for A2+, time reversal symmetry is already preserved by
itself). The result in Eq. (21) is obtained from the E− case
dispersion of Eq. (14) formally by replacing |φ| → |φz| and
ζk → 0. Therefore, due to the nondegeneracy of A2+, which
implies |φz|2 transforming like A2+ ⊗ A2+ = A1+, there is
no term in the dispersion that breaks the fourfold rotational
symmetry (and also not the in-plane reflection symmetry).
This should give an important distinction in the QPI spectrum
of the two phases.

C. Dispersion in special cases for E− and A2+

We also discuss some special and limiting cases for the
dispersion for greater clarity. In the E− phase, we have

φ = 0 : ε±
1,2(k) = A⊥

k ± Az
k ±

√

⊥2

k + |Dk|2,

Dk = 0 (kz = 0) : ε±
1,2(k) = A⊥

k ±
√(

Az
k ± 
⊥

k

)2 + κ2|φ|2,
Dk = 0; φ = 0 : ε±

1,2(k) = A⊥
k ± Az

k ± 
⊥
k . (22)

Note that the ± signs are chosen in arbitrary combination
to give four bands (which are in addition twofold Kramers
degenerate). The first equation describes quasiparticle bands
in the para phase for general k, the second in the ordered
phase for in-plane wave vector and the last one for both
conditions satisfied. Taking into account Az

k+Q = −Az
k, the

second equation is equivalent to the result in Ref. [12] in
the Brillouin zone of the ordered phase. These special cases are
described by identical dispersions for the A2+ phase when we
replace |φ| → φz in the second equation. The other equations
refer to the para phase. Due to this identity, the reconstructed
HO FS cuts with kz = 0 are the same for both phases because
then ζk = 0 for E−. In order to see the difference between E−
and A2+, we have to consider cuts with |kz| > 0 where the
fourfold symmetry breaking through nonzero ζk appears.

V. GREEN’S FUNCTION, QUASIPARTICLE DOS,
AND QPI SPECTRUM IN HO PHASE

To calculate the QPI spectrum for both HO models we
need the Green’s function Gk = Gak ⊗ Gbk with Gγ k =
(iωn1 − hγ k)−1 (γ = a,b). The Green’s function matrices will

be diagonal in the basis of the four quasiparticle eigenvectors
(i,j = 1,4) of h

a,b
k , which form the columns of the unitary

transformation Uγ k in

h′
γ k = Uγ khγ kU

†
γ k; {h′

γ k}ij = εikδij , (23)

where εik has Kramers degeneracy with respect to γ . The
primed spinors ψ ′

γ k = Uγ kψγ k corresponding to the eigen-
vectors satisfy the canonical anticommutation relations. In this
primed basis, we obtain the Green’s functions

G′
γ k(iωn) = (iωn1 − h′

γ k)−1, (24)

therefore we have

G′
γ k(iωn)ij = δij

(iωn − εik)
, (25)

where εik are the exact solutions for the quasiparticle bands
in Eqs. (14) or (21). The Green’s function does not depend on
γ . Then we may obtain the quasiparticle DOS (per Kramers
pseudospin degree) as

N (ω) = − 1

π
Im

1

N

∑
ik

(
1

iωn − εik + iη

)
iωn→ω+iη

= − 1

π
Im

1

N

∑
k

4ωk
(
ω2

k − ω2
0

)
(
ω2

k − ω2
0

)2 − (
ω̃2

0

)2 ,

(26)

where the sum over band index i has been carried out explicitly
in the second expression. Here, ωk = ω − A⊥

k + iη with η →
0. The evolution of the HO gap in N (ω) is shown in Fig. 2(d).

The quasiparticle interference spectrum is the Fourier
transform of the change in local density of states introduced
by scattering from dilute impurities on the surface [26]. It
may be calculated within the t-matrix theory of scattering.
We assume a scattering potential strength V0 � φ that is
small compared to the hidden order gap (Sec. VII). Then it is
reasonable to express the impurity Hamiltonian directly within
the basis of quasiparticles in the HO state. We take the simplest
form of a nonmagnetic momentum- and orbital- independent
scattering excluding interband processes. In the primed (HO)
quasiparticle basis, it is written as

Himp = V0

N

∑
kq

[ψ ′†
ak+qψ

′
ak + ψ ′†

bk+qψ
′
bk]. (27)

For ω � φ and sufficiently small V0 as defined above, the
QPI spectrum may be treated in the Born approximation for
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FIG. 2. (Color online) Dispersion along the st
BZ path �(0,0,0), M( 1

2 , 1
2 ,0); X(0, 1

2 ,0); Z(0,0, 1
2 );

A( 1
2 , 1

2 , 1
2 ); and R(0, 1

2 , 1
2 ). (a) Effective f bands in

the para phase. (b) and (c) Reconstructed quasiparti-
cle bands in the E−(1,1) HO phase for φ = 0.8 and
1.7. The gapping of quasiparticle dispersion at k
points connected by the nesting vector Q = (0,0,1)
(r.l.u.) can be clearly seen. (d) DOS with evolution
of HO gap with φ [also Fig. 4(c)]. Here and in
subsequent figures, we define φ = |φQ

z | or |φQ| in
units of t0 = 6.66 meV.

the scattering [27] leading to a local DOS modification (per
Kramers pseudospin) given by

δN (q,ω) = −V0

2πN
Im

∑
γ k

tr[G′
γ k(iωn)G′

γ k−q(iωn)]iωn→ω+iη.

(28)

The trace may easily be evaluated and by defining δN(q,ω) =
V0�(q,ω) we obtain the final QPI spectrum as

�(q,iωn) = − 1

π
Im

1

N

∑
ik

(iωn − εik)−1(iωn − εik−q)−1.

(29)

This expression for the QPI spectrum is valid for both E− and
A2+ type HO, using the quasiparticle dispersions εik given in
Eqs. (14) and (21) for E− and A2+ HO, respectively.

The q vector in �(q,iωn) is a 2D surface vector. However,
the integration over k has to be performed over the full 3D
BZ of URu2Si2 since its FS has a 3D character and the kz

component is not preserved in tunneling due to the surface.
Nevertheless, as shown in the example of the dx2−y2 -wave
superconductor CeCoIn5 [8], it is instructive to consider
the QPI spectrum for each kz slice of the FS separately for the
presence of characteristic features of the equal quasiparticle
energy surface in the HO phase. Then, the summation over kz

is performed to see which of those features survive in the total
QPI spectrum observed in experiment.

VI. QPI IN THE CHIRAL SUPERCONDUCTING PHASE
EMBEDDED IN HIDDEN ORDER

At Tc = 1.45 K, far below THO = 17.5 K, URu2Si2
becomes superconducting. As a function of pressure, this
embedding in the HO phase is maintained up to the critical
pressure of pc � 0.7 kbar where both superconductivity and
hidden order vanish [28]. Therefore one may conjecture that
HO is a necessary condition for SC to appear in this com-
pound. Various experiments like field-angle dependent thermal

conductivity [7,29] and specific heat [30] measurements have
been interpreted in terms of a chiral d-wave gap symmetry
that has line and point nodes. Since the investigation of
gap structures in heavy fermion superconductors by QPI has
recently been successfully demonstrated for CeCoIn5 [8–10],
it is worthwhile to perform a theoretical analysis of the
predicted QPI pattern in the proposed chiral d-wave gap. So far,
experimentally, the QPI investigations [11] have been limited
to the hidden order phase for Tc < T � THO.

We start from the reasonable assumption (Tc � THO) that
the SC order parameter is formed by pairing of reconstructed
quasiparticles of the HO phase whose dispersion is given by
Eqs. (14) and (21). They are described by the Nambu spinors
� ′i†

k = (ψ ′i†
ak,ψ

′i
bk̄) with the definition k̄ = −k and with

i = 1 − 4 denoting one of the four HO quasiparticle bands,
which are twofold (a,b) Kramers degenerated. Therefore the
indices ak and bk̄ refer to time reversed states with opposite
quasiparticle Kramers pseudospins (a,b) and momenta (k,k̄).
The mean-field Hamiltionian for the singlet pairing of the
effective pseudospin states of HO quasiparticles is then

HMF =
∑

ki

(
ψ

′i†
ak ψ ′i

bk̄

) (
εik 
ik

∗

ik −εik

) (
ψ ′i

ak

ψ ′i†
bk̄

)

=
∑

ki

� ′i†
k ĥi

k�
′i
k, (30)

where 
ik is the singlet gap function discussed below. The
Green’s function matrix is then given by Ĝi

0(k,iωn) = (iωn −
ĥi

k)−1, which has the normal (diagonal) and anomalous (off-
diagonal condensate) elements

Gi
0(k,iωn) = iωn + εik

(iωn)2 − E2
ik

,

F i
0(k,iωn) = 
k

(iωn)2 − E2
ik

. (31)

Here, Eik =
√
ε2
ik + |
k|2 are the SC quasiparticle energies

where we assumed the same gap function 
ik ≡ 
k for each

224511-6



HIDDEN-ORDER SYMMETRY AND SUPERCONDUCTIVITY . . . PHYSICAL REVIEW B 90, 224511 (2014)

band. Considering only nonmagnetic weak impurity scattering
as before, the QPI spectrum in the coexisting HO + SC state
is then given by

�(q,iωn) = − 1

π
Im

1

N

∑
ik

[
Gi

0(k,iωn)Gi
0(k − q,iωn)

−F i
0(k,iωn)F i∗

0 (k − q,iωn)
]
, (32)

leading to the final expression

�(q,iωn)

= − 1

π
Im

1

N

∑
ik

(iωn + εik)(iωn + εik−q) − 
k

∗
k−q[

(iωn)2 − E2
ik

][
(iωn)2 − E2

ik−q

] .

(33)

For 
k = 0, it reduces to the expression for the normal state
with HO in Eq. (29). For the explicit calculation of �(q,iωn) in
the coexisting HO + SC, we need a concrete model for the SC
gap function in addition to the HO models defined in Eqs. (6)
and (8). As mentioned above, the chiral d-wave gap function
has been proposed from thermal transport and specific heat
results. Its explicit form is


k = 
0 sin
c

2
kz

[
sin

a

2
(kx + ky) + i sin

a

2
(kx − ky)

]
, (34)

with an absolute value |
k| that is given by

|
k|2 = 2
2
0 sin2 c

2
kz

[
sin2 a

2
kx cos2 a

2
ky

+ cos2 a

2
kx sin2 a

2
ky

]
.

This gap function has line nodes in the tetragonal plane
kz = 0, ± 2π/c, which are equivalent in the folded st BZ.
Furthermore, it has additional point nodes at locations kx =
ky = 0. This may lead to interesting consequences for the
QPI spectrum: for a small bias voltage ω � 
0, the surfaces
Eik = ω have essentially kz � 0 and are unchanged from the
non-SC HO state. Consequently, the QPI will essentially be
only determined by the quasi-2D HO Fermi surface at kz = 0
shown in Fig. 1. Therefore the chiral SC gap opening in a way
reveals the true HO characteristics in the QPI by reducing it
to a 2D situation. However, this also means that one should
expect a suppression of any difference in QPI for E− and A2+
HO in the SC state because in the plane kz = 0 they have
identical quasiparticle dispersion.

VII. NUMERICAL RESULTS AND DISCUSSION

Using the previous analysis, we may now predict all
essential QPI spectral properties of the HO and the coexisting
HO + SC phase. We first specify the numerical parameters.
Those for the effective 5f bands of the para phase are cited
in Appendix. The total quasiparticle bandwidth of the model
is given by Wqp = 12t0 according to Fig. 2(a) in units of
Ref. [12]. The absolute scale is obtained by comparing with
STM results for URu2Si2 [31] where Wqp � 80 meV leading
to t0 = 6.66 meV.

In the HO phase, the gap at nesting points is 
HO = φ/
√

2.
From Ref. [32], we have 
HO = 4.1 meV or φ = 5.8 meV.
With the smaller THO = 16 K for gap onset [32], this leads
to a HO BCS ratio 2
HO/kTHO = 5.8. Furthermore, we
have 
HO/Wqp = 5.1 × 10−2. This sizable HO gap value is
favorable for a clear structure formation in QPI. The corre-
sponding maximum amplitude of HO is φ = 7.25 × 10−2Wqp

or φ = 0.87t0.
In the superconducting state, we have the average gap value

from Ref. [33] with 2
0/kTc = 5.6. With Tc = 1.45 K, this
means a SC gap amplitude of 
0 = 0.35 meV, which is an
order of magnitude smaller than the HO gap. Furthermore, we
get 
0/Wqp = 0.44 × 10−2 or 
0/t0 = 0.05. To enhance the
QPI structures induced by SC state more clearly, we will also
use a larger value for 
0.

First, we discuss basic characteristics of the para phase
model Fermi surface (Fig. 1) and band structure [Fig. 2(a)],
which was proposed by Rau and Kee [12]. In the unfolded
para phase BZ, there is an electron sheet around � and a hole
sheet around Z that have comparable sizes and large portions
that are nested with Q = (0,0,1). In the folded BZ, the latter is
projected to �, in a corresponding kx-ky–plane cut [Fig. 1(b)],
the nested regions are around the crossing points. Therefore
the FS sheets will break up around these crossings in the
HO phase. The complementary kx-kz–plane cut is shown in
Fig. 1(c). The band structure in the folded st BZ is shown in
Fig. 2(a) and exhibits again the crossing of electronlike and
holelike branches, e.g., along �X.

Turning on the HO parameter leads to a repulsion of bands at
the crossing point, opening a gap locally [Figs. 2(b) and 2(c)].
This results in a sharp dip in the DOS at the Fermi level
[Fig. 2(d)] as a function of increasing HO strength. Such drastic
decrease in the quasiparticle DOS in the HO phase was indeed
seen in transport measurements [34,35]. The Fermi surface
reconstruction in the HO phase is shown in Fig. 3(a) in a 3D
representation in the folded BZ [cf. Fig. 1(a) in the unfolded
BZ]. The HO introduces a void in the formerly closed FS body
at the Z points and slices the FS parallel to kz at the crossing
points of the nested sheets. In the corresponding kx-ky–plane
cut [Fig. 3(b)], the formerly closed and rounded squarelike
sheets [Fig. 1(b)] therefore break up into four smaller and
four larger petal-like shapes. The smaller ones vanish when
the HO parameter φ = |φQ| or |φQ

z | is increased still further.
The kx-kz–plane cut in Fig. 3(c) in comparison with Fig. 1(c)
shows again the vanishing of the FS around the Z point when
the HO gap opens.

These main features are similar for both E− and A2+ HO
symmetries. However, one can identify subtle differences in
the reconstructed FS. They are not present for kz = 0 cuts
because in this case the HO reconstructed dispersions in
Eqs. (14) and (21) are formally equivalent [second of Eq. (22)].
The difference appears in kx-ky–plane cuts for |kz| > 0 as
shown in Figs. 4(a) and 4(b). For the E−(1,1) HO (a), clearly,
the C4 rotational symmetry of FS sheets is destroyed. The
symmetry breaking to C2 would be rotated by π/2 for the
other E−(1,1̄) domain. This asymmetry is absent for the A2+
HO (b) where all petals still have the same size, preserving
C4 symmetry. Therefore the set of characteristic wave vectors
connecting the tips of the petals, which should be seen in QPI
will be different in the two cases. In Fig. 4(c), we present a
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c

FIG. 3. (Color online) (a) Fermi surface sheets of URu2Si2 in the E−(1,1) HO phase in the reduced BZ (folded by Q). The FS is reconstructed
in k-space regions connected by the nesting vector Q = (0,0,1) and breaks up into four larger and four smaller sheets (partly hidden). FS cuts
in (b) the kx-ky plane and (c) the kx-kz plane. We note that the fourfold symmetry breaking of the E− HO does not appear in (b) where kz = 0
(cf. Fig. 4). The momentum range in (b) and (c) is given by −π � ki � π .

zoomed DOS in the HO gap region, which shows that the DOS
at the Fermi level is strongly reduced when HO develops. This
agrees with the experimental observations [34,35].

Now, we discuss the main results of QPI calculations.
As mentioned before, URu2Si2 is not an ideal case for
the STM-QPI method due to its largely 3D electronic structure.
In such a case we proceed in two steps [8]. First, we calculate
the QPI spectrum of slices of a given kz component for wave
vectors in the tetragonal plane. This allows one to identify
directly the effect of Fermi surface and hidden order on
each contribution. For the total QPI spectrum that has to be
compared with experiment, one must integrate over all slices of
different kz, then the question is how much of the characteristic
Fermi surface and HO structures in the spectrum survive after
the integration and can still be used as a diagnostic of the HO
state. In all following figures, we show only the absolute value
|�(q,ω)| of the QPI spectrum.

In Fig. 5, we show the FS cut and the corresponding
QPI spectrum (absolute value) for the kz = 0 slice and
φ = 0.7t0, which is identical for both HO symmetries. It is
the most important one because the vz

ik = ∂εik/∂kz velocity
components vanish for kz = 0 [Fig. 3(a)] leading to a large
resultant contribution with kz ≈ 0 neighboring slices. The
characteristic intrasheet and intersheet scattering wave vectors
of the HO reconstructed Fermi surface are shown in Fig. 5(a).
They should reappear prominently in the calculated QPI
spectrum of Fig. 5(b). Indeed, most of them can be clearly
identified. As a whole, the reconstructed HO Fermi surface can
be well recognized in the QPI image in Fig. 5(b) if one keeps
in mind that in the latter the characteristic length of Fermi
vectors kF in Fig. 5(a) will be mapped to 2kF . This means
that some of the features like the “petal” images produced by
qa−c

2 scattering look inverted because they are folded back
from the next BZ, leading to effective characteristic wave

E

0.7

kx ky plane

a

kz 0.35Π

A2

0.7

kx ky plane

b

kz 0.35Π

2 0 2
Ω t0

D
O

S

c
E 1,1

1.6

1.2

0.8

0.4
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FIG. 4. (Color online) Comparison of reconstructed Fermi surface sheets of URu2Si2 for different HO symmetry in the kx-ky plane with
|kz| = 0.35π . (a) In the E−(1,1) phase, the breaking of fourfold rotational C4 symmetry for kz �= 0 is obvious. Changing to E−(1,1̄) domain
corresponds to π/2 rotation. (b) For A2+, HO fourfold symmetry is preserved. (c) Zoomed DOS in the HO gap region for various φ. Charge
carrier DOS is reduced to small values for large φ. Momentum range in (a) and (b) is given by −π � ki � π .
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FIG. 5. (Color online) (a) Reconstructed HO Fermi surface (ω = 0) for φ = 0.7 (in units of t0) in the kx-ky plane with kz = 0 where
E−,A2+ are equivalent. The characteristic scattering wave vectors qa−c

1−3 for the QPI spectrum are indicated. (b) Partial QPI (absolute value)
spectrum (ω = 0) for kz = 0 slice of the Fermi surface. All qα

i are present and the image of HO FS sheets that have doubled ‘2kF ’ dimension
is clearly visible. The momentum range is given by −π � ki � π .

vectors qa−c
2 → qa−c

2 − K [dashed arrows in Fig. 5(b)] with K
denoting a reciprocal lattice vector.

The kz = 0 slice QPI image in Fig. 5(b) is identical for E−
and A2+ HO and has the fourfold C4 symmetry. For |kz| > 0
slices, they should become distinct and the symmetry breaking
for E− QPI image should appear corresponding to the Fermi

surface cut in Fig. 4(a). This happens gradually because the
symmetry breaking term in Eqs. (14) and (16) behaves like
ζk ∼ sin2 c

2kz. Thus for kz/(π/c) � 1 the QPI image will be
qualitatively as in Fig. 5(b). For larger kz, it changes rapidly
as seen in Fig. 6. The dimensions generally shrink because
of the reduction of Fermi surface dimensions obvious from

FIG. 6. (Color online) Partial QPI (absolute value) spectra (ω = 0.124t0) for different |kz| > 0 slices for E− (first row) and A2+ (second
row) HO. For larger kz, distinct C4 symmetry breaking due to the ζk function in the dispersion of Eq. (14) appears for E−, while C4 is preserved
for A2+. (The momentum range is given by −π � qx,y � π .)
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FIG. 7. (Color online) Constant energy surfaces (εik = ω) for kz = 0 (top row, identical for both HO) and total QPI (absolute value) spectra
(ω = 0, − 0.124t0,0.124t0) for E− (center row) and A2+ (bottom row) HO parameter. C4 symmetry is preserved for A2+ while a distinct
rotational symmetry breaking is still visible in the integrated QPI for E−. Note that the latter is due to the |kz| > 0 contributions not depicted
in the top row. Dashed arrows denote an image folded back into the first BZ. The momentum range is given by −π � ki � π .

Fig. 3(a). However, more importantly, while the A2+ image in
Fig. 6 retains the fourfold symmetry for all kz, the E− image
develops a twofold anisotropy for increasing kz. This is already
visible for kz = 0.3 since the axis oriented lobes have different
widths and the diagonal lobes are not completely symmetric.
For even larger kz, the structure of the E− QPI image changes
and develops a pronounced twofold symmetry, in contrast to
the A2+ QPI image, which is perfectly C4 symmetric for all
slices.

The question is now how much of these intricate features
in Figs. 5 and 6 for the individual slices will survive in the
integrated QPI spectrum, which can be measured. It is shown
in Fig. 7 for three frequencies (bias voltages) ω = 0, ± 0.124t0
and E− (second row) and A2+ (third row) HO with φ = 0.7t0.
Note that the value of the bias voltage is still considerably
smaller than the HO gap 
HO = 0.62t0. The top row shows
the spectral function (equal energy surfaces) in the three
cases. While ω/t0 = 0,0.124 are similar except for the larger
sheet dimensions, the case for negative bias ω/t0 = −0.124 is
distinct. It can be seen that the diagonal smaller petals (blue)
are reintroduced similar to the case for φ = 0.3t0 with ω = 0
[Fig. 3(b)]. In other words, the increasing φ can be partly
compensated by going to negative bias voltage. This introduces

new intra- and intersheet scattering processes connected with
the smaller (blue) petals and labeled by q̃a

1, q̃a,b
2 in addition

to the qα
i already defined before [Fig. 5(a)]. In general, the

intrapetal scattering is still very clearly visible in the integrated
QPI spectra leading to the center ellipsoids. The axis oriented
ellipsoids are always present and their size depends on ω, i.e.,
on the size of the larger (red) petals. On the other hand, the
diagonal ellipsoids in QPI spectrum are only there for negative
bias voltage because they originate from the smaller (blue)
petals as the characteristic wave vectors q̃a

1 clearly indicate.
The �-centered ellipsoids lead to envelopes that appear as
two nested squares with diagonal (large) and axis (small)
orientation [Fig. 7 for ω = 0].

Furthermore, the diagonal corner lobes are associated with
intersheet scattering (qb−d

3 -type) between the large (red) petals.
Generally, intersheet scattering features are diminished and
distorted due to the kz summation. In fact, for ω/t0 = 0.124,
the diagonal corner lobes have become invisible and only
a remnant of the axis-aligned qa

2-type interpocket scattering
remains. On the other hand, for ω/t0 = −0.124, the q̃a,b

2 -type
intersheet scattering from the small (blue) petals is visible
in the QPI as new axis aligned lobes. They are, however,
superposed to the weak qa

2-type scattering between the larger
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petals. Most importantly, Fig. 7 (second row) demonstrates
that clear but subtle evidence for the C4 symmetry breaking
remains in the total QPI for E−. For ω = 0, − 0.124t0, clearly,
the corner lobes from inter-pocket qb−d

3 -type scattering break
the C4 symmetry. For ω = 0.124t0, these are no longer visible
but the center lobes now have different width for those oriented
along kx,ky directions. On the other hand, the total A2+ QPI
spectrum keeps full C4 symmetry for all frequencies.

In the experimental QPI spectrum [11], the two nested
square envelopes of the �-centered ellipsoids from intrapetal
scattering are clearly visible where their relative intensity
changes with frequency (voltage). For the lower frequencies,
the axis and diagonal oriented lobes at larger wave vectors due
to interpetal scattering are also present. However, there seems
to be no easily recognizable rotational symmetry breaking
present. As mentioned, the latter may only appear in single
domain samples of E− type HO.

Finally, we discuss the influence of the proposed chiral
superconducting order within HO state on the QPI spectrum.
In Fig. 8(a), the spectral function in HO phase (dashed red line)
is superposed to the SC gap contour plot in kx-kz plane. Clearly,

the node line kz = 0 crosses the FS sheet while the node points
miss it. This means in the SC phase we obtain an effectively
2D slice around kz = 0 for the spectral function (blue full line).
The embedding of SC into the HO phase is demonstrated by
the two superposed gaps in the DOS of Fig. 8(b). For QPI,
we assume the case ω < 
0 � 
HO. Due to the kz = 0, a
node line of the SC gap opens up only for |kz| > 0 slices
and strongly reduces their contribution to the total QPI. Then
the latter becomes effectively 2D in the SC phase despite
the 3D Fermi surface. Therefore the chiral d-wave SC state
should be favorable to unveil the QPI structures of the HO
phase with more clarity as demonstrated by the comparison
of Figs. 8(c) and 8(d). Indeed, the full QPI of Fig. 8(d) in
the SC + HO state is practically identical to the partial QPI
of kz = 0 slice in the HO phase [Fig. 5(b)] without SC gap.
This is obvious from the quasi-2D shape of the (blue) spectral
function in Fig. 8(a). Although the kz = 0 node line of the
gap is favorable for enhancing the QPI features due to HO,
there is a drawback: because |kz| > 0 contributions will be
suppressed, the C4 symmetry breaking in the E− phase, which
they cause, will also be suppressed. Therefore, in the HO + SC

FIG. 8. (Color online) (a) Size of the gap function [Eq. (35)] on the HO Fermi surface in kx-kz plane. The dashed red curves show the
spectral function at energy ω = 0 for hidden ordered phase and blue thick curves show the quasi-2D spectral function at energy ω = 0.3
0 in
HO + SC phase. Note that the node line 
k = 0 is in kz = 0 plane. (b) The DOS shows the evolution of the SC pseudogap on top of the larger
HO gap. Comparison of total QPI (absolute value) image of (c) E− HO phase (φ = 0.7) [equivalent to Fig. 7(d)] with (d) HO (E− or A2+) +
chiral d-wave SC phase (φ = 0.7,
0 = 0.1). In the HO phase (c), the kz summation leads to the appearance of C4 symmetry breaking. In the
HO + SC phase, the gapping of states with |kz| > 0 in (a) reduces (d) to a quasi-2D QPI spectrum that contains only the C4 symmetric kz = 0
slice and therefore is equivalent for E− or A2+ HO. The momentum range is given by −π � ki � π .
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phase, the QPI pattern of E− and A2+ will be indistinguishable
for ω < 
0 � 
HO.

VIII. SUMMARY AND CONCLUSION

In this work, we have performed an analysis of the
consequences and signature of hidden order and chiral d-wave
superconductivity in the STM quasiparticle interference of
URu2Si2. This work was motivated on one hand by already
existing experiments and on the other hand by the continuing
debate on the proper symmetry of the hidden order. Our
calculations are based on a simplified effective model of
Ref. [12] that reproduces the main nesting Fermi surface sheets
of URu2Si2 thought to be responsible for the multipolar HO. In
particular, we studied the two most frequently discussed order
parameter symmetries, the A2+ (rank 4) hexadecapole and
E− (rank 5) dotriacontapole. Existing experimental evidence
(Sec. III) favors the latter. Their main difference is the presence
of C4 fourfold to twofold symmetry breaking in the latter,
which is absent in the former. These order parameters may be
described by electron-hole pairing with nesting momentum Q
in different total angular momentum states.

The calculation of quasiparticle bands clearly shows the
breakup of large electron hole pockets of the disordered
phase into smaller pockets (petals) in the HO state. While
the reconstructed Fermi surface sheets are equivalent in the
tetragonal plane for both symmetries, they strongly differ away
from it (|kz| > 0) through the presence or absence of fourfold
symmetry. The symmetry breaking for E− is directly related to
the presence of interorbital hopping terms. In both HO cases, a
deep gap in the DOS evolves in accordance with experimental
observation.

The quasiparticle interference spectrum was calculated in
the Born approximation using the four reconstructed bands.
Due to the pronounced 3D character of the Fermi surface in
disordered as well as HO phases, the QPI calculations have
to be performed for 2D slices of constant kz followed by a
summation. The result shows that the main features of the FS
reconstruction by HO can still be seen in the total QPI spectrum
at various bias voltages. The most prominent features result
from intrasheet scattering while the structures due to interpetal
scattering are more diffuse and depend on the bias voltage
size. The presence of the QPI center ellipsoids and corner
or edge lobe structures and partly its frequency dependence
are qualitatively similar to the experimental results [11]. The
center ellipsoids may also be interpreted as nested axis- and
diagonal-oriented squares.

The calculation has also shown that there are subtle
distinctions between the HO symmetries, in particular the
clear fourfold symmetry breaking of QPI pattern in the E−
phase in contrast to A2+ (Fig. 7). This is, however, observable
only for scanning a single domain of the E− phase. Averaging
over domains would restore the fourfold symmetry also in
the E− HO phase. This seems to be the case in the presently
existing experiments [11]. The importance of having single
domain samples for observing the fourfold symmetry breaking
was already emphasized in torque experiments [19] and their
theoretical interpretation [14]. If single domain samples can
be realized in these QPI experiments, they can give additional
evidence for the HO symmetry.

The influence of the frequently discussed chiral d-wave
SC order embedded in the HO phase has been investigated.
Due to its node line in the basal plane, this order parameter
effectively leads to a reduction of total 3D QPI to an essentially
2D spectrum with improved contrast but at the same time it
suppresses any symmetry distinction between E− and A2+
hidden order.

APPENDIX: KINETIC ENERGY COEFFICIENTS AND
PARA PHASE BAND STRUCTURE

Here, we describe the effective 5f two-band model for
URu2Si2 that is adopted from Ref. [12]. The kinetic terms in
Eq. (2) are defined by the intraorbital energies (α = 1,2 is the
orbital or band index):

Aαk = Az
αk + A⊥

αk + 1

2
sign(α)
12,

Az
αk = 8tα cos

a

2
kx cos

a

2
ky cos

c

2
kz, (A1)

A⊥
αk = 2t ′α(cos akx + cos aky) + 4t ′′α cos akx cos aky − ε0,

and interorbital hopping energy

Dk = D′
k + iD′′

k

= t12

[
sin

a

2
(kx + ky) − i sin

a

2
(kx − ky)

]
sin

c

2
kz,

(A2)
D′

k = 4t12 sin
a

2
(kx + ky) sin

c

2
kz,

D′′
k = −4t12 sin

a

2
(kx − ky) sin

c

2
kz.

To reproduce a realistic Fermi surface model with nesting
electron- and holelike pockets around the � and Z points of the
bcc Brillouin zone, we use the following parameters [12]. The
orbital energy splitting is 
12 = 3.5 or 
 ≡ 0.5
12 = 1.75.
The nearest-neighbor hopping is t1 = t2 ≡ t = −0.3, this
means orbital-independent Az

αk = Az
k. Furthermore, hopping

elements to next- and second-nearest neighbors are given
by t ′1 = −0.87, t ′2 = 0.0,t ′′1 = 0.375,t ′′2 = 0.25, respectively,
and the average orbital energy is −ε0 = 0.5. The interorbital
hopping is taken as |t12| = 0.7. All energies are given here
in terms of the unit t0. Since the total effective bandwidth
[Fig. 2(a)] is Wqp � 12t0 and Wqp = 80 meV from tunneling
results [31] this means t0 = 6.66 meV.

For the computation of quasiparticle bands in the HO phase,
it is also useful to introduce the following (anti-) symmetrized
quantities:

A⊥
k = 1

2
(A⊥

1k + A⊥
2k)

= 2t ′(cos akx + cos aky) + 4t ′′ cos akx cos aky − ε0,


⊥
k = 
 + 1

2
(A⊥

1k − A⊥
2k)

= 
 + 2δ′(cos akx + cos aky) + 4δ′′ cos akx cos aky.

(A3)

Here we defined t ′ = 1
2 (t ′1 + t ′2), t ′′ = 1

2 (t ′′1 + t ′′2 ) and δ′ =
1
2 (t ′1 − t ′2), δ′′ = 1

2 (t ′′1 − t ′′2 ).
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The auxiliary functions above have the following symmetry
under translation by the ordering vector Q: A⊥

αk+Q = A⊥
αk

implying also A⊥
k+Q = A⊥

k and 
⊥
k+Q = 
⊥

k . On the other
hand, Az

αk+Q = −Az
αk and Dk+Q = −Dk.

Finally, we give the relations of the A1k, A2k to
the symmetrized coefficients A⊥

k , 
⊥
k introducing τ = ±

as the new band index connected with the downfolding of
the paramagnetic bct to the st BZ of the HO phase and the
associated symmetry Az

k+Q = −Az
k. We obtain

Ak
τ+ = τAz

k + A⊥
k + 
⊥

k =
{

A1k τ = +
A1k+Q τ = −

}
,

(A4)

Ak
τ− = τAz

k + A⊥
k − 
⊥

k =
{

A2k τ = +
A2k+Q τ = −

}
.

This leads to the identities
1
2 (A1k + A2k) = Az

k + A⊥
k ,

1
2 (A1k − A2k) = 
⊥

k ,
(A5)

and

1
2 (A1k+Q + A2k+Q) = −Az

k + A⊥
k ,

(A6)
1
2 (A1k+Q − A2k+Q) = 
⊥

k .

The para phase (|φ| = |φz| = 0) band structure is given by the
first of Eq. (22). Using Eq. (A6), these four bands may also be
expressed as

ε±
1 (k) = 1

2 (A1k + A2k) ±
√

1
4 (A1k − A2k)2 + |Dk|2,

ε±
2 (k) = 1

2 (A1k+Q + A2k+Q)

±
√

1
4 (A1k+Q − A2k+Q)2 + |Dk|2, (A7)

which reflects directly that the four bands are obtained by the
downfolding of two bands into the st BZ of the ordered phase.
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