
PHYSICAL REVIEW B 90, 224509 (2014)

Radiation emission due to fluxon scattering on an inhomogeneity in a large two-dimensional
Josephson junction
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Interaction of a fluxon in the two-dimensional large Josephson junction with the finite-area inhomogeneity is
studied within the sine-Gordon theory. The spectral density of the emitted plane waves is computed exactly for the
rectangular and rhombic inhomogeneities. The total emitted energy as a function of the fluxon velocity exhibits
at least one local maximum. Connection to the previously studied limiting cases including the point impurity and
the one-dimensional limit has been performed. An important feature of the emitted energy as a function of the
fluxon velocity is a clear maximum (or maxima). The dependence of these maxima on the geometric properties
of the impurity has been studied in detail.
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I. INTRODUCTION

Studies of the fluxon (Josephson vortex) dynamics in large
Josephson junctions [1,2] (LJJs) is an important problem
in modern superconductivity. The LJJs can be spatially
inhomogeneous either due to the production defects or can
be manufactured in such a way on purpose. Thus, the
problem of the fluxon interaction with the spatial inhomo-
geneity (microshort,microresistor, Abrikosov vortex, etc.) is
of remarkable importance [3–8]. As a result of the fluxon-
impurity interaction the radiation of the small-amplitude
linear waves (Josephson plasmons) occurs [3,9]. The issue
of the linear wave radiation due to the fluxon collision
with the spatial inhomogeneity has been studied in detail for
the one-dimensional case (1D). Most of these (both theoretical
and experimental) studies have focused on the scattering on
the pointlike inhomogeneity being either a microshort or a
microresistor [3,10–12], or a magnetic impurity [13]. An
extended inhomogeneity has been investigated [14] as well
as the interface separating two different junctions [15].

An important thing to note is that a 1D Josephson junction
is only a 1D approximation of the two-dimensional (2D)
LJJ of the finite width. Thus, a natural question is to take
the transverse direction into account and to study the fluxon
scattering on an impurity in this situation. Moreover, fluxon
dynamics in the large-area JJ is an interesting and important
problem in its own right. It has been studied in different
contexts such as dynamical properties [16,17], pinning on
impurities [18], and applications [19,20]. However, up to now
the radiation emission due to the 2D fluxon scattering on the
impurity has been studied in detail only for the special case of
the pointlike impurity described by the Dirac δ function [21].
Thus, the aim of this paper is to study the properties of the
small-amplitude wave radiation that appears as a result of the
fluxon transmission through the inhomogeneity of the general
shape.

The paper is organized as follows. In the next section, the
model is described. Section III is devoted to the studies of
the radiation emitted due to the fluxon-impurity interaction. In
the last section, the discussion and conclusions are presented.
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II. THE MODEL

We consider fluxon dynamics in the LJJ with spatial in-
homogeneities. The main dynamical variable is the difference
between the phases θ2(x,y; t) − θ1(x,y; t)

.= φ(x,y; t) of the
macroscopic wave functions of the superconducting layers of
the junction, also known as the Josephson phase. In the bulk
of the junction this variable satisfies [1–3] the equation

∂xHy − ∂yHx = jc[1 + fI (x,y)] sin φ + �C(x,y)

2e
∂2
t φ, (1)

where the function fI (x,y) describes the critical current
change on the spatial inhomogeneity and the magnetic field
components Hx,y are related to the Josephson phase as

Hx = − �

2eμ0l(x,y)
∂yφ, Hy = �

2eμ0l(x,y)
∂xφ. (2)

The junction capacitance C(x,y) is spatially inhomogeneous
due to the impurity. Among other parameters jc is the critical
current density away from the impurity, e is the electron
charge, μ0 is the vacuum permeability, and � is Planck’s
constant. The value l(x,y) describes the thickness of the
layer that allows magnetic field penetration. It varies in space
due to the presence of the impurity and can be written
as l(x,y) = 2λL + di(x,y), where λL is the superconductor
London penetration depth and di(x,y) is the insulating layer
thickness. Away from the impurity di(x,y) = d0 = constant
while di(x,y) = d0 + d1 = constant inside the impurity. For
the impurity of the general shape that covers a certain segment
� ∈ R2 of the junction one can write

fI (x,y) =
{
μI if (x,y) ∈ �,

0 if (x,y) /∈ �.
(3)

Similarly, the spatial change of the magnetic length and
capacitance is given by

l(x,y) =
{
d0 + 2λL + d1 if (x,y) ∈ �,

l0 = d0 + 2λL if (x,y) /∈ �,
(4)

and

C(x,y) = C0
d0

di(x,y)
= C0[1 + fC(x,y)],

fC(x,y) =
{
μC = − d1

d1+d0
if (x,y) ∈ �,

0 if (x,y) /∈ �,
(5)
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where C0 is the junction capacitance per unit area away
from the impurity. For the sake of convenience the following
function can be introduced:

l0

l(x,y)
= 1 + fH (x,y) = 1 +

{
0 if (x,y) /∈ �,

μH if (x,y) ∈ �,

μH = l0

l0 + d1
− 1 = − d1

d0 + d1 + 2λL

. (6)

Equation (1) can be rewritten in the dimensionless form by
normalizing the spatial variables x and y to the Josephson
penetration depth λJ and the time t to the inverse Josephson
plasma frequency ω−1

J . As a result, the two-dimensional
perturbed sine-Gordon (SG) equation is obtained:{− ∂x[1 + fH (x,y)]∂x − ∂y[1 + fH (x,y)]∂y

+ [1 + fC(x,y)]∂2
t

}
φ + [1 + fI (x,y)] sin φ = 0. (7)

For details one might consult the textbooks [1,2]. The impurity
is a microshort if μI > 0, d1 < 0 and a microresistor if
μI < 0, d1 > 0. Hence μH /μI > 0 and μC/μI > 0 both for
microshorts and microresistors. Taking into account that for
the SIS (superconductor-insulator-superconductor) junctions
usually [1,2] the insulating layer thickness d0 ∼ 10 Å, while
the London penetration depth λL is of the order of several tens
of Å, the inequality |μH | < |μC | holds.

III. RADIATION EMISSION

Fluxon interaction with the spatial inhomogeneity is nor-
mally accompanied with the radiation of the small-amplitude
electromagnetic waves [3] (Josephson plasmons). Below we
present the general scheme for the calculation of the radiation
created by the fluxon-impurity interaction which is based on
the method developed for the delta-like impurity [21] or for
the respective 1D problems [10,22]. Only the main points
of the derivation procedure are presented. For the details the
interested reader can consult the above-mentioned papers.

A. General framework

Both sides of the SG equation (7) can be divided by [1 +
fC(x,y)], and as a result it can be rewritten as

∂2
t φ − 	φ + [1 + f̄I (x,y)] sin φ = f̄H (x,y)	φ

+ 1

1 + fC(x,y)
[∂xfH (x,y)∂xφ + ∂yfH (x,y)∂yφ], (8)

where 	 = ∂2
x + ∂2

y and

f̄I (x,y) = 1 + fI (x,y)

1 + fC(x,y)
− 1 =

{
0 if (x,y) /∈ �,

μ̄I if (x,y) ∈ �,

f̄H (x,y) =
{

0 if (x,y) /∈ �,

μ̄H if (x,y) ∈ �,

μ̄I,H = μI,H − μC

1 + μC

. (9)

We seek the solution of the SG equation (7) as a superposition
of the exact soliton solution and the plasmon radiation on
its background: φ(x,y,t) = φ0(x,t) + ψ(x,y,t). The spatial
inhomogeneity is considered as a small (|μI,H,C | � 1) per-
turbation. Here φ0(x,t) = 4 arctan[exp( x−vt√

1−v2 )] is the exact

soliton solution of the unperturbed 1D SG equation and
ψ(x,y,t) is the radiative correction, |ψ | � φ0. It is convenient
to work in the reference frame that moves with the fluxon
velocity v: ξ = x−vt√

1−v2 , τ = t−vx√
1−v2 . In these new variables we

have φ0(x,t) = φ0(ξ ) = 4 arctan(exp ξ ).
In the moving reference frame the equation that describes

the emitted radiation reads{
∂2
τ − (∂2

ξ + ∂2
y

)+ cos[φ0(ξ )]
}
ψ = R(ξ,y; τ ), (10)

where the right-hand side of Eq. (10) is completely defined by
the impurity:

R(ξ,y; τ ) = 2

[(
1 − 1

1 − v2

μ̄H

μ̄I

)
tanh ξ

cosh ξ

×f̄I

(
ξ + vτ√

1 − v2
,y

)
+

hH

(
ξ+vτ√

1−v2 ,y
)

√
1 − v2 cosh ξ

]
,

hH (x,y) = ∂xfH (x,y). (11)

In this expression it has been taken into account that
sin[φ0(ξ )] = ∂2

ξ φ0(ξ ) = −2 tanh ξ/ cosh ξ . Also, for any two
functions of the type fα(x,y) or f̄α(x,y) (α = I,C,H ) the
following equality is true: fα(x,y) = μαfβ(x,y)/μβ . Here the
last term of R(ξ,y; τ ) that contains the function hH (x,y) is
associated with the fluxon interaction with the borders of the
impurity because hH (x,y) �= 0 only there, i.e., if (x,y) /∈ ∂�.
The first term corresponds to the radiation produced when the
fluxon passes the bulk of the impurity.

The solution of Eq. (10) can be represented as

ψ(ξ,y,τ ) =
∫ +∞

−∞

∫ +∞

−∞
a(qξ ,qy ; τ )ϕ(ξ,y; qξ ,qy)dqξdqy,

(12)

where ϕ(ξ,y; qξ ,qy) is the eigenfunction [23,24] of the
homogeneous part of this equation:

ϕ(ξ,y; qξ ,qy) = ei(qξ ξ+qyy)

(2π )3/2

qξ + i tanh ξ(
1 + q2

ξ

)1/2 , (13)

∫ +∞

−∞

∫ +∞

−∞
ϕ∗(ξ,y; qξ ,qy)ϕ(ξ,y; q ′

ξ ,q
′
y)dξdy

= 1

2π
δ(qξ − q ′

ξ )δ(qy − q ′
y). (14)

Here δ is the Dirac delta function, qξ and qy are the components
of the plasmon wave vector in the moving frame, and

ω̄ =
√

1 + q2
ξ + q2

y (15)

is the plasmon dispersion law in that frame. The function
a(qξ ,qy) is the radiation amplitude. It is convenient to
introduce another function which also describes the emitted
radiation, namely b(qξ ,qy ; τ )

.= (aτ − iω̄a) exp(iω̄τ ). As a
result, the following equality holds:

∂τ b = eiω̄τ
(
∂2
τ a + ω̄2a

)
. (16)

Multiplying both sides of Eq. (10) by ϕ∗(ξ,y; q ′
ξ ,q

′
y) and

integrating simultaneously over y ∈ R and ξ ∈ R we obtain
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δ(qξ − q ′
ξ ) and δ(qy − q ′

y) on the left-hand side [the orthogo-
nality condition (14) is used] of Eq. (10). After removing the
integration over qξ and qy one arrives at the expression

∂τ b = 2πeiω̄τ

∫ +∞

−∞

∫ +∞

−∞
R(ξ,y; τ )

×ϕ∗(ξ,y; qξ ,qy)dξdy. (17)

The total radiation over the whole time is defined by the
function

B(qξ ,qy) =
∫ +∞

−∞
∂τ b(qξ ,qy ; τ )dτ. (18)

Thus, with the pair of equations (17) and (18) one has the
complete formula for the energy calculation. From this point
it is possible to proceed to the emitted radiation studies
for the particular shapes of �. The return to the laboratory
frame is performed with the help of the following Lorentz
transformation:

qx = qξ + vω̄√
1 − v2

, ω = vqξ + ω̄√
1 − v2

, (19)

qξ = qx − vω√
1 − v2

, ω̄ = ω − vqx√
1 − v2

. (20)

The qy component remains unchanged. Taking into account
that the emitted energy density equals [21] E(qx,qy) 

|B(qx,qy)|2/(4π ), the total energy is given by the integral

E =
∫ +∞

−∞

∫ +∞

−∞
E(qx,qy)dqxdqy. (21)

The following simplification can be achieved if � has the
properties defined below. Suppose the impurity covers the area
that is limited by the lines x = x1 and x = x2 along the y axis
and by the continuous and single-valued functions y = g±(x)
along the x axis, as is shown in Fig. 1. In this case

fI,H,C(x,y) = μI,H,C[θ (x − x1) − θ (x − x2)]

×{θ [y − g−(x)] − θ [y − g+(x)]}, (22)

and the integral over y can always be taken. As a result,
the computation of the radiation function b is reduced
considerably. Here θ (x) is the Heaviside function.

Below we consider the concrete examples when the
impurity area � is limited by the piecewise functions.

g (x)−

x1 x2

g (x)+

Ω

fluxon propagation

y

x

FIG. 1. Schematic top view of the impurity area �.

B. Rectangular impurity

In this subsection the rectangular impurity of finite size in
both x and y directions,

fI,H,C(x,y) = μI,H,C

[
θ

(
x + dx

2

)
− θ

(
x − dx

2

)]

×
[
θ

(
y + dy

2

)
− θ

(
y − dy

2

)]
, (23)

hH (x,y) = μH

[
δ

(
x + dx

2

)
− δ

(
x − dx

2

)]

×
[
θ

(
y + dy

2

)
− θ

(
y − dy

2

)]
, (24)

is considered. The parameters dx and dy are the impurity length
and width, respectively.

1. Spectral density of the emitted waves

At this point we can substitute the actual expressions (23)
and (24) that correspond to the rectangular impurity into
Eqs. (17) and (18). Then the radiation function (18) in the
moving frame is obtained after the consecutive integration
over the y, τ , and ξ variables:

B(qξ ,qy) = i
2
√

2πμI

q2
y

√
1 + q2

ξ (1 − v2)1/2v3
sin

(
qydy

2

)
sin

(
ω̄

√
1 − v2

2v
dx

)
sech

[ π

2v
(qξv + ω̄)

]

×
{(

1 − v2 − μH

μI

+ v2 μC

μI

) [
ω̄2 − (1 + q2

ξ

)
v2
]

1 + μC

+ 2
μH

μI

(1 − v2)ω̄2

}
. (25)

The first term in the curly brackets in Eq. (25) appears due to the first term in R [see Eq. (11)] and can be treated as a result of the
fluxon interaction with the bulk of the impurity. The second term in the curly brackets appears due to the second term (associated
with the function hH ) in Eq. (11) and can be considered as the radiation that appears due to the fluxon interaction with the border
of the impurity. After returning to the laboratory frame of reference with the help of Eqs. (19) and (20) the final formula for the
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spectral density reads

E(qx,qy) = 2μ2
I

v4

[
sin(qydy/2)

qy

]2 { sin [dx(ω − vqx)/2v]

ω − qxv

}2

sech2
(πω

2v

√
1 − v2

)

×

{
1−v2− μH

μI
+v2 μC

μI

1+μC

[
(ω − qxv)2 + q2

yv
2
]+ 2μH

μI
(ω − vqx)2

}2

(ω − qxv)2 + (v2 − 1)q2
y

, (26)

ω =
√

1 + q2
x + q2

y . (27)

This function is symmetric with respect to the mirror sym-
metry qy → −qy and to the transform qx → −qx , v → −v.
Therefore, it is sufficient to restrict the plots of E(v) to the
interval 0 � v � 1. In order to compute the total emitted
energy E(v) [see Eq. (21)] it is necessary to use numerical
methods because it is not possible to take the respective double
integral explicitly.

2. 1D limit

Before embarking on the investigation of the full 2D
problem it is instructive to recall the corresponding one-
dimensional (1D) case of the fluxon scattering on the impurity
with the length dx . Formally this limit can be achieved if
dy → ∞. The energy density in this case is already known
from the previous work [14]:

E(q) = π

v4
μ2

I

(
1 − v2 − μH

μI
+ v2 μC

μI

1 + μC

+ 2
μH

μI

)2

× sin2

[
dx

2v
(
√

1 + q2 − qv)

]

× sech2

(
π

√
1 − v2

2v

√
1 + q2

)
. (28)

However, in the paper cited above, the spatial inhomogeneity
of the capacitance was not taken into account. We note that
Eq. (28) can be obtained in the limit qy → 0 from Eq. (26)
(μI should be renormalized as μIdy → μI ). This means that
the impurity width dy tends to infinity, and, as a result, the
scattering does not create any radiation in the y direction,
leaving the problem completely invariant in that direction, i.e.,
one dimensional.

Typical dependencies of the spectral density E = E(q) for
the different values of the fluxon velocity are given in Fig. 2.
It is easy to see that the energy density E(q) [Eq. (28)] has an
infinite countable set of global minima for which E(qmin) = 0.
They are the roots of the equation

dx

(√
1 + q2

min − qminv
)

2v
= πn,n = n0,n0 + 1, . . . ,

n0 = �dx(1 − v2)1/2/(2vπ )
 > 0,

(29)

where �x
 is the ceiling function [25] of x. Similarly, there are
maxima that are placed between those minima at the values of

q that are the roots of the equations

dx

(√
1 + q2

max − qmaxv
)

2v
≈ π (2n − 1)

2
,

n = n0,n0 + 1, . . . . (30)

The minima and maxima are associated with the constructive
and destructive interference of the plasmons, emitted when the
fluxon enters and exits the impurity. Depending on the length
of the impurity and the fluxon velocity, the radiated plasmons
can either cancel each other if their phases differ by ±π or
can enhance each other if their phases coincide. The radiation
consist of the forward (q > 0) and backward (q < 0) emitted
plasmons, and the energy of these plasmons is distributed
nonhomogeneously with respect to q. First of all, most of
the energy is concentrated in the long-wavelength modes due
to the presence of the sech2(· · · ) term in Eq. (28). Second,
as can be seen from Fig. 2, the distribution of the backward
radiation is defined by the extrema (29) and (30) that lie on
the negative half axis (q < 0). These extrema are distributed
almost in an equidistant way with the step 2πv/[dx(1 + v)];
therefore, the small change of v will lead to the small change
in the area under the E(q) curve. On the contrary, the forward
radiation depends strongly on v, especially if v is not small
(v < 1 but not v � 1). Only for large q’s the extrema are

FIG. 2. (Color online) Energy density [see Eq. (28)] for the 1D
junction with dx = 8, μH = μC = 0 at the fluxon velocity v = 0.398
(a), v = 0.488 (b), v = 0.552 (c), and v = 0.676 (d). The red dashed
line depicts the sech2 “envelope” term in Eq. (28).
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FIG. 3. (Color online) Total emitted energy (normalized to μ2
I ) as

a function of the soliton velocity for the impurity with dx = 8, dy = 8
and μH = 0, μC = 0.1, μC/μI = 1 (curve 1), μH = 0, μC = −0.05,
μC/μI = 0.5 (curve 2), μH /μI = 0.01, μC = 0.05, μC/μI = 0.5
(curve 3, red), μH = 0, μC = 0.05, μC/μI = 0.5 (curve 4), and
μH = μC = 0 (curve 5). The dashed lines 6 and 7 correspond to
the same dependence but for the 1D problem [see Eq. (28) for the
spectral energy density] with dx = 8 and μH = μC = 0 (curve 6) and
μH = 0, μC/μI = 0.5, μC = 0.05 (curve 7). These dependencies are
multiplied by a factor 10 for the sake of convenience. The inset shows
the details of curves 4 and 7.

distributed with the almost fixed step 2πv/[dx(1 − v)]. The
minima of E(q) given by Eq. (29) come in pairs, numbered
by the index n. These pairs are placed on the different sides
from the value q = v/

√
1 − v2, which is the minimum of the

left-hand side of Eqs. (29) and (30). The pair with n = n0

is the pair of the minima that are the closest to each other.
There always should be a maximum between these minima.
If the above-mentioned minima are very close to each other
(2πn0v/dx �

√
1 − v2), the maximum between them cannot

be associated with Eq. (30), as seen in Figs. 2(a) and 2(c);
thus, the respective value of E lies not on the sech2(· · · )
envelope function, but significantly below it. As a result, for
these values of v the forward radiation can be insignificant,
as can be observed from the area below the curve E(q) at
q > 0. In another case, the pair of minima that correspond
to n0 are significantly separated, and the maximum between
them belongs to the set (30). It is again the first maximum at the
positive axis, and it attains the value of E which is quite large
compared to the previous case, as can be seen in Figs. 2(b)
and 2(d).

The dashed lines 6 and 7 in Fig. 3 show the dependence
of the total emitted energy on the fluxon velocity (the solid
lines correspond to the 2D case which will be discussed
later). The values of v which correspond to the minima of
the E(v) in line 6 in Fig. 3 have the minimal forward emission,
and the respective spectral energy distributions are shown in
Figs. 2(a) and 2(c). The values of v that are the maxima
of E(v) correspond to the maximal forward emission and
the respective spectral distributions are given in Figs. 2(b)
and 2(d). Thus, the maxima of the total energy coincide with
the maximal forward emission while the minima of E(v)
correspond to the minimal forward emission. It should be
noted that the minima [Eq. (29)] and maxima [Eq. (30)] of the
energy density are distributed approximately equidistantly for

the short-wavelength (|q| � 1) modes but with the different
step for q > 0 and q < 0. In the limit |v| � 1 this step becomes
approximately the same; it equals 2πv/dx . Consequently,
in the limit |v| → 0 one cannot expect sharply pronounced
extrema of the E(v) dependence, and this can be noticed from
the inset.

Finally, we remark that in the relativistic limit v → 1 the
total energy E(v) → 0 if μH = μC = 0 and E(v) → ∞ if
μH,C �= 0. The details of this limit will be discussed below
together with the 2D case.

3. Total emitted energy in the 2D case

First of all, we discuss the dependence of the total emitted
energy E(v) on the impurity parameters μI , μH , and μC . We
remind the reader that μI is associated with the change of the
critical current, while μC [see Eq. (5)] and μH [see Eq. (6)]
appear due to the narrowing or distension of the insulating
area. If μH = μC = 0 the impurity corresponds only to the
local change of the critical current without any changes in
the insulating layer thickness. The total emitted energy
for the different values of μH and μC is given in Fig. 3.
We note the principal difference in the behavior of the E(v)
function in the limit v → 1 if μC,H �= 0 compared to the case
μC = μH = 0. In the latter case E(v) tends to zero while in
the former case it diverges: E(v)v→1 → +∞. The same is
observed in the 1D case (shown by the dashed lines). It is
quite obvious from the lines 1 and 4 that for the larger values
of μC the value of the emitted energy is larger. If one takes
two opposite values of μC , the case of a microresistor (μC < 0,
line 2) yields slightly larger energy emission compared to the
case of a microshort (μC > 0, line 4) due to the presence
of the (1 + μC)−1 coefficient in the energy density (26). The
effect of the spatial variation of the magnetic field, governed
by the coefficient μH , is negligible, as one can observe from
the comparison of the lines 3 and 4. Therefore, we will assume
μH = 0 further on throughout the paper.

The divergence at v → 1 appears due to the presence of the
divergent terms on the right-hand side of Eq. (10). These terms
[see Eq. (11)] are proportional to (1 − v2)−1 and (1 − v2)−1/2.
In the former term the function f̄I contains both the parameters
μC and μH and is always finite; thus the divergence appears
only due to the divisor. In the latter term, in addition, there
is a function hH which is nonzero only on the edges of the
inhomogeneity, where it is proportional to the Dirac δ function.
This term generates the sharp growth of radiation when the
fluxon interacts with the edges of the impurity. In the 1D case
it produces such growth only at the entrance (x = −dx/2) and
exit (x = dx/2) points of the impurity.

We would like to mention that the divergence at v →
1 seems to be nonphysical. First of all, the presence of
the divergent term in Eq. (11) means that the first order
of perturbation theory is not applicable any longer in this
limit and should be amended somehow. Second, within the
current model the dissipative effects have been neglected. If
they are taken into account, the radiated energy will always
be finite.

Other features of the E(v) dependence such as the multiple
extrema will be discussed below. At this point we only note
that as μC decreases, the positions of the extrema do not
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FIG. 4. (Color online) Total emitted energy (normalized to μ2
I )

as a function of the fluxon velocity for μH = 0, μC/μI = 0.5, μC =
0.05, dx = 8 and dy = 8 (curve 1), dy = 6 (curve 2), dy = 4 (curve 3),
and dy = 2 (curve 4). The case μH = μC = 0 is represented by the
red curves 5 (dy = 6) and 6 (dy = 2). The dashed line corresponds to
the respective 1D problem with dx = 8 (for the sake of convenience
it is multiplied by a factor of 10).

shift significantly, but the absolute values of E at the extrema
decrease. This happens because the contribution to the emitted
radiation due to the narrowing/expansion of the insulating
layer decreases. Depending on the value of μC some extrema
can disappear due to the growth of E(v) as v → 1 (see line
1 in Fig. 3). The limit v → 0 is given in the inset of Fig. 3.
One can notice that the extrema of the total energy persist in
this limit both in the 1D and 2D cases, although they can be
spotted only on the logarithmic scale.

In Fig. 4 the total emitted energy is plotted for the fixed value
of the impurity length dx = 8 while its width dy is varied. The
1D result for the same length is plotted with the dashed line as a
reference. Naturally, the value of the emitted energy decreases
as dy decreases. More interestingly, the extrema become less
pronounced, and finally no extrema are seen in curve 4 that
corresponds to the case dy = 2. In the case μH = μC = 0 we
obtain the same picture: compare curve 5 of Fig. 3 (dy = 8),
curve 5 of Fig. 4 (dy = 6), and curve 6 of Fig. 4 (dy = 2).
The maxima become more shallow and gradually disappear.
The following interpretation of the obtained results can be
made. The shape of the energy density distribution is given
in Fig. 5. The absolute minima of the energy density satisfy
E(qx,qy) = 0 and these minimal values are attained at the
following set on the (qx,qy) plane:

qy = 2πn

dy

, n = ±1, ± 2, . . . for any qx, (31)

(1 − v2)q2
x + q2

y =
(

2πmv

dx

)2

− 1 + 4πmv2

dx

qx,

m = n0,n0 + 1, . . . , (32)

where n0 is given by Eq. (29). Thus, the minima are located on
the set of parallel lines (31) as well as on the set of embedded
ellipses given by Eq. (32). The ridges of the maximal E lie
between the curves, defined by the roots of Eq. (31). For
large dy these ridges are strongly localized in the qy direction

FIG. 5. (Color online) Emitted energy density E for the data in
Fig. 4, curve 1 at v = 0.55 (a) and v = 0.73 (b); curve 6 at v = 0.5
(c), v = 0.75 (d), v = 0.1 (e), and v = 0.99 (f).

[see Figs. 5(a) and 5(b)], while the decreasing of dy makes
them concentric and crescent-like as shown in Figs. 5(c)
and 5(d).

For the large values of dy the problem can be treated as an
almost 1D, so that most of the emitted radiation travels in the
x direction while the y component of the radiation remains
insignificant.

This can be clearly observed in Figs. 5(a) and 5(b) where
the spectral density E(qx,qy) (26) is plotted for the values
of velocity close to the minimum [panel (a)] and maximum
[panel (b)] of the curve 1 in Fig. 4. Since the decay of the
function [sin(qydy/2)/qy]2 with the growth of qy is quite fast
for the large values of dy , the energy density function remains
strongly localized along the qx axis in the neighborhood of
the qy = 0 line. Its behavior along the qx axis is reminiscent
of the respective 1D problem; see Eq. (28) and Fig. 2.
Indeed, the minimum of the total emitted energy corresponds
to the minimal forward emission. It can be easily observed in
Fig. 5(a) that the global maximum is placed on the qx axis
at qx < 0 while the first local maximum at qx > 0 is rather
small. In Fig. 5(b) it can be seen that the global maximum
is placed on the positive half axis of the qx axis, and this
happens at v = 0.73 which is quite close to the maximum of
the E(v) function (curve 1) in Fig. 4. The further decreasing
of dy smears out maxima in the E(v) dependence (compare
the curves 1–4 in Fig. 5) up to the point when only one local
maximum can be spotted. The scattering problem cannot be
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considered as a quasi-1D any more. The radiation distribution
becomes rather different as shown in Figs. 5(c) and 5(d).
The maxima of E(qx,qy) still lie on the qx axis, but the
curves (32) that define the minimal values become distinctly
arc shaped. The y component of the radiation becomes more
delocalized and the analogy with the 1D picture breaks
down.

It is interesting to note how the shape of the energy density
function varies in the extreme limits of the velocity value:
v → 0 and v → 1. In the small velocity limit |v| � 1 the
ellipses Eq. (32) that correspond to the minima of E are
almost circles and the density function is close to being
radially symmetric; see Fig. 5(e). The increasing of v makes
the ellipses Eq. (32) more elongated in the x direction, as
has been demonstrated previously [see Figs. 5(a)–5(d)]. An
interesting situation emerges in the opposite limit, namely
if 1 − |v| � 1. The global maximum that was positioned on
the qx axis splits up into two maxima that are now located
off the qx axis symmetrically with respect to each other, as
shown in Fig. 5(f). Physically this means the following. The
slow fluxon “feels” the impurity as a wall and the emergent
radiation moves mostly along the fluxon propagation direction.
The fast (relativistic) fluxon interacts with the impurity in
such a way that the impurity acts like a groin (a wave
breaker) and the emitted radiation is split by the impurity
into two halves that have both x and y components. A
the same time the x component of the radiation becomes
insignificant.

The number of local extrema of E(v) depends on the
impurity length dx . This is easily demonstrated by Fig. 6, where
the number of the maxima decreases with the decreasing of
dx . This result is similar to the same situation in the 1D model
[14].

FIG. 6. Total emitted energy (normalized to μ2
I ) as a function

of the fluxon velocity for μH = 0, μC/μI = 0.2, μC = 0.02, dy = 8
and dx = 2 (curve 1), dx = 4 (curve 2), dx = 6 (curve 3), and dx = 10
(curve 4).

4. Limiting cases

It is of interest to check the limiting cases when in one of
the directions (x or y) the impurity becomes infinitely narrow.
In the first case the limit dx → 0, while μ∗ = μIdx remains
constant, corresponds to the situation when the impurity
becomes infinitely thin in the x direction. In Eqs. (23) and (24)
the difference of the θ functions that form the first factor in
the functions fI,H,C(x,y) (23) becomes the Dirac δ function
while hH ≡ 0. This case with μC = μH = 0 has been studied
previously [26]. Yet another interesting limit can be considered
if dy → 0, μ∗ = μIdy . In other words, the impurity remains
elongated in the x direction, but becomes infinitely thin in the
y direction. The spectral density of the emitted plasmons in
the cases mentioned above reads

E(qx,qy)

μ2∗
→

⎧⎪⎪⎨
⎪⎪⎩

sin2
(

qy dy

2

)
2v6q2

y

{ 1−v2− μH
μI

+v2 μC
μI

1+μC

[
(ω−qxv)2+q2

y v2
]
+2 μH

μI
(ω−vqx )2

}2

(ω−qxv)2+(v2−1)q2
y

sech2
(

πω
√

1−v2

2v

)
, if dx → 0,

1
2v4

[ sin[dx (ω−qxv)/2v]
ω−qxv

]2 { 1−v2− μH
μI

+v2 μC
μI

1+μC

[
(ω−qxv)2+q2

y v2
]
+2 μH

μI
(ω−vqx )2

}2

(ω−qxv)2+(v2−1)q2
y

sech2
(

πω
√

1−v2

2v

)
, if dy → 0.

(33)

In these limits the modulation in q space, caused by the interference, disappears along the qx direction in the first formula
because the impurity length becomes infinitely small. For the same reason there is no interference along the qy component
when dy → 0 in the second formula of Eq. (33). When any of these limits are approached, the multiple maxima of the E(v)
dependence disappear leaving only one local maximum. The limit of the point [fI (x,y) = μIδ(x)δ(y)] impurity [21] can be
achieved easily from the stripe impurity by taking in Eqs. (33) the limits μC,H → 0 and dx → 0 or dy → 0 where appropriate.
When the impurity shrinks into a point the local change of the insulating layer thickness is ignored; thus μC = μH = 0. The
obtained formula coincides with the previous result [21].

C. Rhombic impurity

Now we consider the rhombus (diamond) shaped impurity with dx and dy being its length and width, respectively:

� : |x| � dx/2
⋂

|y| � g(x) = dy(1/2 − |x|/dx). (34)

The tip of the rhombus is perpendicular to the fluxon line. Then

hH (x,y) = μH { [δ(x + dx/2) − δ(x − dx/2)] [θ (y + g(x)) − θ (y − g(x))]

+ [θ (x + dx/2) − θ (x − dx/2)] {δ[y − g(x)] + δ[y + g(x)]} g′(x)}, (35)

g′(x) = −dy

dx

sgn(x) = −dy

dx

sgn(ξ + vτ ). (36)
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Substituting the formulas (35) and (36) into Eqs. (17) and (18) we obtain the radiation function in the moving frame:

B(qξ ,qy) = i
2
√

2πμI

q2
y

√
1 + q2

ξ (1 − v2)1/2v3

dx

dy

{(
1 − v2 − μH

μI

+ v2 μC

μI

) [
ω̄2 − (1 + q2

ξ

)
v2
]

1 + μC

+ 2
μH

μI

(1 − v2)ω̄2

}

×
cos
(

qydy

2

)
− cos

(
ω̄

√
1−v2

2v
dx

)
(

dx

dy
ω̄
)2 1−v2

q2
y v2 − 1

sech
[ π

2v
(qξv + ω̄)

]
, (37)

where the dispersion law ω̄ = ω̄(qξ ,qy) in the moving frame is given by Eq. (15). The transition to the laboratory frame is
performed in the standard way, and as a result, the spectral energy density in the laboratory frame is expressed by the following
formula:

E(qx,qy) = 2μ2
I

v2

(
dx

dy

)2

⎧⎪⎨
⎪⎩

cos(qydy/2) − cos[dx(ω − qxv)/2v](
dx

dy

)2
(ω − qxv)2 − v2q2

y

sech
(πω

2v

√
1 − v2

)⎫⎪⎬
⎪⎭

2

×
[ 1−v2− μH

μI
+v2 μC

μI

(1+μC )

[
(ω − qxv)2 + q2

yv
2
]+ 2μH

μI
(ω − vqx)2

]2

(ω − qxv)2 + (v2 − 1)q2
y

, (38)

where the dispersion law ω = ω(qx,qy) in the laboratory
frame is given by Eq. (27). It may seem that this dependence
has a singularity where the equation ( dx

dy
)2(ω − qxv)2 = v2q2

y

is satisfied. However, with the help of the trigonometric
formula cos a − cos b = 2 sin[(a + b)/2] sin[(b − a)/2] it is
straightforward to show that the respective divergences cancel
out.

The total emitted energy as a function of the fluxon velocity
v is shown in Figs. 7–9. The first figure (Fig. 7) focuses on

FIG. 7. Total emitted energy (normalized to μ2
I ) as a function of

the fluxon velocity for the rhombic impurity with the fixed ratio
dx/dy = 4. The solid lines correspond to μC = μH = 0, dx = 4
(curve 1), dx = 8 (curve 2), and dx = 12 (curve 3). The dashed line
corresponds to dx = 12 and μC = 0.01 and μC/μI = 0.1, μH = 0.
The inset (a) corresponds to the case dx/dy = 1/4, μC = μH = 0,
dx = 1 (curve 1), dx = 2 (curve 2), and dx = 3 (curve 3) and
μC/μI = 0.1, μC = 0.01 μH = 0, dx = 3 (dashed curve). The inset
(b) shows the details of the main figure.

the situation when the ratio dy/dx is fixed while the area
covered by the impurity is varied. The main figure correspond
to the impurity with its narrow edge pointing towards the
fluxon direction (dx/dy = 4). The inset (a) describes the
opposite situation: dy/dx = 4. In general, the dependence

FIG. 8. (a) The value of the local maximum maxv∈[0,1[ E(v) of
the emitted energy (normalized to μ2

I ) as a function of the angle
arctan(dy/dx) for the parameters dy = 5, μC = 0.01, μC/μI = 0.1
(inverted triangles), μC = 0.005, μC/μI = 0.05 (squares), μC = 0
(circles), and dy = 1, μC = 0 (diamonds). The solid line is used as a
guide for an eye. (b) Emitted energy dependence (normalized to μ2

I )
as a function of the fluxon velocity for dx = 100, dy = 5, μC = 0.01,
μC/μI = 0.1 (curve 1) and μC = 0 (curve 2). μH = 0 everywhere.

224509-8



RADIATION EMISSION DUE TO FLUXON SCATTERING . . . PHYSICAL REVIEW B 90, 224509 (2014)

E(v) grows with v in the limit v � 1 and diverges at v → 1
due to the presence of the μC and μH terms [otherwise,
if μC = μH = 0, we have E(v)v→1 → 0]. This behavior is
quite similar to the case of the rectangular impurity studied in
Sec. III B.

First we consider the rhombus, elongated towards the
fluxon propagation direction (main part of Fig. 7). We observe
that in the case μC = μH = 0 there is one well-established
maximum of the E(v) dependence which is positioned very
close to the value v = 1. As the impurity area is increased,
the peak of the energy dependence sharpens, while the
position of the maximum shifts towards the point v = 1. If
μC �= 0 the main maximum disappears due to the unbounded
growth of the energy dependence. There are other maxima
of the E(v) dependence; however they are very weak and

can be noticed only if the respective region is zoomed [see
the inset (b)]. When the impurity area decreases, some of
these maxima disappear [compare the curves 3 and 2 in
inset (b)].

Inset (a) of Fig. 7 corresponds to the situation when
the impurity is elongated in the y direction with the ratio
dx/dy = 1/4 being fixed. In this case there is only one local
maximum that decreases while the adjacent local minimum
becomes more shallow as the area dxdy/2 decreases. This case
is qualitatively close to the limit of the strip impurity [26] but
the limit (33) is not restored mathematically.

It is possible to consider the limiting cases of the infinitely
narrow stripes: dx → 0 and dy → 0. If the impurity amplitude
is redefined as μ∗ = μIdx (or μ∗ = μIdy), the spectral density
in these limits reads

E(qx,qy)

μ2∗
→

⎧⎪⎪⎨
⎪⎪⎩

8
sin4
(

qy dy

4

)
v6d2

y q4
y

{ 1−v2− μH
μI

+v2 μC
μI

1+μC

[
(ω−qxv)2+q2

y v2
]
+2 μH

μI
(ω−vqx )2

}2

(ω−qxv)2+(v2−1)q2
y

sech2
(

πω
√

1−v2

2v

)
, if dx → 0,

8
d2

x v2

{ sin[dx (ω−qxv)/4v]
ω−qxv

}4
{ 1−v2− μH

μI
+v2 μC

μI
1+μC

[
(ω−qxv)2+q2

y v2
]
+2 μH

μI
(ω−vqx )2

}2

(ω−qxv)2+(v2−1)q2
y

sech2
(

πω
√

1−v2

2v

)
if dy → 0.

(39)

These limiting values of E are very similar to the analogous
limits for the rectangular impurity (33). The only principal
difference is the interference terms that are responsible for the
oscillations in the qx or qy direction come with the power 4
and not 2 as in Eq. (33).

Next we focus on the situation when the impurity width dy

is fixed and its length dx is varied. In Fig. 8(a) the dependence
of the local maximum value (defined within the interval 0 �
v < 1) of the emitted energy as a function of the rhombus angle
arctan(dy/dx) is plotted. If μC = μH = 0 the maxv∈[0,1[ E(v)
dependence on the rhombus angle is a decaying function
almost everywhere in the interval [0,π/2]. In the limit dx →
∞ the maximum of E(v) grows as the amount of the emitted
energy increases. Only in the neighborhood of the angle π/3
there is a weakly pronounced local maximum. If μC �= 0 such
a dependence cannot be defined for the whole interval [0,π/2]
and it starts from some critical value of the angle (see the
dependencies, marked by squares and inverted triangles) and
continues till the value π/2. Below this critical angle there
is no local maximum of E(v) because it becomes strictly
monotonic. If dy is decreased, the dependence becomes a
strictly decaying function (shown by the circles in Fig. 8)
that cover the whole interval [0,π/2] even if μC �= 0. In
Fig. 8(b) the E(v) dependence is demonstrated in the limit
of the extremely narrow rhombic impurity. If μC > 0 there
is no maximum and the E(v) function is a monotonically
increasing function. If μC = 0 there is a sharp maximum very
close to v = 1 and everywhere else the function behaves almost
identically to the case μC > 0. One can notice a fine structure
of multiple inflection points. These points are the remnants
of the local maxima that are clearly seen in the inset (b) of
Fig. 7. The number of these inflection points increases as
the length of the rhombus dx increases. Here we observe a
weak link with the case of the rectangular impurity, studied in
Sec. III B. In that case we reported the increasing of the number
of maxima of E(v) when dx increased. For the rhombus we

see the maxima degenerate into the inflection points. The limit
dx → ∞ means that the impurity acts as an extremely narrow
groin that does not cause much radiation due to its narrowness
for small and intermediate velocities. Significant growth of the
emitted radiation can be spotted only in the relativistic regime
(1 − v2 � 1). It is important to remark that there is no clear
1D limit for the rhombic impurity, while such a limit can be
achieved for the rectangular impurity by setting dy → ∞.

In the limits dx → 0 the radiated energy decreases signifi-
cantly as one obtains infinitely thin impurity in the x direction.
When this limit is approached the local maximum of the E(v)
dependence becomes less and less pronounced. The energy
density is proportional to d2

x ; thus, it is not surprising that the
total energy tends to zero in this limit. The renormalization of
the impurity amplitude μ∗ = μIdx and dx → 0 will lead the
first formula of Eq. (39).

If the rhombus becomes a square (dx = dy) the local
maximum of the radiation becomes more pronounced if the
area of the impurity increases, as shown in Fig. 9. Also, the
decreasing of the impurity area makes the local maximum
less pronounced. The main maximum is dominant, although
there exist secondary local maxima, to the left from the main
maximum, although they are very small. The position of
the main maximum shifts to the left as the impurity size is
decreased; however this shift is insignificant even if the area
dxdy/2 is decreased by the order of magnitude (compare the
curves 4 and 6 in Fig. 9). Reducing the size of the impurity in
both directions (dx,dy → 0, and μC,H → 0) brings the spectral
energy density function (38) to the already known limit of the
pointlike impurity [21]. The same limit can be obtained from
any of the Eqs. (39) by setting dy → 0, μC,H → 0 in the
first equation or dx → 0, μC,H → 0 in the second equation.
The impurity amplitude should be redefined as μ∗ = μIdy or
μ∗ = μIdx , respectively.

The energy density profiles E(qx,qy) that correspond to the
rhombic impurity are presented in Fig. 10. As a particular
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FIG. 9. Total emitted energy (normalized to μ2
I ) as a function of

the fluxon velocity for the square rhombic (dx = dy) impurity at μH =
0, μC = 0.01, μC/μI = 0.1, dx = dy = 5 (curve 1), dx = dy = 10
(curve 2), dx = dy = 20 (curve 3). The dashed lines corresponds
to the case μH = μC = 0 and dx = dy = 5 (curve 4), dx = dy = 10
(curve 5), dx = dy = 20 (curve 6). The inset gives the details of curve
3 on the larger scale.

example, we consider an impurity that corresponds to curve 3
from Fig. 7, i.e., for dx = 12, dy = 3. This energy density
distribution bears many qualitative similarities with the energy
density function for the rectangular impurity shown in Fig. 5.
The global minima of the energy density satisfy the condition
E(qx,qy) = 0 and are given by the set of equations

dx

⎛
⎝
√

1 + q2
x + q2

y

v
− qx

⎞
⎠± qydy = 4πn∓. (40)

This set of equations describes the sequence of pairs of ellipses
that are numbered by the integers n±,

n∓ = n0,n0 + 1, . . . ,n0 =
⎡
⎢⎢⎢

dx

4π

√
1

v2
− d2

x + d2
y

d2
x

⎤
⎥⎥⎥ , (41)

if

|v| <
dx√

d2
x + d2

y

. (42)

Otherwise, the Eqs. (40) yield the set of hyperbolas that are
numbered with n± = ±1, ± 2, . . .. The two curves (ellipses or
hyperbolas) given by Eq. (40) that correspond to the opposite
signs but with n+ = n− are mapped into each other with the
mirror symmetry with respect to the qx axis. If we consider the
set of curves with the same sign, say +, they are embedded into
each other and they expand with the growth of the index n+.
Between these curves lie the ridges of the E(qx,qy) function,
and the local maxima of the energy density lie on these ridges.

The signatures of these curves can be spotted in all panels
of Fig. 10. For small and intermediate values of the fluxon
velocity the emitted radiation is localized predominantly in
one peak in the q space, as shown in Figs. 10(a)–10(d).
This peak lies on the qx axis; thus, most of the radiation
does not propagate in the perpendicular direction. In panel
(a) one can observe the distribution for the rather small value
of the fluxon velocity (v = 0.2) and this distribution is close to

FIG. 10. (Color online) Emitted energy density E for the rhombic
impurity with dx = 12, dy = 3, μC = μH = 0 (curve 3 in Fig. 7)
at v = 0.2 (a), v = 0.47 (b), v = 0.63 (c), v = 0.75 (d), v = 0.85
(e), v = 0.95 (f), and v = 0.993 (g). The panel (h) corresponds to
v = 0.993 and μC = 0.01, μC/μI = 0.1.

being radial. At such small velocities the pair of ellipses (40)
with n− = n+ are very close to being circles and almost
coincide with each other. For larger values of v these pairs
start to separate, as illustrated in Figs. 10(b)–10(e). The panel
(b) corresponds to the local minimum of E(v) (curve 3 of
Fig. 7) at v = 0.47 while the panel (c) corresponds to the local
maximum at v = 0.63. The structure of both these functions
is similar and the only difference is that the maximal peak in
panel (c) lies in the area of backward radiation (qx ≈ −0.25),
while in panel (c) the main peak lies on the positive half of
the qx axis at qx ≈ 0.3. Thus, for the intermediate velocities
the situation is similar to the case of rectangular impurity,
where the minimum of E(v) corresponded to the minimal
forward radiation. Panel (d) corresponds to the next local
minimum of the E(v) curve at v = 0.75, and here one observes
the increasing of the share of the perpendicular radiation in
the total radiated energy. The further increasing of v leads
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to the appearance of the pair of equivalent local maxima
off the qy = 0 axis [see panel (e)]. These maxima become
global as v approaches the value v = 1 [see panels (f) and
(g)]. Thus, we observe the increasing of the perpendicular
radiation that reaches its climax in the relativistic limit v → 1.
Panel (f) corresponds to the maximum of the E(v) function
(curve 3 of Fig. 7) at v = 0.993. According to Eq. (42) the
minima of the energy density lie on the hyperbolas and the
maxima lie between these hyperbolas and off the qx axis.
They appear to be strongly localized in the qy direction
while their localization in the qx is significantly weaker. In
this limit the interaction time with the tip of the rhombus is
too small to generate significant longitudinal radiation, and the
shape of the obstacle breaks the incident fluxon as a groin and
generates predominantly transverse radiation.

Finally, we mention the dependence of the emitted energy
on the parameter μC . Panel (h) corresponds to the same
parameters of the model as in panel (g) but with μC > 0.
Comparing panels (g) and (h) we see that the structure of
these functions is very similar while the absolute values of
E are significantly smaller in the μC = 0 case. If μC = 0,
but for the same value of the fluxon velocity, the values of
the maxima actually decrease with v. Thus, the total emitted
energy tends to zero, in the same way as shown by the dashed
lines in Fig. 9. This has been confirmed for the values of v even
closer to unity as well as for the different values of dx,y . The
qualitative behavior of E(v) in the limit |v| → 1 appears to be
the same both for the rectangular and rhombic impurities.

IV. DISCUSSION AND CONCLUSION

The radiation emitted as a result of the fluxon interaction
with the impurity of a general geometrical shape in the
large two-dimensional Josephson junction has been studied.
The emitted energy distribution in the q space has been
computed as well as the total emitted energy. This energy
distribution can always be represented as a triple integral.
In principle, any geometrical shape can be taken into con-
sideration; however, the explicit integration is not always
possible, but if the inhomogeneity area can be represented by
the piecewise-linear functions, this integration can be done. In
this article the rectangular and rhombic impurities have been
studied.

The main result of this work has been formulated in the
dependence E(v) of the total emitted energy as a function of
the incident fluxon velocity. It appears that this dependence
has local maxima that depend strongly on the geometric
properties of the impurity. These local maxima do not exist
if the impurity is treated as a point [21]. Controlling the
shape of the impurity one can remove the extrema or make
them more pronounced. The limit of the 1D problem with the
finite-size [14] inhomogeneity can be restored.

First of all we would like to mention the differences between
the 1D and 2D cases. The 1D case appears to be the limit
of the 2D rectangular impurity case when dy → ∞. While
moving away from the 1D limit by decreasing dy we observe
gradual lowering and disappearance of the extrema of the E(v)

dependence. Next, the 2D model allows to take into account
the impurity shapes that are different from the rectangle. For
the rhombic impurity we have demonstrated that the emitted
energy dependence on the fluxon velocity is rather different
from the rectangular case and does not possess the 1D limit.
In principle, other geometrical impurity shapes can be studied,
including the asymmetric ones.

In this article the junction thickness change due to the
homogeneity is taken into account. Its role is measured by
the parameters μH and μC [see Eqs. (3) and (6)]. The
parameter μC is responsible for the capacitance change and
plays the dominant role. In some papers [7] these parameters
are ignored (especially they are always ignored if the point
impurities are considered) and in general are considered to be
weak [14]. However, the junction thickness change influences
significantly the asymptotic behavior of the total emitted
energy in the “relativistic” (i.e., v → 1) limit of the fluxon
velocity. If the thickness change is ignored, the total emitted
energy goes to zero, while it exhibits unbounded growth if
the thickness change is taken into account. This is true for
the both 1D and 2D junctions. The emitted energy has been
computed under the assumption that it is a small perturbation
on the fluxon background. Consideration of the higher order
corrections may block the infinite radiation growth. Also, the
dissipative effects, which have been ignored in this work,
should contribute to the decreasing of the emitted energy.

Although the real large-area Josephson junctions have finite
dimensions, in this article the infinitely-sized junction has been
considered. This approximation is sufficient if the physical
dimensions of the LJJ exceed by the order of magnitude the
Josephson penetration depth and, consequently, the fluxon
length in the x direction. The boundary conditions are also im-
portant; however [16,27], if the junction width is large enough
(exceeds the Josephson length at least by the order of magni-
tude) the fluxon distortion from the linear shape is insignificant.
In any case, before focusing on the more concrete setup an
idealized but more easily solvable model should be studied.

Finally, we discuss the possible application of the obtained
results. Recently, a number of papers have focused on the
different application of the fluxon dynamics in the 2D LJJ,
such as fluxon splitting on the T-shaped junctions [28],
excitation of the different modes that move along the fluxon
front [19,29], and the fluxon logic gates [20] where the
interaction with the spatial inhomogeneity takes place. If the
incident fluxon velocity is large enough, the emitted radiation
becomes sufficient and it should influence the fluxon motion.
In particular, the nonmonotonicity of the E(v) dependence
may produce the hysteresis-like branches [14] on the current-
voltage characteristics (IVCs) of the LJJ. Studies of these IVCs
for the different shapes of the inhomogeneity in the genuinely
2D case are in progress and will be published elsewhere.
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