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Defects in the d + i d-wave superconducting state in heavily doped graphene
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A chiral time-reversal symmetry breaking d + id-wave superconducting state is likely to emerge in graphene
doped close to the Van Hove singularity. As heavy doping procedures are expected to introduce defects, we
investigate here the effects of microscopic defects on the d + id-wave superconducting state at the Van Hove
singularity. We find that, while the superconducting order is reduced near a defect, the d + id-wave state remains
intact and recovers in an exponential manner away from the defect. The recovery length is found to be on the
order of one lattice constant for weak couplings, and, as we show, this is comparable to the recovery length of
a conventional s-wave state on the graphene honeycomb lattice, thereby demonstrating that the unconventional
d + id-wave state is quite resilient to defects. Moreover, we find no significant changes between a single site
defect and more extended defects, such as a bivacancy. While the d + id-wave state is fully gapped, we also show
that defects introduce localized midgap states with nonzero energies, which should be accessible via scanning
probe experiments.

DOI: 10.1103/PhysRevB.90.224504 PACS number(s): 74.70.Wz, 81.05.ue, 74.20.Mn, 74.62.Dh

I. INTRODUCTION

Graphene consists of a single layer of carbon atoms
arranged in a honeycomb lattice, and it was first isolated
from flakes of graphite in 2004 [1]. Undoped graphene has
a vanishing density of states (DOS) at the Fermi energy
and a linear quasiparticle energy dispersion relationship εk =
vF |k| [2]. The vanishing DOS makes undoped graphene rather
unsusceptible to interaction-driven instabilities, although the
role of interactions in graphene is still being investigated [3,4].

As graphene is electron- or hole-doped, the DOS at the
Fermi energy increases, and the increased DOS has been
shown to render graphene susceptible to several interaction-
driven instabilities, such as a spin-density wave [5] (SDW),
a charge-density wave [6] (CDW), Pomeranchuk instability
[7], or a few different types of superconducting instabilities
[6,8–11]. In particular, the DOS is logarithmically divergent at
the Van Hove singularity (VHS), which is located at a π -band
filling of 3/8 and 5/8 [2]. Electron densities approaching
the VHS doping have been reported experimentally using
chemical doping [12] and electrolytic gating [13].

Both perturbative [14] and functional [15,16]
renormalization-group calculations, which take into account
competing orders, have shown that near or at the VHS doping,
an unconventional chiral d + id-wave superconducting state is
likely to emerge from repulsive interactions. This is consistent
with the findings of strong-coupling approaches [8,10,17], as
well as results based on the Kohn-Luttinger mechanism [9].
Superconductivity may also persist to the lightly doped
case, although with increased competition from other
instabilities [6,18].

The chiral d + id-wave state is a topological super-
conducting state with several unusual properties, such as
spontaneous edge currents and Majorana fermions at finite
magnetic fields [19]. The symmetry of the honeycomb lattice
automatically makes the d-wave superconducting channel
twofold-degenerate, and this in turn leads to the stabilization
of the time-reversal symmetry breaking d + id-wave combi-
nation below the superconducting transition temperature [8,9].

Moreover, it has been proposed that the intrinsic d + id-wave
state is enhanced by the superconducting proximity effect in
graphene Josephson junctions with d-wave superconducting
contacts [20], as well as in the core of doubly quantized vortices
in conventional s-wave superconducting graphene [21].

However, any method intended to introduce the doping
required to reach the d + id-wave state in graphene is
also likely to introduce a significant amount of defects to
the graphene sheet, which might weaken, or possibly even
destroy, the superconducting state. It is thus highly relevant
to understand the effects of defects on the unconventional,
time-reversal symmetry breaking d + id-wave state. In this
article, we therefore investigate the effects of microscopic
defects on the d + id-wave state in graphene doped to the
VHS. In doing so, we ask how disruptive defects are to
the d + id-wave state, how quickly the state heals, and
whether there are any qualitative changes brought about by the
defects. We also compare the results for the unconventional
d + id-wave state to that of a conventional s-wave state,
since conventional superconductors are known to be robust
against any nonmagnetic disorder as they are protected by the
Anderson theorem [22,23].

We study here both vacancies and charge neutral impurities,
which are both representative microscopic defects. We find
that the superconducting order is reduced near the defects,
but that the d + id-wave state remains intact and recovers in
an exponential manner away from the defects. The recovery
length is found to be on the order of one lattice constant
for weak couplings, which is comparable to the recovery
length found for a conventional s-wave state. This suggests
that the d + id-wave state is in fact quite resilient to defects
despite its unconventional and exotic nature. We also find no
notable difference between single vacancies and bivacancies,
demonstrating that even breaking the point symmetry group
does not significantly perturb the d + id-wave state. In
addition, while the d + id-wave state is completely gapped,
we show that defects introduce localized midgap states with
nonzero excitation energies, which should be accessible via
scanning probe experiments.
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II. METHOD

To model the electronic properties of graphene, we use a
simple nearest-neighbor hopping Hamiltonian for the π -bands
that emerge from the out-of-plane pz orbitals; that is,

Ĥ0 = −t
∑

〈i,j〉,σ
(a†

iσ bjσ + H.c.) + μ
∑
i,σ

(a†
iσ aiσ + b

†
iσ biσ ),

(1)

where i and j are site indices, a and b refer to respective
sublattices, 〈i,j 〉 indicates that the sum is over nearest
neighbors, σ denotes the spin, t is the hopping amplitude,
and μ is the chemical potential. For undoped graphene, it is
known that t ≈ 2.8 eV, and the VHS is located at μ = ±t [2].

It has been shown that the real-space pairing of the
d + id-wave state near the VHS is very localized, which is
consistent with the large DOS at the VHS strongly screening
long-range interactions [15,16]. We therefore mainly consider
superconducting paring localized to nearest-neighbor bonds.
Nearest-neighbor and next-nearest-neighbor pairing were both
considered in Ref. [19], where it was found that the properties
of the superconducting state are insensitive to the exact pairing
location. To investigate the properties of superconductivity in
graphene, we thus add a general mean-field nearest-neighbor
bond spin-singlet pairing term:

Ĥ� = −
∑
〈i,j〉

[�ij (a†
i↑b

†
j↓ − a

†
i↓b

†
j↑) + H.c.] + 1

J

∑
〈i,j〉

|�ij |2,

(2)

where J denotes the superconducting coupling strength.
Minimizing the free-energy with respect to the parameters
�ij yields the self-consistency equations,

�ij = J 〈ai↓bj↑ − ai↑bj↓〉. (3)

The full Hamiltonian Ĥ = Ĥ0 + Ĥ� was also obtained in
Ref. [8] via a mean-field decoupling of a phenomenolog-
ical resonant-valence-bond (RVB) model, which had been
introduced in an earlier context to describe graphenelike
systems [24,25].

For comparison, we also consider a conventional s-wave
superconducting state, which can be modeled most simply by
mean-field decoupling of an attractive on-site Hubbard model
on the honeycomb lattice:

ĤU = −
∑

i

(
�a

i a
†
i↑a

†
i↓ + �b

i b
†
i↑b

†
i↓ + H.c.

)

+ 1

U

∑
i

(∣∣�a
i

∣∣2 + ∣∣�b
i

∣∣2)
, (4)

where U corresponds to the on-site potential strength. Mini-
mizing the free-energy with respect to the order parameters,
�

a,b
i , yields the self-consistency equations,

�a
i = U 〈ai↓ai↑〉, (5)

with an analogous expression for the b sites.
The mean-field treatment used in this work neglects

fluctuations, and quantitative results may change when going
beyond mean field; for instance, the transition temperature may

be modified [11]. However, we do not expect the qualitative
effects of defects found in this work to be modified.

A. Defect-free graphene

In the absence of defects, we will assume that the order
parameters, �ij , are translationally invariant while allowing
for directional dependence, as is indicative of an uncon-
ventional superconducting state; that is, �ij �→ �ξ , where
ξ labels the three inequivalent bond directions. With these
assumptions, the Hamiltonian is translationally invariant. It
is therefore block-diagonal in reciprocal space, and it can
be diagonalized by a Bogoliubov-Valatin transformation. We
find it convenient to gather the remaining free parameters into
a vector, 	� = (�ξ 1

,�ξ 2
,�ξ 3

)T , which we now regard as the
order parameter.

Near the transition temperature, Tc, the self-consistency
equations can be linearized. The linearized self-consistency
equations are invariant with respect to the hexagonal, D6h,
point symmetry group of the honeycomb lattice, and the
solutions are, therefore, classified according to symmetry
and belong to specific irreducible representations of D6h. It
has been found that for Ĥ there is one extended s-wave
solution, which belongs to the identity representation A1g , and
a twofold-degenerate d-wave solution space, which belongs to
E2g [8]. The basis set for the solutions can thus be taken to be

	�s = 1√
3

⎛
⎝

1
1
1

⎞
⎠, 	�dx2−y2 = 1√

6

⎛
⎝

2
−1
−1

⎞
⎠,

	�dxy
= 1√

2

⎛
⎝

0
−1

1

⎞
⎠, (6)

where 	�s form a basis of A1g , and 	�dx2−y2 and 	�dxy
form a

basis of E2g .
We refer here to the two solutions 	�dx2−y2 and 	�dxy

as
dx2−y2 -wave and dxy-wave, respectively, since for these two
solutions the pairing has the symmetry of the representative
functions x2 − y2 and xy. Below Tc, the self-consistency
equation becomes nonlinear and admixtures of the different
solutions are generally allowed. It has been shown that one of
the d ± id-wave states is, as we shall also see below, preferred
below Tc for not too strong coupling strengths, J , and a doping
up to and around the VHS [8], where

	�d
x2−y2 ∓idxy

= 1√
3

⎛
⎜⎝

1

e± 2iπ
3

e∓ 2iπ
3

⎞
⎟⎠ .

The magnitude of the order parameter, | 	�|, can be used
as a measure of the strength of the superconductivity. For
the d + id-wave state, it is approximately true that Tc ∝ | 	�|,
where Tc is the mean-field transition temperature. Numerically,
we find that Tc ≈ 0.52| 	�|. This in turn implies that 2| 	�|/Tc ≈
3.85, which is within 10% of the 2π/eγ ≈ 3.5 value for an
isotropic BCS model.
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B. Introduction of defects

To investigate the effects of microscopic defects on su-
perconductivity, we either remove one site, so as to form a
vacancy, or we add an on-site potential to a site to model
a charge-neutral impurity. We consider also a bivacancy for
which two adjacent sites are removed. The defect is then
repeated periodically after a given number of unit cells so
as to form a supercell in order to use periodic boundary
conditions. In the presence of defects, the order parameter
becomes position-dependent. To make a connection with the
defect-free case, we also introduce a local wave-character. We
define the x-wave character as | 	� · 	�x |/| 	�|, where 	�x is the
x-wave solution basis, e.g., 	�s , 	�d

x2−y2 , 	�dxy
, or 	�d

x2−y2 ±idxy
.

C. Numerical methods

The self-consistent values of the order parameter, 	�, were
found by numerical minimization of the free-energy, and
all calculations were started from random complex values
of the order parameters. The termination tolerance on both
the order parameters and the free energy were set to values
less than t × 10−12 to ensure convergence in the phases. The
k-point convergence was checked for the defect-free case
with J/t = 0.5, μ/t = 1, and T = 0, and for an 80 × 80
k-point sampling the calculations have by and large converged;
nonetheless, larger samplings were mostly used. For the
supercell calculations, a k-point sampling yielding as many
as, or more than, the corresponding number of eigenvalues
was used. The validity of this rule was checked for a few test
cases by both increasing and reducing the k-point sampling.

III. RESULTS

A. Low-temperature phase diagram

We first consider the mean-field phase diagram of a defect-
free graphene sheet over a large doping and coupling constant

regime. Figure 1(a) shows the order-parameter magnitude,
| 	�|/t , as a function of the two dimensionless parameters:
the chemical potential, μ/t , and the interaction strength,
J/t . We see that undoped graphene is not superconducting
unless the interaction strength J/t surpasses a large critical
value [8]. Superconductivity is, however, enhanced at the VHS
doping, μ/t = 1, where it remains appreciable even for weak
interactions, which is consistent with the renormalization-
group results [14,16,18]. Figure 1(b) shows the wave character
of the order parameter as a function of the chemical potential,
μ/t , and the interaction strength, J/t , at zero temperature.
It is seen that the ridge extending from the VHS is pure
	�d

x2−y2 +idxy
(or 	�d

x2−y2 −idxy
), but that there is a transition into

a general admixture with an s-wave component for interaction
strengths that are larger than J/t ≈ 1.4, which is consistent
with previous investigation of possible paring symmetries [26].
For doping levels far beyond the VHS, the state is seen to be
pure s-wave.

B. Lattice vacancy

We now turn to the effects brought about by the introduction
of vacancies. To investigate this, we remove the first a-site
from each supercell. The investigation of vacancies captures
also the essential features of strong charge-neutral impurities,
as both disrupt only a local site in the lattice. Figure 2 presents
a qualitative depiction of changes to the order parameter, 	�,
in the vicinity of a vacancy. At each site, a pie chart shows
the local wave-character, and the radius of the pie chart is
proportional to | 	�|. It is seen that at the vacancy, the order
parameter adapts to the conditions imposed by the vacancy,
and that the magnitude is reduced in the vicinity of the vacancy.

The d + id-wave state is, nonetheless, seen to recover at
a distance of two to three lattice constants away from the
vacancy, which is, as we shall see, generally valid for a wide
range of interaction strengths. Thus, we find also that the
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FIG. 1. (Color online) (a) Contour plot of the order-parameter magnitude, | 	�|/t , in units of the hopping amplitude t at T = 0, and as a
function of the dimensionless chemical potential, μ/t , and the interaction strength, J/t . The distance between the contours is 0.032, there are
30 contours, and the first contour is at 0.016. (b) Wave character of the order parameter. The s-wave character is shown in a bright shade and
the d + id-wave is shown in a dark shade. The white hatched region indicates that there is no superconductivity or that the order parameter is
too small to be accurately classified. The gray regions indicate that the order parameter is not pure s-wave or pure d + id-wave, but rather a
superposition of these.
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FIG. 2. (Color online) A qualitative view of the order parameter,
	�, near a vacancy (red polygon) for J/t = 0.875, μ/t = 1, at T = 0.
The local wave-character of each site is shown by a pie chart, the
segments of which are proportional to the respective wave-character.
The radius of each pie chart is proportional to the magnitude of the
order parameter at the site.

state remains close to the d + id-wave state down to a 5 × 5
supercell for the same wide range of interaction strengths. We
thus conclude that superconductivity is disrupted only locally,
and that it converges back to the d + id-wave state without
qualitatively altering the state even for high concentrations of
vacancies.

1. Recovery length

To measure more precisely the effects of vacancies, we
single out for investigation the order parameters in one of
the most affected directions (zigzag). We consider, for this
direction, the norms | 	�| for multiple values of the interaction
strength, J/t , and for a large 16 × 16 supercell that ensures
that the vacancies are sufficiently isolated. This allows us to see
how the order parameter recovers, and how fast the recovery
is. The numerical values are shown in Fig. 3, and for each
interaction strength an exponential recovery function of the
form A[1 − exp(−x/ξ )] has been least-squares-fitted to the
data points. The convergence back to the defect-free graphene
superconducting state is seen to be quite well described by this
exponential function form.

The recovery length ξ is plotted in Fig. 4 as a function of
the defect-free value of the order-parameter magnitude, | 	�|/t ,
and for comparison the corresponding recovery lengths for a
conventional s-wave superconducting state on the honeycomb
lattice are also shown.

We see that, despite the fact that the two superconducting
states, i.e., the d + id-wave state and the s-wave state, are
qualitatively different, the recovery lengths are nonetheless
comparable, and they exhibit a similar dependence on the
order-parameter magnitude. The dependence of the recovery
length on the order-parameter magnitude is seen from Fig. 4
to be approximately linear for both pairing symmetries.

The recovery length of the d + id-wave state is seen to be
somewhat more sensitive to the order-parameter magnitude
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t

Δ in Zigzag Direction

FIG. 3. The order-parameter magnitude, | 	�| (black dots), as a
function of the distance from the lattice vacancy, and for several
values of the interaction strength, J/t = 0.5, 0.625, 0.75, 0.875,
and 1.0 (increasing with | 	�|). To each data set, the function
A[1 − exp(−x/ξ )] is least-squares-fitted (solid lines), where x is the
distance from the vacancy and ξ is the recovery length.

than is the recovery length of the s-wave pairing, although this
result is also somewhat dependent on the implementation of
the d + id state on, e.g., nearest- or next-nearest-neighbor
bonds. When extrapolated to weak-coupling strengths, the
unconventional d + id-wave state is seen to have ξ/a ∼ 1 for
both nearest- and next-nearest-neighbor (not shown) pairing,
where a is the lattice constant, whereas conventional s-wave
pairing has ξ/a ∼ 0.4. The recovery lengths for both the
s- and d + id-wave superconducting states are, therefore,
comparable, even when extrapolated to the weak pairing
regime, despite the unconventional nature of the d + id-wave
state.

A semiquantitative interpretation of the recovery length, ξ ,
is that the order parameter fully heals within a length of ∼ 3ξ .
We therefore expect that two vacancies will start to interact
appreciably when they are within twice this distance, that is,
when they are within a distance of ∼ 6ξ of each other. This is
consistent with our findings that the state remains close to the
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FIG. 4. Comparison of the recovery length, ξ , for the d + id-
wave and a conventional s-wave state, where ξ is given in units of
the lattice constant a and as a function of the defect-free value of the
order-parameter magnitude, | 	�|/t . The d + id-wave data points are
the same as those in Fig. 3, whereas the s-wave data points correspond
to U/t = 1.25, 1.5, 0.875, 2.0, and 2.25 (increasing with | 	�|/t).
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FIG. 5. (Color online) The DOS in units of states per unit cell
and t of a 12 × 12 supercell for increasing on-site impurity potential
strengths, V , for J/t = 0.875, μ/t = 1.0, and T = 0. The gray
shaded area bounded by the solid black line indicates the defect-free
DOS. The densities of states are plotted with a Gaussian smearing of
width 25t × 10−4.

d + id-wave state down to a 5 × 5 supercell for a wide range
of interaction strengths.

2. Density of states

We next turn to the changes in the density of states (DOS)
as a result of the introduction of defects. The DOS determines
most thermodynamic quantities, and it is accessible via
photoemission spectroscopy or scanning probe experiments.
For a defect-free graphene sheet, the d + id-wave state is
fully gapped at the Fermi surface for all finite doping levels.
However, as seen in Fig. 5, a vacancy or impurity introduce
midgap states.

The interaction strength used in Fig. 5 has been chosen to be
somewhat large to make these detailed features clear, i.e., for
clarity of presentation, but the same features are present for all
investigated parameter values, and the same applies to Figs. 6
and 7 and the surrounding discussion. For the parameters used
in Fig. 5, the defect-free DOS has a full energy gap up to about
0.07t and a coherence peak at about 0.15t , and by investigating
the progression of increasing impurity strengths, V , the midgap
states are seen to emerge from the band edge and gradually drift
toward the gap center, although never reaching zero energy.

With modern scanning tunneling microscopy and spec-
troscopy, it should also be possible to access the local changes
introduced by point defects [22]. In particular, the local
density of states (LDOS) should be accessible via differential
current measurements. Figure 6 shows the energy-resolved,
low-energy, a-site LDOS as a function of distance from the
vacancy in the most affected direction (zigzag). The midgap
states are seen to be very localized to the vacancy; nonetheless,
the energy gap itself remains largely unaltered.

The midgap states should also be accessible via constant
bias tunneling measurements. Figure 7 shows the in-gap,
integrated LDOS for each site; that is, the quantity shown
is the LDOS integrated up to the defect-free gap energy. From
Fig. 7 it is clear that the midgap states display the symmetry
of the lattice and are very localized around the vacancies. This
also explains the very localized effects of single impurities on
the superconducting state seen in Fig. 2.
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FIG. 6. (Color online) Low-energy LDOS as a function of the
distance from a vacancy for a 16 × 16 supercell, J/t = 0.875, and
μ/t = 1.0 at T = 0. Plotted with a second-order interpolation and a
bin counting width of 6t × 10−3.

C. Bivacancy

At a single-site vacancy or impurity, the point symmetry
is not reduced. One might therefore ask whether the effects
of an extended defect are considerably different from that
of a single site defect. This is of particular relevance for an
unconventional superconducting state such as the d + id-wave
state, which exhibits a directional dependence. To investigate
this, we consider a bivacancy that breaks the sixfold point
symmetry of the honeycomb lattice. Figure 8 gives a qualitative
view of the order parameter in the same manner as was done
for a single vacancy in Fig. 2. While the two cases are different,
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FIG. 7. (Color online) Contour plot of the LDOS near a vacancy
(located at the center of the figure) integrated up to the energy gap
on each site for a 16 × 16 supercell, J/t = 0.875, and μ/t = 1.0 at
T = 0. Plotted using a linear interpolation.
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TOMAS LÖTHMAN AND ANNICA M. BLACK-SCHAFFER PHYSICAL REVIEW B 90, 224504 (2014)

FIG. 8. (Color online) A qualitative view of the order parameter,
	�, near a bivacancy (red polygons) for J/t = 0.875 and μ/t = 1
at T = 0. The local wave-character of each site is shown by a pie
chart, the segments of which are proportional to the respective wave-
character. The radius of each pie chart is proportional to the magnitude
of the order parameter at the site.

there are no considerable qualitative changes in the disruption
to the order parameter. In the vicinity of the bivacancy, the
order-parameter magnitude is reduced, and the wave-character
adapts to the constraints imposed by the defect. The order is,
however, seen to heal back to the bulk d + id-wave state at a
distance of two to three lattice constants away from the defect,
as was also found for a single vacancy; that is, it remains true
that ξ/a ∼ 1. Moreover, the healing length, ξ , has the same
dependence on the defect-free order parameter magnitude, | 	�|,
as for the single vacancy shown in Fig. 4, even if it is, as to be
expected, slightly larger in the bivacancy case. Our findings

for a single vacancy thus extend to the case of a bivacancy,
and we conclude that the d + id-wave state is not any more
sensitive to impurities breaking the sixfold rotational lattice
symmetry than it is to single-site impurities.

IV. SUMMARY AND CONCLUSIONS

In summary, we have investigated the effects of defects
on the chiral time-reversal symmetry breaking d + id-wave
state proposed to appear in graphene doped close to the
VHS [14,16,18]. We have found that, despite its unconven-
tional nature, the d + id-wave state is quite robust against
vacancies and impurities, and it remains intact for both point
and more extended rotational symmetry breaking defects, such
as a bivacancy. Away from a defect, the superconducting
order parameter recovers quickly to the bulk d + id-wave
state with a healing length that is only about one lattice
constant for weak couplings. This is comparable to that of a
conventional s-wave superconducting state on the honeycomb
lattice, demonstrating that the d + id-wave state is quite
resilient to defects. Our results are thus very promising for an
experimental discovery of the d + id-wave state, as inducing
heavy doping into graphene will undoubtedly result in a certain
level of imperfections in the graphene sheet. We have also
found that vacancies and impurities introduce a set of midgap
states into the fully gapped d + id-wave state, which should
be accessible via scanning probe experiments. These states
emerge from the band edge and gradually drift toward the gap
center with increasing impurity strength, although they never
reach zero energy even for vacancies. We furthermore find that
the midgap states are very localized to the impurity, which is
consistent with the limited effect of the impurity found on the
overall superconducting state.
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