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Doping control of realization of an extended Nagaoka ferromagnetic state from the Mott state
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Inspired by the Nagaoka ferromagnetism, we propose an itinerant model to study the transition between the
Mott singlet state and a ferromagnetic state by emulating a doping process in finite lattices. In the Nagaoka
ferromagnetism, the total spin of the system takes the maximum value when an electron is removed from the
half-filled system. To incorporate a procedure of the electron removal, our model contains extra sites as a reservoir
of electrons, and the chemical potential of the reservoir controls the distribution of electrons. As a function of
the chemical potential, the system exhibits ground-state phase transitions among various values of the total spin,
including a saturated ferromagnetic state due to the Nagaoka mechanism at finite hole density. We discuss the
nature of the ferromagnetism by measuring various physical quantities, such as the distribution of electrons, the
spin correlation functions, the magnetization process in the magnetic field, and also the entanglement entropy.
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I. INTRODUCTION

The itinerant ferromagnetism is inherently a quantum
phenomenon in which the electron correlation is essential.
Microscopic origin for the itinerant ferromagnetism has been
studied in the framework of the Hubbard model [1–3]. A
conventional mean-field treatment leads to the Stoner criterion
for the occurrence of band ferromagnetism [4]. It tells us that
the ferromagnetism occurs if the Coulomb repulsion and/or the
density of states at the Fermi level are large enough. However,
such a mean-field treatment overestimates the stability of
the ferromagnetism and it is not adequate for the effect of
the electron correlation. In fact, according to the multiple
scattering theory [2], the Coulomb repulsion is revised by
a renormalized one in the Stoner criterion, which improves
the stability condition. On the other hand, the occurrence of
the ferromagnetism in the Hubbard model has been proven
rigorously in some limiting conditions [5–7]. The Nagaoka
ferromagnetism is a well-known rigorous result [5], indicating
that systems have a saturated ferromagnetic ground state when
there is one hole added to the half-filling and the Coulomb
repulsion is infinitely large on appropriate lattices that satisfy
the so-called connectivity condition.

Note that the introduction of one hole corresponds to an
infinitesimal hole doping in the thermodynamic limit. In order
to explore the ferromagnetism in more realistic conditions,
much effort has been made to know how the ferromagnetic
phase extends in the case with finite holes and finite Coulomb
repulsion [8–22]. In a square lattice, for instance, many authors
have tried to clarify whether the saturated ferromagnetic state
survives over a finite range of hole density [12–17], and most
results are supportive for the ferromagnetism at finite hole
densities. In a two-leg ladder, numerical results have shown
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that the saturated ferromagnetic ground state keeps stable up
to a critical hole density [17–19]. The critical hole density is
insensitive to the ladder width for wider four-leg and six-leg
ladders, suggesting that the ferromagnetism in the two-leg
ladder smoothly connects with that in two dimensions as the
ladder width increases [17,18]. Regarding the experimental
observation of the Nagaoka ferromagnetism, it has been
proposed to use cold-atom optical lattice systems, since the
Hubbard model is realizable in a clean environment with high
tunability and controllability [23,24].

In sharp contrast to the Nagaoka ferromagnetism, the
ground state at half-filling is a Mott state with zero total spin
in a bipartite lattice with an equal number of sites in each
sublattice [25]. Namely, with the change of the number of
electrons by one, we can see a drastic change between the
Mott state with zero total spin and the ferromagnetic state
with the maximum total spin. Since the number of electrons
is a conserved quantity in the Hubbard model, we usually
study these states independently by changing the number of
electrons one by one. To shed light on the quantum mechanical
transition between the two states, we have introduced a
quantum mechanical procedure to remove an electron from
the system, considering a model with a four-site plaquette and
an extra site, as depicted in Fig. 1 [26]. There the electron
occupation is controlled through a chemical potential at the
extra site. The extra site can be regarded as a particle reservoir
for a part of the system without the extra site. We have
also discussed types of itinerant ferromagnetism for particles
with S > 1/2, which could be realized in optical lattices with
laser-cooled atoms [27].

In this paper we study a mechanism for the control of
the magnetic property through a local chemical potential
in systems which are made by a five-site unit structure
in Fig. 1. We investigate the ground-state properties by
numerical methods such as Lanczos diagonalization and
density-matrix renormalization group (DMRG) [28,29]. As
the chemical potential is varied, we observe ground-state
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FIG. 1. (Color online) A lattice with five sites, which is used as
a unit structure to construct an extended lattice. Here we put four
electrons. Solid circles are occupied by an electron, while open circles
are vacant. The electron occupation is controlled by the chemical
potential at the center site μ.

transitions among various values of the total spin due to the
change of the distribution of electrons. In particular, we find a
saturated ferromagnetic state in a broad region of the chemical
potential irrespective of the system size, suggesting that the
ferromagnetism is realized due to the present mechanism in
the thermodynamic limit.

The organization of the paper is as follows. In Sec. II we ex-
plain our basic idea of a mechanism to switch the ground state
between the Mott state and the Nagaoka ferromagnetic state,
based on the case of a small five-site lattice [26]. In Sec. III
we introduce an extended model of larger sites. We present
numerical results to demonstrate that a saturated ferromagnetic
state occurs. In Sec. IV we discuss the characteristics of phases
from a viewpoint of correlations. Section V is devoted to
summary and discussion.

II. ROUTE FROM MOTT STATE TO
FERROMAGNETIC STATE

A. Ferromagnetism in itinerant electron system: Nagaoka
ferromagnetism

The Hubbard model is one of the simplest models for itin-
erant electron systems. It is composed of the electron hopping
term and the on-site Coulomb repulsion term, described by

H = −t
∑

〈ij〉,σ
(c†iσ cjσ + H.c.) + U

∑

i

ni↑ni↓, (1)

where ciσ is an annihilation operator of an electron with spin
σ (=↑ , ↓) at site i, niσ = c

†
iσ ciσ , t is the hopping amplitude,

and U is the on-site Coulomb repulsion. We set t = 1 and
take it as the energy unit. Because of the SU(2) symmetry, the
ground state is characterized by the total spin Stot, given by

Stot(Stot + 1) = 〈
S2

tot

〉
, (2)

where Stot = ∑
i Si and 〈· · · 〉 denotes the expectation value in

the ground state. Note that spin-1/2 operators are described by
the electron creation and annihilation operators and the Pauli
matrices σ as

Si = 1

2

∑

σ,σ ′
c
†
iσσ σσ ′ciσ ′ . (3)

The total magnetization, defined by

M =
∑

i

〈
Sz

i

〉
, (4)

is also a conserved quantity. In the following we analyze the
ground state with M = 0 unless otherwise specified.

The ground state at half-filling, i.e., one electron per site
(Ne = N , where N is the number of sites and Ne is the number

of electrons), is a Mott state with zero total spin in a bipartite
lattice with equal number of sites in each sublattice. In contrast,
if we remove one electron from the half-filling (Ne = N − 1),
the ground state is a saturated ferromagnetic state with the
maximum total spin, assuming that U is sufficiently large and
the lattice satisfies the connectivity condition, which is well
known as the Nagaoka ferromagnetism [5]. Here we note that
the hopping coefficient −t is negative, and in order to ensure
the symmetric ground state, the lattice should have a bipartite
structure, in which we can change the sign of the hopping
amplitude by a gauge transformation ciσ → −ciσ .

In the present study, as we will explain in the next subsection
(Sec. II B), instead of removing one electron from the half-
filled system, we consider a kind of particle bath to control the
number of electrons in a part of the system effectively. That
is, the system is composed of a subsystem and the particle
bath. We expect a kind of Nagaoka ferromagnetism when the
number of electrons in the subsystem is reduced from the half-
filled case of the subsystem. We call the present mechanism
“extended Nagaoka ferromagnetism.”

B. Control of total spin by mechanism of
Nagaoka ferromagnetism

We have proposed a possible mechanism to switch the
ground state between the Mott state and the Nagaoka fer-
romagnetic state [26]. Here we explain its basic idea for the
completeness of the paper, and make a few remarks relevant
for the present study.

Since the number of electrons is a conserved quantity in
the Hubbard model, it is difficult to describe a process to
remove an electron from the system in a Hamiltonian. In order
to describe a procedure for the electron removal, we prepare
an extra site to which an electron can escape. In Fig. 1 we
present an example of such a lattice with five sites where we
put four electrons. The lattice is composed of a four-site ring
and a center site. We call the four-site ring “subsystem.” The
Hamiltonian is explicitly given by

H = −t
∑

〈ij〉,σ
(c†iσ cjσ + H.c.) + U

∑

i

ni↑ni↓

+μ(n5↑ + n5↓), (5)

where 〈ij 〉 denotes pairs of sites connected by a solid line in
Fig. 1, the center site is named “5,” and μ is the on-site energy,
which we call “chemical potential.” Note that the Coulomb
repulsion is active in all the sites including the subsystem and
the center site. Stot and M are conserved quantities in the same
way as the Hubbard model (1).

We note that in the previous paper [26] we defined the
chemical potential with the opposite minus sign. In this paper
we will introduce an extended lattice composed of a subsystem
and center sites in the next section. We regard the center
sites as a reservoir of electrons, and the present sign is more
appropriate in its physical meaning. That is, if the chemical
potential is large, electrons tend to move out from the center
sites. The chemical potential represents the electron affinity at
the center site.
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FIG. 2. (Color online) (a) The μ dependence of the total spin Stot

and the number of electrons in the subsystem N sub
e for the system with

five sites and four electrons at U = 1000. (b) N sub
e around μ = 8 in a

magnified scale, where we clearly see a jump.

In Fig. 2 we plot the total spin Stot and the number of
electrons in the subsystem N sub

e , given by

N sub
e =

∑

i∈subsystem,σ

〈niσ 〉, (6)

where the summation of i is taken over the sites of the
subsystem, as a function of μ at U = 1000. We clearly see
a ground-state transition at around μ = 8, where Stot exhibits
a jump. We also find a small jump of N sub

e , as depicted in
the magnified figure. At the transition point, N sub

e is about
3.97. We envisage that this situation would correspond to a
hole doping into the subsystem to result in a change of the
magnetic property.

For large μ, electrons are repelled from the center site
and stay in the subsystem. The subsystem is half-filled
and the ground state is essentially in the Mott state with
antiferromagnetic correlations. For negative μ, electrons are
attracted onto the center site, so that an electron is removed
from the subsystem. Then the total spin takes the maximum
value Stot = Smax

tot = 2, indicating a fully symmetrized state.
We should remark that the Nagaoka ferromagnetism in the
subsystem leads to the total spin of the subsystem of 3/2.
Note that in the present case, the total spin of the subsystem
Ssub and that of the center site Sc are not conserved quantities,
but they are still approximately represented by Ssub = 3/2 and
Sc = 1/2, where we define the total spin of a part of the system
as

Ssub(Ssub + 1) = 〈
S2

sub

〉
, (7)

Sc(Sc + 1) = 〈
S2

c

〉
, (8)

with Ssub = ∑
i∈subsystem Si and Sc = ∑

i∈center Si . We observe
that the total spin of the whole system is given by the
combination of those of the subsystem and the center site
as Stot = 3/2 + 1/2 = 2. Although this could be, in principle,
Stot = 3/2 − 1/2 = 1, the symmetrized state is realized in the
present case. In this way, we can control the total spin by the
chemical potential in a local site.

If we further decrease μ down to μ � −U , two electrons
are trapped at the center site, suggesting that we could possibly
change N sub

e in a wider range, including cases of the doubly
occupied center site. In fact, for huge negative μ around μ =
−U , it is observed that the center site traps two electrons.
However, it turns out that Stot is simply zero without exhibiting

any magnetic states. This fact is similarly found in an extended
lattice introduced in the following section. In the present paper
we focus on the case of |μ| 	 U , since we find a complete
ferromagnetic state only for |μ| 	 U in an extended lattice.

III. EXTENDED LATTICE

Here we extend the five-site lattice depicted in Fig. 1 to
larger system sizes by simply repeating it as a unit in one
direction, as shown in Fig. 3. The extended lattice is composed
of a subsystem in ladder shape and center sites. For instance,
the lattice of 11 sites consists of three units, and the system has
a subsystem of an eight-site ladder and three center sites. The
number of sites N is given by the sum of that in the subsystem
N sub and that in the center sites N c as N = N sub + N c. We
consider the same type of Hamiltonian as Eq. (5),

H = −t
∑

〈ij〉,σ
(c†iσ cjσ + H.c.) + U

∑

i

ni↑ni↓

+μ
∑

i∈center

(ni↑ + ni↓), (9)

where the chemical potential μ is effective for the center sites.
We use open boundary conditions.

Let us consider the system with electrons which fill the
subsystem, i.e., Ne = N sub. For instance, in the lattice of 11
sites, we put eight electrons to fill the outside eight-site ladder.
This is a natural extension of the five-site case in Sec. II, since
the center sites are empty and the subsystem is half-filled for
large μ, while electrons turn to occupy the center sites as μ

decreases.
We mention that the present system is also regarded as a

periodic Anderson lattice, which is a typical model for heavy-
electron systems, assuming that the subsystem represents
conduction-electron sites and the center sites correspond to
f -electron sites. Here μ plays a role of a local f -electron
level. Regarding the hybridization, due to the lattice structure
in Fig. 3, each f -electron site is connected to two conduction-
electron sites, indicating a multiband system. Moreover, when
the f -electron sites are singly occupied and they are considered

N=11
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13 17

3
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4 5

10 11 upper leg

lower leg

12

center sites

N=17

N=8

subsystem

FIG. 3. Extended lattices with 8, 11, 14, and 17 sites. The site
numbering is presented for N = 17 as an example. The lattice sites
are labeled in the order of the sites in the lower leg in the subsystem,
those in the upper leg in the subsystem, and those in the center sites.
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as localized spins, the system is equivalent to a Kondo lattice.
The ferromagnetism in periodic Anderson and Kondo lattice
models has been studied extensively [30–35].

We investigate the magnetic properties by making use
of numerical techniques. We examine the μ dependence of
various physical quantities with U = 1000 fixed. The U

dependence is also discussed in Sec. III B. We use the
Lanczos diagonalization method for small clusters up to
N = 17 to obtain numerical results with relatively small
computational costs. For larger lattices, we also perform exten-
sive DMRG calculations to grasp the ground-state properties
in the thermodynamic limit. We note that we adopt open
boundary conditions for Lanczos and DMRG calculations for
consistency.

A. Extended Nagaoka ferromagnetic state

1. Lanczos results

Before going into the discussion of Lanczos results, let us
make a few comments on technical details. Because of the
SU(2) symmetry, we usually determine the total spin from the
ground-state degeneracy. That is, by comparing the ground-
state energies of different values of the total magnetization
M , if the ground states with |M| � S are degenerate, the total
spin is estimated to be S. However, this is a hard task in
the present model. Since the model involves charge and spin
degrees of freedom, many nearly degenerate low-energy states
appear because of a subtle balance of multiple degrees of
freedom. In such a case, it is difficult to determine the total spin
by comparing the ground-state energies numerically. Instead,
we obtain the ground-state wave function with M = 0 and
evaluate Stot by using Eq. (2). In addition, we need to perform
a large number of Lanczos iteration steps to obtain an accurate
ground-state wave function which gives an integer value of
Stot. Typically, several thousand steps are required for the good
convergence near transition points and in the negative μ region.

In Fig. 4 we show the μ dependence of the total spin Stot

and the number of electrons in the center sites N c
e , given by

N c
e =

∑

i∈center,σ

〈niσ 〉, (10)

for N = 11, 14, and 17. Note that Ne = N sub
e + N c

e by
definition. For large μ, the center sites are vacant and the
subsystem is half-filled, so that the Mott state with Stot = 0
is realized. With decreasing μ, N c

e gradually increases, since
electrons come to the center sites. The same amount of holes
is introduced into the subsystem. In such a situation we expect
a ground-state change from the Mott state to a ferromagnetic
state in a similar way to the five-site model. Indeed, we observe
that Stot jumps from zero to Ne/2 − 2 and stays there in a short
period around μ = 8, and then it increases up to the maximum
value Ne/2. With further decreasing μ, Stot is reduced from
Ne/2. Sudden jumps of Stot signal transitions of first order.
We note that the complete ferromagnetic state is found in
2 � μ � 8 similarly for N = 11, 14, and 17, implying that the
complete ferromagnetic state is realized without significant
finite-size effects. Note also that the complete ferromagnetic
state appears in a region where the amount of holes doped into
the subsystem is moderately small.
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FIG. 4. (Color online) The total spin Stot and the number of
electrons in the center sites N c

e for several system sizes: (a) (N,Ne) =
(11,8), (b) (14,10), and (c) (17,12). Here we set U = 1000.

Here let us discuss the underlying mechanism of the
complete ferromagnetic state from the viewpoint of hole
doping into the subsystem. We note that the subsystem is
equivalent to a two-leg ladder, eliminating the center sites
from the whole system. Thus we refer to the ground state of
the two-leg ladder Hubbard model as a function of the hole
doping rate [17–19]. When we have one electron less than
half-filling, the Nagaoka ferromagnetism takes place. Even
when we add holes, the ground state remains a ferromagnetic
state due to the Nagaoka mechanism in some range of the
hole density. When the hole density exceeds a critical point,
the ground state changes to a partially spin-polarized state,
and eventually becomes a spin-singlet state. In the present
model we expect the same behavior for the subsystem when μ

varies. That is, the subsystem exhibits a ferromagnetic state in
a range of μ, and it is destabilized with the decrease of μ due
to hole doping into the subsystem. As a result, the complete
ferromagnetic state in the whole system is broken down. Thus,
the complete ferromagnetic state is attributed to the Nagaoka
ferromagnetism at finite hole density in the subsystem.

We mention that in the region near μ = 0, Stot shows a
complicated dependence. When μ is decreased further, all the
center sites are singly occupied, corresponding to the Kondo
lattice regime. In that region we do not find the complete
ferromagnetic state with Stot = Ne/2, but observe that Stot = 3
for N = 11, 14, and 17. We would expect that Stot = 3 even
for larger system sizes, but actually this is not the case, as we
will discuss based on DMRG results later.

In Fig. 5(a) we show the μ dependence of the electron
density in the center sites N c

e /N c for N = 11, 14, and 17 in the
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FIG. 5. (Color online) (a) The electron density in the center sites
N c

e /N
c, and (b) that in the subsystem N sub

e /N sub, for several system
sizes at U = 1000.

same plot. We clearly observe that with decreasing μ, N c
e /N c

gradually increases from zero to unity, and its μ dependence
is independent of the system size. On the other hand, as shown
in Fig. 5(b), the electron density in the subsystem N sub

e /N sub

decreases from unity to a constant value that depends on N ,

N sub
e

N sub
= N sub − N c

N sub
, (11)

and it becomes 0.5 in the large N limit. Here electrons escape
from the subsystem to the center sites. In other words, holes
are doped into the subsystem. The doping rate is controlled by
μ. In this situation we can regard the center sites as a reservoir
of electrons, i.e., a kind of particle bath.

2. DMRG results

As for the efficiency of the present DMRG calculations,
we mention that the computational cost highly depends on
the value of μ. At large μ, the center sites are vacant and the
subsystem is half-filled, so that charge degrees of freedom are
frozen out and only spin degrees of freedom are relevant in the
strong-coupling regime. In such a case we can easily obtain
the ground state in high precision. However, with decreasing
μ, charge degrees of freedom should also become relevant,
since electrons turn to move around the whole system. This
indicates that we need to keep a large number of DMRG states
to describe the ground state. For instance, in the region near
μ = 0, even if we keep 1000 states, in which the truncation
error is estimated to be around 10−6, it is still difficult to obtain
the true ground state, and we have incorrect results such as a
noninteger value of Stot.

Figure 6(a) presents DMRG results of Stot for various values
of the system size N . We find that with decreasing μ, Stot

changes from zero to Ne/2 − 2 and then it takes the complete
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FIG. 6. (Color online) DMRG results with large system sizes up
to N = 35 at U = 1000. (a) The total spin Stot normalized by the
maximum value Smax

tot = Ne/2, i.e., 0 � Stot/S
max
tot � 1 regardless of

the system size. In the shaded region near μ = 0, we cannot obtain
well-converged data by DMRG simulations even if we keep 1000
states. (b) The size dependence of the transition points μc denoted by
arrows in (a). Here we also plot Lanczos results for N = 11, 14, and
17 together.

ferromagnetic value Ne/2 in a broad region 2 � μ � 8 in the
same way as Lanczos results in Fig. 4. This tendency is found
for all the system sizes we have analyzed. In Fig. 6(b) we
show the size dependence of critical points of μ where Stot

changes: μc1 for the change between Stot = 0 and Ne/2 − 2;
μc2 for the change between Stot = Ne/2 − 2 and Ne/2; and
μc3 for the change between Stot = Ne/2 and a lower value. We
clearly find that they saturate well at large values of N without
any significant size dependence, and thus we believe that these
critical values exist in the thermodynamic limit. Moreover,
the μ dependencies of N c

e of the systems with 17 < N � 35
collapse as we saw for N � 17 in Fig. 5 (not shown).

On the other hand, we do not see saturated behavior of Stot

as a function of N for negative μ. In fact, Stot = 3 for N � 17,
but Stot = 0 for N = 20 and 26, and Stot = 1 for N = 23 and
29. This complication would be probably due to the fact that
the electron density in the subsystem varies with the system
size as Eq. (11). Moreover, we point out that even if we keep
1000 states, the DMRG does not give fairly well-converged
data in the region near μ = 0, denoted by the shaded region in
Fig. 6(a). Note that the Lanczos results for small clusters also
show the complicated dependence near μ = 0. These regions
are interesting to study for a possible realization of magnetic
states other than the complete ferromagnetic state such as a
partially spin-polarized state, but we leave it for a future issue.
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FIG. 7. (Color online) (a) The total spin Stot and the number of
electrons in the center sites N c

e at U = 100 for N = 11. (b) The
size dependence of the critical value of U for the appearance of the
ferromagnetism Uc with N = 11, 14, 17, and 20.

B. U dependence

It should be noted that the value of U which can cause
the complete ferromagnetic state depends on the system size.
In fact, U = 100 is not large enough to realize the complete
ferromagnetic state for N � 11, while U = 100 was enough to
generate it in the system of N = 5 [26]. As a typical example
we depict Stot and N c

e for N = 11 at U = 100 in Fig. 7(a).
There Stot does not reach the maximum value Smax

tot = 4 for
any values of μ, although N c

e varies with μ in the same way
as compared with the case of U = 1000 in Fig. 4(a). The
critical value of U above which the complete ferromagnetic
state appears is estimated at Uc = 127.3 for N = 11, and it
further shifts to Uc = 130.4 for N = 14, indicating finite-size
effects on the location of the phase boundary in the region of
small U . In Fig. 7(b) we plot the size dependence of Uc. The
curve is bent such that the slope becomes gentle as the system
size increases, which suggests a tendency toward convergence.
Note, however, that the systems studied are still small and we
need calculations with larger sizes for the extrapolation. In
contrast, for large U , we find no significant size dependence
at U = 1000 up to N = 35, as shown in Fig. 6(b). In the
present paper we have used U = 1000 which is sufficiently
large enough to realize the complete ferromagnetic state.

In Fig. 8 we present the ground-state phase diagram in the
coordinate (U,μ) for N = 11. The region between μc2 and μc3

is of the complete ferromagnetic state with Stot = Ne/2. We
clearly see that the range of μ of the complete ferromagnetic
state shrinks with decreasing U , and it eventually disappears at
small U , as we mentioned above. Here we note again that finite-
size effects should be carefully considered to discuss the phase
diagram in the thermodynamic limit. In the region of small U ,
the phase boundary is supposed to be deformed to reduce
the ferromagnetic region, since the critical point of U for the
appearance of the ferromagnetism shifts toward larger U with
increasing the system size. For large U , numerical results of
11 � N � 35 at U = 1000 are indicative that the finite-size
correction is small. In addition, at several points denoted by

0
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S tot =0

S tot =N e /2−2

FIG. 8. (Color online) The ground-state phase diagram in the
coordinate (U,μ) for N = 11. The transition points μc are defined in
the same way as those in Fig. 6. At several points denoted by crosses,
we have confirmed the realization of the complete ferromagnetic state
by DMRG calculations up to N = 110.

crosses in Fig. 8, we have performed DMRG calculations up to
N = 110 and confirmed that the complete ferromagnetic state
is realized. Thus, these points are expected to be included in
the ferromagnetic phase in the thermodynamic limit, although
it is hard to determine the entire phase boundary on the basis
of the present numerical results for small systems.

C. Spin correlation function

In order to clarify the characteristics of magnetic states
from a microscopic viewpoint, it is useful to measure spin
correlation functions. Here we study the ground state in the
subspace of M = 0. In such a case, when we consider a spin-
polarized ground state, the spin moment lies in the xy plane
and the ferromagnetic correlation develops in the xy plane.
Thus we investigate the transverse spin correlation function,

Cxy(i,j ) = 1
2

〈(
Sx

i Sx
j + S

y

i S
y

j

)〉 = 1
4 〈(S+

i S−
j + S−

i S+
j )〉. (12)

In Fig. 9 we show Cxy(i,j ) measured from the middle of the
subsystem (site 6 denoted by an open circle), for typical values
of μ. The plots in the left side of the double line are for the
correlation within the subsystem, and those in the right side
denote the correlation between site 6 in the subsystem and
the center sites. In the subsystem, which has a ladder shape,
the left part of the dotted line represent the lower leg,
while the right part is the upper leg. The site numbering is
given in the bottom of Fig. 3.

As shown in Fig. 9(a), for μ = 10, we find a Neél-type
antiferromagnetic correlation corresponding to the Mott state
in the subsystem. On the other hand, we observe that the
spin correlation between the subsystem and the center sites is
almost zero due to the absence of electrons in the center sites.
At μ = 8, where Stot = Ne/2 − 2, the system is nearly ordered
ferromagnetically. As for the microscopic spin configuration,
we find a ferromagnetic correlation in the subsystem except
for two corner sites, while the two corner spins align in the
opposite direction to the others, as shown in Fig. 9(b). At
μ = 5, where Stot = Ne/2, the system is in the complete
ferromagnetic state, and we find a simple ferromagnetic
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FIG. 9. The transverse spin correlation function Cxy(i,j ) for
typical values of μ at U = 1000: (a) μ = 10 for the Mott an-
tiferromagnetic state with Stot = 0; (b) μ = 8 for the partially
spin-polarized state with Stot = Ne/2 − 2; and (c) μ = 5 for the
complete ferromagnetic state with Stot = Ne/2, obtained by DMRG
with N = 35. The correlation function is measured with the middle
site of the subsystem (site 6 denoted by an open circle) as starting
point.

correlation in the subsystem, as shown in Fig. 9(c). We note
that the spin correlation between the subsystem and the center
sites is still very weak, since we have only a small number of
electrons in the center sites at μ = 5.

Here we investigate the longitudinal spin correlation func-
tion,

Cz(i,j ) = 〈
Sz

i S
z
j

〉
. (13)

In Fig. 10(a) we present Cz(i,j ) for μ = 10. Since the
maximum value of M is zero in the singlet ground state,
the spin correlation is isotropic, i.e., Cz(i,j ) = Cxy(i,j ). In
contrast, the ground state is spin polarized for μ = 8 and 5,
so that we can see anisotropic behavior between Cz(i,j ) and
Cxy(i,j ), if we compare them in the subspace of M = 0. In
Figs. 10(b) and 10(c) we observe that the longitudinal spin
correlation takes a small negative value in the subsystem. This
reflects the sum rule

〈M2〉 = Ne

4
+

∑

i 
=j

Cz(i,j ) = 0, (14)

and we expect that Cz(i,j ) ∼ −1/Ne.
We notice that the maximum value of M is Ne/2 − 2 for

μ = 8, suggesting that the spin configuration can be deduced
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FIG. 10. The longitudinal spin correlation function Cz(i,j ) for
typical values of μ at U = 1000: (a) μ = 10 for the Mott an-
tiferromagnetic state with Stot = 0; (b) μ = 8 for the partially
spin-polarized state with Stot = Ne/2 − 2; and (c) μ = 5 for the
complete ferromagnetic state with Stot = Ne/2, obtained by DMRG
with N = 35. The correlation function is measured with the middle
site of the subsystem (site 6 denoted by an open circle) as starting
point.

from Cz(i,j ) in the subspace of M = Ne/2 − 2 instead of
M = 0. Indeed, as shown in Fig. 11, we clearly see that the
spins at the two corners are antiparallel to the others, in a
similar way to the case of Cxy(i,j ) in the subspace of M = 0
shown in Fig. 9(b).
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FIG. 11. The longitudinal spin correlation function Cz(i,j ) for the
partially spin-polarized state with Stot = Ne/2 − 2 in the subspace of
M = Ne/2 − 2 at μ = 8 and U = 1000, obtained by DMRG with
N = 35. The correlation function is measured with the middle site of
the subsystem (site 6 denoted by an open circle) as starting point.
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FIG. 12. (Color online) The magnetization curve for typical val-
ues of μ at U = 1000 and several temperatures: (a) μ = 10 for
the Mott antiferromagnetic state with Stot = 0; (b) μ = 8 for the
partially spin-polarized state with Stot = Ne/2 − 2; and (c) μ = 5 for
the complete ferromagnetic state with Stot = Ne/2. For each value
of μ we show magnetization curves at temperatures T = 0, 0.001,
and 0.01. Open circles denote numerical results with N = 11, and the
Brillouin functions BS for the corresponding temperatures are plotted
by solid or dashed curves.

D. Magnetization

We investigate the magnetization curve as a function of an
applied magnetic field H ,

M(H,T ) = 〈M(H )〉T , (15)

where M(H ) is the magnetization of model (9) with an addi-
tional Zeeman term −H

∑
i S

z
i , and 〈· · · 〉T is the expectation

value at temperature T . Here, for the thermal average, we
need all the eigenvalues and wave functions, computed by full
diagonalization (Householder method). In Fig. 12 we show
the magnetization curve for N = 11 at typical values of μ and
T . For μ = 10, as shown in the left panel of Fig. 12(a), the
magnetization curve shows a stepwise increase starting from
zero up to the maximum value 4 at T = 0, because Stot = 0
in the ground state and there is an energy gap between states
of different values of Stot due to the finite system size. The
stepwise structure is rapidly smeared out at finite temperatures,
since the energy gap is rather small. In the right panel of
Fig. 12(a) we find that the magnetization curve agrees well with

the Brillouin function of S = 1/2 at T = 0.01, indicating that
each spin fluctuates independently due to thermal fluctuations.

Figure 12(b) shows the magnetization curve for μ = 8,
where the ground state is a partially spin-polarized state
with Stot = 2. According to the total spin in the ground
state, the Brillouin function of S = 2 is realized at low
temperature T = 0.001, and it changes to that of S = 1/2
at high temperature T = 0.01. In Fig. 12(c) we can also
see a similar behavior for μ = 5, where the ground state
is a complete ferromagnetic state with Stot = 4. Indeed, the
magnetization curve is represented by the Brillouin function
of S = 4 at T = 0.001, and it approaches that of S = 1/2 as
the temperature increases.

IV. CORRELATION BETWEEN SUBSYSTEM
AND CENTER SITES

A. Total spin

In Figs. 13(a) and 13(b) we present the μ dependence of
the total spin of the subsystem Ssub and that of the center
sites Sc, respectively, at U = 1000. Comparing with the total
spin of the whole system, given in Fig. 4(a), we find that the
total spins of the subsystem and the center sites are correlated
positively, i.e., Stot = Ssub + Sc, for most values of μ except for
the region near μ = 0. We note that they couple negatively,
i.e., Stot = |Ssub − Sc|, for 0.4 � μ � 2.1, and the total spin
takes an intermediate value for −2.2 � μ � 0.4.

B. Hopping amplitude between subsystem and center sites

Now, let us introduce a different value of the hopping
amplitude between the subsystem and the center sites t ′ from
that within the subsystem t , in order to control the degree
of correlation between the subsystem and the center sites in
a direct way. That is, the center sites are separated from the
subsystem in the limit of t ′ = 0. In Fig. 14 we show the μ

dependence of Stot and N c
e for t ′ = 0.5 and 0.1. The plot for

t ′ = 1 was already given in Fig. 4(a). As t ′ decreases, the
region where N c

e increases from zero to three (=Nc) becomes

0

1

2

3

4

-20 -10 0 10 20
µ

S
 s

ub

(a)

0

0.5

1

1.5

-20 -10 0 10 20
µ

S
 c

(b)

FIG. 13. (a) The total spin of the subsystem Ssub and (b) that of
the center sites Sc at U = 1000 for N = 11. Note that the total spin
of the whole system Stot was given in Fig. 4(a).
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FIG. 14. (Color online) The total spin Stot and the number of
electrons in the center sites N c

e for (a) t ′ = 0.5 and (b) t ′ = 0.1 at
U = 1000 for N = 11. Note that the plot for t ′ = 1.0 was given in
Fig. 4(a).

narrower, while N c
e exhibits a sharp change with a plateaulike

structure at integers. There appears a complete ferromagnetic
state in a region where N c

e varies from zero to one.
In Fig. 15 we depict the ground-state phase diagram in

the coordinate (t ′,μ) for N = 11, where μc1, μc2, and μc3

are defined in the same way as those in Fig. 8. We observe
that μc3 does not depend on t ′ so much, while μc2 is reduced
as t ′ decreases. As a result, the range of μ of the complete
ferromagnetic state becomes narrow with decreasing t ′.

In the limit of t ′ = 0, the subsystem and the center sites are
independent by definition. We find that in the period μc2 <

μ < μc3, the subsystem contains just seven electrons and the
remaining one electron stays at a center site. In this situation,
the Nagaoka ferromagnetism is realized in the subsystem, i.e.,
Ssub = 7/2, while Sc = 1/2. Here the states of Stot = Ssub ± Sc

are degenerate, and thus we obtain the complete ferromagnetic
state. Note that in this limit we do not have the phase of
Stot = Ne/2 − 2. We find that μc1 appears above t ′ � 0.19.

0

5

10

0 0.2 0.4 0.6 0.8 1

µ c1
µ c2
µ c3

µ

t'

complete ferromagnetic state
S tot =N e/2

Mott state
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FIG. 15. (Color online) The ground-state phase diagram in the
coordinate (t ′,μ) at U = 1000 for N = 11. The transition points μc

are defined in the same way as those in Fig. 6.

C. Entanglement entropy

In Figs. 9 and 10 we found that the spin correlation between
spins in the subsystem and those in the center sites are very
weak regardless of the situation of the total spin. Note that the
spin correlation is still weak even in the case of μ = 0 (not
shown). However, we expect that strong quantum correlations
occur in the ferromagnetic state where all the spins contribute
to form the totally symmetric wave function.

Now we study the nature of correlation in the system
by making use of the entanglement entropy [36] instead of
the spin correlation functions. In particular, we measure the
entanglement entropy of the subsystem by tracing out the
degrees of freedom in the center sites. The reduced density
matrix of the subsystem is given by

ρsub = Trc|G〉〈G|, (16)

where |G〉 is the ground state of the whole system, and the
degrees of freedom of the center sites are traced out. The
entanglement entropy of the subsystem is defined by

Esub = −Trsubρsub ln ρsub, (17)

where the trace is taken for the subsystem. We note that the
entanglement entropy of the center sites can also be defined
as Ec = −Trcρc ln ρc with ρc = Trsub|G〉〈G|. The relation
Esub = Ec holds for the ground state, although, in general,
Esub 
= Ec for a mixed state.

In Fig. 16(a) we present the μ dependence of Esub for
several values of t ′. In the Mott-state regime at large μ, since
the center sites are empty, the subsystem and the center sites
are practically separated. Therefore, Esub is suppressed, and it
approaches zero in the limit of μ → ∞. As t ′ decreases, Esub

decays to zero at lower μ, since the subsystem and the center
sites are disconnected.

With decreasing μ, electrons turn to come to the center
sites as well as the subsystem, and thus we expect that the cor-
relation between the subsystem and the center sites becomes
significant. In the region of the complete ferromagnetic state,
the fully symmetrized state of all the spins takes place, and
Esub is enhanced, as expected. We find a peak near μ = 0
where electrons can move around the whole system without
the disturbance of the chemical potential. This enhancement
of the entanglement is due to the electron motion, i.e., the
subsystem is entangled by the quantum motion among the
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FIG. 16. (Color online) (a) The entanglement entropy of the
subsystem Esub for several values of t ′ for N = 8. (b) Esub at t ′ = 1
for several system sizes. Here U = 1000.
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subsystem and the center sites. We note that the entanglement
occurs even in the limit of t ′ = 0.

Here let us discuss the behavior for large negative μ,
where we find that Esub converges to a constant value as μ

decreases independent of t ′. We can understand this convergent
behavior by considering the contribution of relevant spin states
as follows. For large negative μ, each center site traps one
electron. Note that the contribution of the double occupied
states is negligibly small because of the Coulomb repulsion
unless we do not decrease μ down to −U . If t ′ is small,
the center sites are isolated from the system, so that we can
consider subspaces with different spin states in the center sites
independently. In the case with N = 8 and Ne = 6, we have
two electrons in the two center sites, and there appear four spin
states, i.e., (↑ , ↑), (↓ , ↓), (↑ , ↓), and (↓ , ↑). These four
states correspond to the subspaces with (N sub

↑ ,N sub
↓ ) = (1,3),

(3,1), (2,2), and (2,2), respectively, where N sub
σ denotes the

number of spin-σ electrons in the subsystem. The electron
hopping t ′ mixes the states of the lowest energies of the four
cases, which gives the entanglements. That is, the exchange
of the spin state between the subsystem and the center sites
brings the entanglements. As the first approximation, let us
assume that the four states have an equal weight in the ground
state, i.e., the four states are maximally entangled. Then, the
entanglement entropy is given by

Ẽsub = −
∑

(↑,↑),(↓,↓),(↑,↓),(↓,↑)

1

4
ln

1

4
= 1.386, (18)

where the summation is taken over allowed patterns of the
spins trapped in the center sites. The thus obtained value
is close to the result in Fig. 16(a), i.e., Esub � 1.328 at
μ = −20 for t ′ = 0.1. Here we find a slight difference,
because relative weights of the four states are different in
reality. If we take account of the relative weights, we have
a more precise estimation of Esub. In fact, the four largest
eigenvalues of ρsub are λ(↑ , ↑) = λ(↓ , ↓) � 0.167, λ[(↑ , ↓)
+ (↓ , ↑)] � 0.310, and λ[(↑ , ↓) − (↓ , ↑)] � 0.357, and
these eigenvalues gives the entanglement entropy

Ẽsub = −
4∑

i=1

λi ln λi

= −0.167 × ln 0.167 − 0.167 × ln 0.167

−0.310 × ln 0.310 − 0.357 × ln 0.357

= 1.328, (19)

which gives a good agreement with the numerical result. We
notice that the relative weights of the four states do not change
so much even when t ′ is varied, although they are not defined
at t ′ = 0.

In Fig. 16(b) we depict the size dependence of Esub at
t ′ = 1. We see that the μ dependence is the same in shape for
different system sizes, while Esub becomes large in the whole
range of μ with increasing N . In particular, Esub converges
to an N -dependent constant value for large negative μ. Based
on the same logic discussed for N = 8 above, as the first
approximation, the saturated value is described by the uniform

distribution of the eigenstates among allowed states,

Ẽsub = −
D∑

allowed patterns

1

D
ln

1

D
= ln D, (20)

where D is the number of allowed patterns of the spins trapped
in the center sites. In the cases of N = 8 and 11, D = 2N c

, since
all the possible patterns are degenerate in energy. For N = 11
we estimate as Ẽsub = ln 8 = 2.079, which is close to the result
in Fig. 16(b), i.e., Esub � 2.026 at μ = −20. In contrast, in the
case of N = 14, among the possible 24 = 16 patterns, we have
three types of spin states: (1) all up spins (↑↑↑↑) and all down
spins (↓↓↓↓); (2) three up and one down spins (↑↑↑↓) and
one up and three down spins (↓↓↓↑); and (3) two up and two
down spins (↑↑↓↓). We find that (↑↑↑↑) and (↓↓↓↓) have a
high energy compared to the others, and (↑↑↑↓) and (↓↓↓↑)
have an energy slightly higher than that of (↑↑↓↓). Thus we
exclude the first case and we obtain D = 14. Then we estimate
as Ẽsub = ln 14 = 2.639, which is again close to the result in
Fig. 16(b), i.e., Esub � 2.578 at μ = −20. We note again that
the relative weights of the allowed patterns are different in
reality, so that measured values Esub are slightly smaller than
estimations Ẽsub.

V. SUMMARY AND DISCUSSION

In this paper we investigated the ferromagnetism in the
itinerant electron model by using numerical methods, moti-
vated by the Nagaoka ferromagnetism. We pointed out that
the magnetic property can be controlled with the nonmagnetic
parameter such as the chemical potential representing the
electron affinity.

As a concrete model we adopted the Hubbard model (9)
which consists of two parts, i.e., the subsystem and the center
sites. We examined how the total spin depends on the chemical
potential for the center sites μ, which controls the distribution
of the electron density. We set the number of electrons to be
the same as the number of sites of the subsystem to investigate
the realization of the “extended Nagaoka ferromagnetism.”
In the previous report we have studied the minimal case of
this type of lattice with five sites to clarify dynamical aspects
of the Nagaoka ferromagnetisim [26]. In the present paper we
extended the lattice to larger sizes as depicted in Fig. 3, and
studied the case of hole doping into the subsystem at finite
density.

Using Lanczos and DMRG methods we examined how the
itinerant ferromagnetism appears as a function of μ. For large
μ, the center sites are vacant and the subsystem is half-filled,
so that the ground state is the Mott state with zero total spin.
As μ decreases, electrons can move from the subsystem to the
center sites. In other words, holes are doped into the subsystem.
We observed that the complete ferromagnetic state appears in
some range of μ, where the amount of holes doped into the
subsystem is moderately small.

In the region of the complete ferromagnetic state, we found
that the total spin and the electron density exhibit similar μ

dependencies for various values of the number of sites N ,
suggesting a convergence when N increases. In particular, the
range of μ of the complete ferromagnetic state saturates well at
large values of N . These results are indicative that the present
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mechanism of the itinerant ferromagnetism exists with finite
density of hole doping in the thermodynamic limit. We dis-
cussed the nature of the ferromagnetism by measuring various
physical quantities such as the spin correlation function, the
magnetization process, and the entanglement entropy.

We expect that the present mechanism for the itinerant fer-
romagnetism can be realized in some molecular-based magnets
in which highly mobile electrons exist and the electron affinity
at sites is modified by external forces. Moreover, if the present
setup of the Hubbard model with the local on-site energy is
prepared in the optical lattice of cold atoms in a controllable
way, the manipulation of the total spin can be performed. We
hope that our work stimulates the experimental exploration of
the itinerant ferromagnetism by a new type of control of the
magnetic property through a lattice change, etc.

Finally, we note that the effective electron number can
be controlled by the chemical potential at local sites in the
whole system. In the present system, with the change of the
chemical potential, the number of electrons in the subsystem

takes nonintegers and changes continuously, although the total
number of electrons is a fixed integer. This situation can be
regarded as an emulation of the doping effect in the subsystem.
So far the doping effect has been studied by changing the
number of electrons one by one, and the present scheme
would provide an approach to study the doping effect. We
hope that this type of analysis can be applied to other systems
with doping-induced phenomena, such as superconductivity
in doped systems, which is an interesting future problem.
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