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In thin magnetic layers with structural inversion asymmetry and spin-orbit coupling, the Dzyaloshinskii-
Moriya interaction arises at the interface. When a spin-wave current jm flows in a system with a homogeneous
magnetization m, this interaction produces an effective fieldlike torque of the form TFL ∝ m × (z × jm) as well
as a dampinglike torque, TDL ∝ m × [(z × jm) × m], the latter only in the presence of spin-wave relaxation
(z is normal to the interface). These torques mediated by the magnon flow can reorient the time-averaged
magnetization direction and display a number of similarities with the torques arising from the electron flow in
a magnetic two-dimensional electron gas with Rashba spin-orbit coupling. This magnon-mediated spin-orbit
torque can be efficient in the case of magnons driven by a thermal gradient.
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I. INTRODUCTION

Recent developments in condensed-matter physics have
renewed the interest of the scientific community in the design
and properties of materials with large spin-orbit coupling.
Topics such as spin Hall effect [1], topological insulators [2],
or skyrmions [3], all taking advantage of relativistic effects in
solid state, have profoundly challenged our understanding of
spin transport lately and present tremendously rich opportu-
nities for innovative expansion of the research in condensed-
matter systems. Utilizing spin-orbit coupling to enable the
electrical manipulation of ferromagnets and magnetic textures
has attracted a considerable amount of interest in the past
few years [4–6]. The key mechanism, tagged spin-orbit
torque, appears in ultrathin magnetic systems displaying
inversion symmetry breaking such as (but not limited to)
bilayers composed of heavy metals (such as Pt, Ta, W) and
ferromagnets. The recent experimental results are interpreted
in terms of Rashba [7] and spin Hall effect-induced torques [1]
and the complexity of the spin transport in such systems
is currently under intense investigations [8–10]. A major
progress in this field has been to recognize the importance of
Dzyaloshinskii-Moriya interaction (DMI) [11]. DMI results
from spin-orbit coupling in structures with broken inversion
symmetry and participates, in a number of systems, in the
emergence of skyrmions and chiral spin textures [12–14].
Interestingly, DMI also arises from the interfacial spin-orbit
coupling in ultrathin magnetic bilayers [15,16] and results in
chiral magnetic domain walls [14], providing an explanation
to mysterious experimental behaviors such as current-induced
domain-wall motion against the electron flow [15,17,18].

In conjunction with electrically driven spin-orbit torques,
another adjacent emerging research field aims at exploiting
magnon flows and propagating spin waves instead of electrical
carriers [19]. Indeed, magnons can carry spin currents [20],
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transmit information [21], and even control the motion of
magnetic domain walls [22,23] and skyrmions [24]. The
magnon flow may be driven by radio-frequency (rf) magnetic
fields or temperature gradients [25], the latter being an
important topic of the spin caloritronics field [26]. Recently,
it has been realized that DMI impacts the propagation of spin
waves just like spin-orbit coupling affects the electron flow,
resulting in topological behaviors such as the magnon Hall
effect and edge currents [27]. It was reported that the DMI
effect on the spin-wave dispersion is similar to the Rashba
spin-orbit coupling effect on electron dispersion [28–30].
Therefore, one anticipates that the spin-orbit torque due to
electron flow in Rashba spin-orbit coupled systems might have
its counterpart due to magnon flow in systems displaying DMI.

In this paper, we demonstrate that even in the absence
of a magnetic texture, a magnon flow generates torques
if magnons are subject to DMI just as an electron flow
generates torques when submitted to Rashba interaction,
even when the magnetization is homogeneous [8,9]. A direct
consequence is the capability to tilt the magnetization direction
of a homogeneous ferromagnet by applying a temperature
gradient or a local rf field to generate the magnon flow (see
Fig. 1). We show that merging the spin-orbit torques with spin
caloritronics is rendered possible by the emergence of DMI
in magnetic materials. The paper is organized as follows. The
analytical derivation of the magnon-driven Dzyaloshinskii-
Moriya torque (DM torque) is developed in Sec. II. The
central results of this work are presented in Sec. III, where
the analytical expressions are compared with micromagnetic
simulations. Section IV addresses the nature of this torque
when driven by thermal gradients. Finally, the conclusion and
perspectives are provided in Sec. V.

II. ANALYTICAL DERIVATION OF THE
DZYALOSHINSKII-MORIYA TORQUE

Our objective is to analytically derive the static response of
a magnetic system in the presence of both DMI and spin waves.
To do so, we provide a general discussion on the response of a
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FIG. 1. (Color online) Schematics of the magnetized stripe stud-
ied in this work. The magnetization is initially oriented along x
and spin waves are generated by an ac field applied in the center
of the stripe at x = 0. Due to DMI, the spin-wave flow induces
effective fields, BFL ∝ y and BDL ∝ m × y, resulting in deviations
of the background magnetization �my,z.

magnetic system submitted to a harmonic excitation, without
assuming any specific form of the magnetic energy landscape,
within the nonlinear spin-wave formalism (Sec. II A). This
formalism is then applied to the specific case of DM torque
(Sec. II B).

A. Nonlinear spin-wave analysis

1. General considerations

Let us first consider the case of a magnetization m subject to
a harmonic excitation with frequency ω (such as spin waves or
a time-dependent magnetic field). The magnetization m may
be Fourier-expanded as follows:

m = m(0) + (
m(1)e

iωt + m∗
(1)e

−iωt
) + (

m(2)e
2iωt + m∗

(2)e
−2iωt

)
+O(excitation amplitude)3, (1)

where m(0) = m(0)(x) ≡ 〈m〉 denotes the time-independent
magnetization profile and may slightly differ from the equilib-
rium profile due to the nonequilibrium correction arising from
the nonlinear effect of the harmonic excitation. This excitation-
induced correction is the central quantity that we aim to
calculate. Here 〈. . .〉 = ∫

T
. . . dt/T denotes the temporal

average over an oscillation period T = 2π/ω.
The terms m(n) = m(n)(x), n � 1 are the Fourier compo-

nents of the magnetization in time space, m(1) representing the
linear response of the system to the excitation, while m(n>1)

amounts to the nonlinear response of the system. Note that
all the time-independent nonlinear responses are absorbed in
m(0). In the case of spin-wave excitations, m(1)(x) describes
the spatial profile of the spin-wave amplitude. Then, the
linearization of the Landau-Lifshitz-Gilbert (LLG) equation
fixes m(1) up to its overall magnitude, which is nothing but
the spin-wave amplitude (see below). On the other hand,
m(2) = m(2)(x) and the nonequilibrium correction part of m(0)

are of the order of (spin-wave amplitude)2 and describe the
leading nonlinear corrections to the spin-wave profile when
the spin-wave amplitude is not infinitesimally small. The 2ω

and nonequilibrium 0 frequency components are of the order of
(spin-wave amplitude)2 because the squares of the first-order
terms appear when the dynamics equations are expanded up
to the second order. Since the first-order terms have frequency
ω, their squares generate 2ω and 0 frequency components, the
latter being absorbed in the definition of m(0). In Eq. (1), m(0)

is real whereas m(1) and m(2) are complex in general. Note that
both sides of Eq. (1) are real.

The micromagnetic normalization condition

m · m = 1 (2)

imposes constraints on m(0), m(1), and m(2). To extract these
constraints, we expand Eq. (2) by using Eq. (1), up to the
second order in spin-wave amplitude only. Analyzing the
various Fourier components of the normalization condition
gives the following set of equations:

m(0) · m(0) = 1 − 2m∗
(1) · m(1), (3)

m(1) · m(0) = m∗
(1) · m(0) = 0, (4)

2m(2) · m(0) = −m(1) · m(1), (5)

2m∗
(2) · m(0) = −m∗

(1) · m∗
(1). (6)

Equation (3) indicates that the magnitude of the time-
independent magnetization 〈m〉2 = m2

(0) is reduced below
1 due to the presence of spin waves (as expected from
standard nonlinear spin-wave theory). Equation (4) states that
m(1) is orthogonal to m(0), and Eqs. (5) and (6) show that
the components of the second-order term m(2) parallel to
m(0) are completely fixed by the normalization condition (2)
once the first-order term m(1) is fixed. But the components
perpendicular to m(0) are free from Eq. (2) and subject only to
the LLG equation.

2. Choice of an appropriate system of coordinates

In order to model the impact of a flow of spin waves
on the static direction of the magnetization m(0) = 〈m〉, we
need to adopt an appropriate system of coordinates that
fulfills the constraints of micromagnetics. It is conventional to
describe the magnetization direction using either the Cartesian
[Fig. 2(a)] or the spherical coordinates system [Fig. 2(b)].
In the present work, we need to explicitly separate the
time-independent part from the time-dependent part of the
magnetization. In other words, we need to make an explicit
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FIG. 2. (Color online) Different systems of coordinates, describ-
ing the general direction of a unitary vector m. (a) In Cartesian
coordinates, m = mxex + myey + mzez and mz =

√
1 − m2

x − m2
y .

(b) In spherical coordinates, m = er , where er = cos β sin αex +
sin β sin αey + cos αez. (c) In the system of coordinates we adopt
in this work, the magnetization is defined as m = srer + sθ eθ + sφeφ ,
where sr =

√
1 − s2

θ − s2
φ . Here, er is the direction of the axis about

which the magnetization precesses. (d) Definition of the polar and
azimuthal parts of the magnetization in (c), in a plane normal to the
rotation axis er .
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distinction between the static direction of precession and
the time-dependent spin waves. To do so, we rewrite the
magnetization as m = srer + sθeθ + sφeφ , where the time-
independent unit radial vector er is defined to be parallel to m(0)

and thus denotes the direction about which the magnetization
precesses as sketched in Fig. 2(c). Then m(0) = 〈sr〉er . Once
er is fixed, the associated polar unit vector eθ and azimuthal
unit vector eφ are fixed. In spherical coordinates, they may be
expressed as

er =
⎛
⎝sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠ , eθ =

⎛
⎝cos θ cos φ

cos θ sin φ

−sin θ

⎞
⎠ , eφ = er × eθ .

Note that the angles (θ,φ) as well as (er ,eθ ,eφ) are time-
independent by definition. By using the normalization con-
ditions from the nonlinear spin-wave theory presented above,
i.e., Eqs. (3)–(6), we deduce the following properties (up to
the second order in spin-wave amplitude)

sr〈sr〉 = m · m(0) = 1 − 2m∗
(1) · m(1)

− 1
2

(
m(1) · m(1)e

2iωt + m∗
(1) · m∗

(1)e
−2iωt

)
, (7)

sθ = m · eθ = (
m(1),θ e

iωt + m∗
(1),θ e

−iωt
)

+ (
m(2),θ e

2iωt + m∗
(2),θ e

−2iωt
)
, (8)

sφ = m · eφ = (
m(1),φeiωt + m∗

(1),φe−iωt
)

+ (
m(2),φe2iωt + m∗

(2),φe−2iωt
)
, (9)

where we defined m(i) = m(i),θeθ + m(i),φeφ . From Eq. (7),
one finds 〈m〉2 = 〈sr〉2 ≈ 1 − 2m∗

(1) · m(1), which implies that
the magnitude of the time-averaged magnetization is indeed
smaller than 1. Equations (7)–(9) indicate that at the first
order in spin-wave amplitude, sr is constant and sθ,φ ≈ e±iωt .
We will see below that as long as m(0) is determined up
to the second order in the spin-wave amplitude, the e±2iωt

components of the excitations become irrelevant and thus may
be ignored. Then the spin waves may be defined upon time
averaging where the e±2iωt components of the excitations
disappear from the analysis. Therefore, in the spherical
description adopted here, up to the first order in excitation
amplitude, the spin waves are defined in the plane (eθ ,eφ),
normal to the rotation direction er [see Fig. 2(d)].

Another important point concerns the degrees of freedom
of our system. In Cartesian coordinates, Fig. 2(a), since m2

x +
m2

y + m2
z = 1 the system has only two degrees of freedom (say

mx and my). In spherical coordinates, Fig. 2(b), the two degrees
of freedom are the polar and azimuthal angles, α and β. In our
system of coordinates, Fig. 2(c), the degrees of freedom are
given by sθ and sφ . Indeed, as will be explicitly shown below,
the angles of the rotation axis, θ and φ, are functions of the
spin waves sθ and sφ .

3. From Landau-Lifshitz-Gilbert to Euler equations

The LLG equation describing the dynamics of the system
reads ∂tm = γ m × ∂mW + αm × ∂tm, where W is given in
Eq. (17). Our objective is to determine the direction of the static
magnetization under the influence of a flow of spin waves. To
do so, we explicitly rewrite the LLG equation in terms of

the spatial derivatives ∂xθ,∂xφ,∂2
x θ,∂2

xφ. The two independent
components (along eθ and eφ) of the LLG equation adopt the
general form

∂t sθ + α(sr∂t sφ − sφ∂t sr ) = T
(1)
θ + T

(2)
θ + · · · , (10)

∂t sφ − α(sr∂t sθ − sθ∂t sr ) = T
(1)
φ + T

(2)
φ + · · · , (11)

where T
(i)
θ,φ are the ith order components (in spin-wave

amplitude) of the term γ m × ∂mW in the LLG equation. Since
〈T (1)

θ,φ〉 = 〈∂t sθ,φ〉 = 0, it is clear that, up to the second order
in spin-wave amplitude, the time averaging over one period of
oscillation leads to〈

T
(2)
θ

〉 = α〈sr∂t sφ − sφ∂t sr〉 = O(excitation amplitude)4,

(12)
〈
T

(2)
φ

〉 = −α〈sr∂t sθ − sθ∂t sr〉 = O(excitation amplitude)4.

(13)

Indeed, since only time-dependent components of sr can
couple with sθ or sφ to generate nonvanishing time-averaged
values and since sr is time dependent only at the second
order in excitation amplitude and above [see Eq. (7)], then
the right-hand side of Eqs. (12) and (13) is nonzero only at
the fourth order at least, and can therefore be neglected. The
set of equations that determines the spatial profile of the static
magnetization direction (θ,φ) is〈

T
(2)
θ

〉 = 0,
〈
T

(2)
φ

〉 = 0. (14)

Explicit expressions of Eq. (14) in terms of θ, φ, sr , sθ , and
sφ are given in Sec. II B.

As will be explicitly shown below, Eq. (14) allows for the
determination of θ and φ once sr , sθ , and sφ are determined only
up to the linear order in spin-wave amplitude. This simplifies
the calculation considerably. To the linear order in the spin-
wave amplitude, sr ≈ 1 and the linear equation of motion of
the spin wave is then expressed in the form

∂t sθ + α∂t sφ = T
(1)
θ , (15)

∂t sφ − α∂t sθ = T
(1)
φ , (16)

that can be solved easily. The explicit expressions of
Eqs. (14)–(16) being quite cumbersome in the general case,
we only present below the solution when the magnetization
initially lies along the longitudinal in-plane easy axis (x axis).
The cases when the easy axis is in-plane transverse (y axis) or
perpendicular to the plane (z axis) are treated in the Appendix.

B. Magnetization deviations induced by the spin waves

Let us consider a thin magnetic film with a magnetization
m aligned along the in-plane easy axis (x axis) and subjected
to an external ac magnetic field applied locally to make spin
waves propagate along the x axis, as displayed in Fig. 1. In
this system, the magnetic energy reads

W = A
∑

i

(∂im)2 − Dm · [(z × ∇) × m]

+ 2πM2
s (m · z)2 − K(m · x)2, (17)
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where the first two terms are the symmetric exchange (A) and
antisymmetric Dzyaloshinskii-Moriya (D) exchange energies,
the last two terms are the demagnetizing (2πM2

s ) and the
in-plane anisotropy (K) energies, and ∇ = (∂x,∂y,∂z). The
form of the DMI we adopt here is derived for a cylindrically
symmetric system with an interfacial inversion asymmetry
along the normal z [13,15]. All along the present study, we
consider that the DMI is smaller than a certain threshold value
Dc [=√

2A(K + 2πM2
s )] so that the uniformly magnetized

state is energetically stable [29].
We assume that the magnetization is mostly oriented along

the easy axis ±x. Then θ → π/2 − δ and φ → φ + (0,π )
where δ,φ 
 1, so that sin θ ≈ 1, cos θ ≈ δ, and sin φ ≈ ηφ,
cos φ ≈ η. Here, η = ±1 when the magnetization is along
±x. Since the linear effect of spin wave does not modify the
equilibrium values of θ and φ, δ and φ are of the second order
in spin-wave amplitude at best. Up to the second order in spin-
wave amplitude, the time-averaged LLG equation reduces to
γ 〈m × ∂mW 〉 = 0 [see Eq. (14)]. When expanded, the vector
components of this equation become〈

s2
r + s2

φ

〉
∂2
xφ + 〈

∂xs
2
r + ∂xs

2
φ

〉
∂xφ − 2〈sφ∂xsθ 〉∂xδ

= 1

λ2

〈
s2
r − s2

φ

〉
φ + ηD̃∗〈sφ∂xsθ

〉
, (18)

〈
s2
r + s2

θ

〉
∂2
x δ + 〈

∂xs
2
r + ∂xs

2
θ

〉
∂xδ − 2〈sθ∂xsφ〉∂xφ

= 1

λ2
d

〈
s2
r − s2

θ

〉
δ − η

D̃∗

2

〈
∂xs

2
r + ∂xs

2
θ

〉
, (19)

where λ2 = J/Hk , λ2
d = J/(Hk + Hd) and D̃∗ = D∗/J , with

J = 2A/Ms . By considering 〈s2
r 〉 = 1 − 〈s2

θ + s2
φ〉, Eqs. (18)

and (19) become(
1 − 〈

s2
θ

〉)
∂2
xφ − 2(〈sθ∂xsθ 〉∂xφ + 〈sφ∂xsθ 〉∂xδ)

= 1

λ2

(
1 − 〈

s2
θ

〉 − 2
〈
s2
φ

〉)
φ + ηD̃∗〈sφ∂xsθ 〉, (20)

(
1 − 〈

s2
φ

〉)
∂2
x δ − 2(〈sφ∂xsφ〉∂xδ + 〈sθ∂xsφ〉∂xφ)

= 1

λ2
d

(
1 − 2

〈
s2
θ

〉 − 〈
s2
φ

〉)
δ + ηD̃∗〈sφ∂xsφ〉. (21)

These equations involve four types of terms: a second-order
derivative of the angle (diffusionlike), a first-order derivative
(wavelike), an anisotropy term, and a DMI term. We show
below that this last term, proportional to the spin-wave flow
〈sφ∂xsφ,θ 〉, makes φ and δ nonvanishing, and drives the time-
independent components of the magnetization out of its rest
position. In order to obtain a solvable equation, it is useful to
count the order of each term in Eqs. (20) and (21). Considering
that sθ and sφ are of the first order in the spin-wave amplitude,
and φ and δ are of the second order in the spin-wave amplitude,
one finds that only a few terms need to be retained for analysis
up to the second order in the spin-wave amplitude.

For the sake of clarity, we now switch to the Cartesian co-
ordinate system through the relation �my ≡ 〈sr〉 sin θ sin φ ≈
ηφ and �mz ≡ 〈sr〉 cos θ ≈ δ, where �my,z represent the
time-averaged deviation of the magnetization induced by the
flow of spin waves along the y and z axes. Those retained terms

become

∂2
x�my − 1

λ2
�my = D̃∗〈sφ∂xsθ 〉, (22)

∂2
x�mz − 1

λ2
d

�mz = −ηD̃∗〈sφ∂xsφ〉, (23)

where we neglected higher orders in spin-wave amplitude
(s4

θ,φ 
 s2
θ,φ 
 1) since the source term [right-hand side of

Eqs. (22) and (23)] is already second order in sθ,φ . In order to
evaluate �my and �mz from these equations, it is sufficient
to determine sθ and sφ only up to the linear order in the
spin-wave amplitude. For the latter, one just needs to deal
with the linearized equations of motion of the spin wave [i.e.,
Eqs. (15) and (16)], which explicitly read

∂t sθ + α∂t sφ = γ J∂2
x sφ − γHksφ, (24)

∂t sφ − α∂t sθ = −γ J∂2
x sθ + γ (Hk + Hd )sθ . (25)

The solution is a spatially damped spin wave of the form

sθ = s0
θ e

−|x|/2� cos(qx − ωt), (26)

sφ = s0
φe−|x|/2� sin(qx − ωt), � = γ Jq/αω,

(27)
ω = γ

√
(Jq2 + Hd + Hk)(Jq2 + Hk).

The absolute value |x| ensures that the spin wave vanishes
away from the source, taken at x = 0. Now, by inserting
Eqs. (26) and (27) into Eqs. (22) and (23), and taking the time
average over a spin-wave precession period (i.e., 〈sφ∂xsφ〉 =
− sgn(x)

4�
(s0

φ)2e−|x|/� and 〈sφ∂xsθ 〉 = − sgn(x)
2 qs0

φs0
θ e

−|x|/�), we
can track the impact of this damped spin wave on the deviations
�my,z. Considering that the right-hand sides of Eqs. (22)
and (23) are odd functions of x, �my,z should vanish at x = 0.
Combined with the boundary condition, �my,z|x→∞ = 0, one
finds that

�my = −sgn(x)
H eff

DMF

Hk

�2

�2 − λ2
(1 − e−|x|/λ∗

), (28)

�mz = ηsgn(x)
H eff

DMD

Hk + Hd

�2

�2 − λ2
d

(1 − e−|x|/λ∗
d ), (29)

where H eff
DMF = D∗qs0

θ s
0
φe−|x|/�/2 and H eff

DMD = D∗(s0
φ)2

e−|x|/�/4� and λ∗−1
(d) = λ−1

(d) − �−1. Note that �my,z are
proportional to D and (spin-wave amplitude)2, implying that
these static magnetization deviations are consistent with the
existence of effective magnetic fields along y and z directions,
thus torques, generated by the magnon flow and the DMI.
Considering that m ≈ ηx, the two field directions may be
represented as y and y × m, consistently with the absence
(presence) of the factor η in Eq. (28) [Eq. (29)]. The generated
DM fieldlike torque (FLT) ∝ m × y and DM dampinglike
torque (DLT) ∝ m × (y × m) are in complete analogy with
the Rashba torque [8,9]. Note also that �my,z are proportional
to sgn(x), implying that in the two regions, x > 0 and x < 0,
where the spin wave propagates in the opposite directions, the
effective field signs are opposite. Thus the vectors y and y × m
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for the fields actually amount to z × jm and (z × jm) × m,
respectively, where jm is the spin-wave current.

We emphasize that the torques derived above are obtained
after time-averaging. Hence, the torques result in a static reori-
entation of the magnetization precession axis. Consequently,
the present analysis does not preclude the emergence of any
other DMI-induced mechanisms that could affect the overall
magnetization dynamics (and therefore impact the motion of
domain walls, for instance).

III. MICROMAGNETIC SIMULATIONS

To get further insights into the impact of propagating spin
waves on the otherwise spatially homogeneous background
magnetization, we now show micromagnetic simulation re-
sults for a semi-one-dimensional system (i.e., the system
is discretized along the length direction with the unit cell
size of 4 nm—total length of 16 μm—but not along the
width or the thickness direction). We solve the LLG equation
with the magnetic energy functional given in Eq. (17). We
define the gyromagnetic ratio γ = 1.76 × 107 Oe−1 s−1, the
saturation magnetization Ms = 800 emu/cm3, the exchange
stiffness constant A = 1.3 × 10−6 erg/cm, and vary the easy
axis anisotropy field Hk, the demagnetization field along the
thickness direction Hd, and the damping constant α. To excite
spin waves, we apply an ac field Hac cos(2πf t)y to two unit
cells at the center of the model system (x = 0) where Hac=
100 Oe. This choice of the localized ac field is consistent with
the situation assumed for Eqs. (28) and (29). We consider the
absorbing boundary condition [31,32] at the system edges to
suppress spin-wave reflection.

Figure 3(a) shows the spatial distribution of the transverse
projection of the magnetization direction my for different
DMI coefficients D. For D = 0, the spatial distribution of
my is symmetric with respect to the spin-wave source (x = 0)
and described by my

∼= 0 + sy(x) cos(q|x| − ωt), where “0”
represents the y component of the background magnetization
and the spin-wave amplitude sy(x) decays with growing |x|
due to damping. For D = 0, on the other hand, the distribution
acquires an antisymmetric component �my(x) with respect to
x = 0 and my

∼= �my(x) + sy(x) cos(q|x| − ωt), according
to Fig. 3(a). Thus the propagating spin wave modifies the
y component of the background magnetization from 0 to
a nonzero time-averaged value �my(x), which is shown in
Fig. 3(b) for a background magnetization initially lying along
+x. Reversing the direction of the background magnetization
along −x does not change the sign of �my (not shown). Thus
the simulation result for �my is qualitatively consistent with
the vector expression −z × jm obtained from Eq. (28). For a
quantitative comparison, Fig. 3(b) shows the deviation �my

for various values of α, where symbols are numerical results
and lines are obtained from Eq. (28). When s0

θ and s0
φ in H eff

DMF
are determined from the numerical simulation result at x = 0,
the analytical expression reproduces the numerical results very
well for the entire range of x.

Another intriguing observation is the emergence of the DM-
DLT [∝m × (y × m)] that induces an out-of-plane deviation
�mz. Figure 3(c) shows the spatial distribution of �mz for

FIG. 3. (Color online) Numerical results for magnon-mediated
Dzyaloshinskii-Moriya fieldlike and dampinglike torques. (a) Spatial
distribution of the normalized y component of magnetization (=my)
for D = 0 (blue) and D = 1.5 erg/cm2 (red). (b) Normalized
magnetization tilting �my for various damping constants α when the
magnetization initially lies along +x for D = 1.5 erg/cm2 calculated
numerically (open symbols) and using Eq. (8) (solid lines). The results
with α = 10−5 are multiplied by 1/10. (c) Normalized magnetization
tilting �mz for various damping constants α when the magnetization
initially lies along +x, for D = 1.5 erg/cm2 calculated numerically
(open symbols) and using Eq. (9) (solid lines). Here we assume
Hd = 0. When the magnetization is switched to the −x direction,
panel (b) remains unchanged while the curves in panel (c) are mirrored
with respect to the x axis.

different α when the magnetization is initially aligned along
+x. For clarity, we assume Hd = 0 to make λd and �mz larger.
The numerical results (open symbols) are in good agreement
with Eq. (29) (solid lines) and �mz consistently changes sign
with the magnetization direction (not shown). As demonstrated
by Fig. 3(c) and Eq. (29), the DM-DLT is proportional
to the damping constant α (since � ∝ 1/α), which echoes
the nonadiabatic correction to the electronic-spin torque in
the presence of spin-flip relaxation, as proposed by Zhang
et al.in magnetic textures and spin valves [33]. In metallic
systems, the spin relaxation modifies the spin dynamics of
the itinerant electrons which results in an additional torque
component of the form −βm × τ , where τ is the torque in
the absence of spin relaxation and β is proportional to the
spin-relaxation rate [33]. The same effect is at the origin
of the nonadiabatic torque in electron-driven and magnon-
driven magnetic excitations: the magnetic damping α not only
attenuates the spin-wave current, but also relaxes the spin
polarization carried by the spin waves producing the additional
dampinglike torque proportional to H eff

DMD. As a result, the
overall magnitude of �mz vanishes in the limit of zero
damping.
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FIG. 4. (Color online) (a) Numerical results of spin-wave-
induced magnetization tilting �my and �mz with α = 0. Symbols
and lines are obtained from numerical simulation and Eqs. (30)
and (31), respectively. (b) �my and �mz obtained with α = 0.01,
Hk = 5 Oe, Hac = 100 Oe, Hd = 10 023 Oe, D = 1.5 erg/cm2, and
f = 0.8 GHz. The magnitude of the deviation is about 1%.

In order to further demonstrate the distinctive role of spin-
wave flow and spin-wave relaxation on the two components
of the DM torque, we consider the reaction of an undamped
magnetic system to the spin-wave flow in the vanishing small
Gilbert damping coefficient, α → 0. In this limit, the previous
expressions for �my,z reduce to

�my = −sgn(x)
D∗qs0

θ s
0
φ

2Hk
(1 − e−|x|/λ), (30)

�mz = 0. (31)

We performed numerical simulations with α = 0, Hk =
500 Oe, Hac = 100 Oe, Hd = 10 023 Oe, D = 1.5 erg/cm2,
and f = 15.9 GHz [see Fig. 4(a)]. Simulations with α = 10−5

were performed to check that the zero-damping calculation is
free from unstable numerical errors (not shown). In both cases,
we find that �my becomes constant when |x| � λ (≈0.1 μm
here), whereas �mz vanishes completely. The numerical
results are in agreement with Eqs. (30) and (31), which proves
that the magnetization tilting �my is caused not by the spin
relaxation, but by the spin-wave flow itself. In contrast, �mz

vanishes in the vanishing damping limit, proving that this
deviation is induced by the spin-wave relaxation.

Finally, to test the feasibility of detecting the tilting
experimentally, we performed numerical simulation with α =
0.01, Hk = 5 Oe, Hac = 100 Oe, Hd = 10 023 Oe, D =
1.5 erg/cm2, and f = 0.8 GHz [see Fig. 4(b)]. We note that
the vertical axis is not scaled so that �my reaches about
1% of the saturation magnetization, which corresponds to
a DM field of 0.15 Oe. This tilt can be detected by either
an electrical or optical (Kerr effect) way, after averaging the
magnetization direction over time. For instance, using MOKE
microscopy Fan et al. [34] measured a laser polarization
change of about 1 microrad, corresponding to a magnetization
tilting of 0.1%. In Fig. 1 of Ref. [34], the effective field
corresponding to the dampinglike torque is about 1.1 Oe.
We also note that Ref. [35] shows a MOKE sensitivity of 60
nanorad (see Fig. 2 of Ref. [35]). These works indicate that the
deviations predicted in the present work should be detectable
experimentally.

IV. THERMALLY INDUCED
DZYALOSHINSKII-MORIYA TORQUE

A. Analogy with a two-dimensional Rashba gas

So far we have discussed the effect of the spin wave
ψm = sθ + isφ on �my,z. Still further insight can be gained by
considering the effect of �my,z on ψm. For this, we go beyond
the linearized LLG equation and introduce to Eqs. (24) and (25)
the lowest-order coupling terms between �my,z and ψm, which
are linear to both �my,z and ψm. In the short-wavelength
regime, where the exchange and DM interactions dominate
over the anisotropy, the resulting equations fall into the
following form of the effective Schrödinger equation:

i�∂tψm = Ĥmψm =
(

p̂2

2m∗ + αDM

�
p̂ · (z × m)

)
ψm, (32)

where p̂ = −i�∇ is the momentum operator, m∗ =
�Ms/4γA is the magnon mass, and αDM/� = 2γD/Ms is
Dzyaloshinskii-Moriya velocity for the spin waves. This
equation instructively resembles Schrödinger’s equation of
an itinerant electron spin in a homogeneous magnetic two-
dimensional electron gas in the presence of Rashba spin-orbit
coupling [7],

i�∂tψe =
(

p̂2

2m
+ αR

�
p̂ · (z × σ̂ ) + Jexm · σ̂

)
ψe, (33)

where αR is the Rashba spin-orbit coupling and Jex is the
s-d exchange between itinerant electron spins σ̂ and the
local moments aligned along m. Equations (32) and (33)
differ by the presence of the s-d exchange term. Indeed, in
contrast with electron spins, the magnon spin is by definition
aligned along the local magnetization direction and its wave
function ψm is not a two-component spinor. Nevertheless,
their similarity implies that properties of the Rashba system,
such as current-induced Rashba field (also called inverse spin
galvanic effect) of the form [8] HR = −αRmz × js/�Ms (js
being the flowing spin current), are at least partly enabled by
the presence of DMI in magnonic systems. The propagating
spin wave and background magnetization m interact through
the energy term (αDM/�)〈p̂〉m · (z × m), where 〈. . .〉m denotes
the quantum average on the magnon state ψm. This interaction
term yields a torque of the form

TFL = γ m × ∂m〈Ĥm〉 = m ×
{αDM

�
z × 〈p〉m

}
. (34)

The expression within the brackets {. . .} is nothing but the
effective field of the DM-FLT, HDMF, and 〈p〉m amounts to the
spin-wave current. The DM-DLT can be obtained qualitatively
by considering the correction due to the damping on the spin-
wave dynamics [see Eqs. (24) and (25)]. In a Landau-Lifshitz
approach, the magnetic damping corrects the torque by adding
a contribution of the form γαm × (m × HDMF) that produces
the DM-DLT term.

B. Thermally driven Dzyaloshinskii-Moriya torque

We next discuss the DM torque arising from the flow of
magnons generated by a thermal gradient. The spin-wave
flow generated by rf field has two major drawbacks: (i) the
wavelength 2π/q of the spin wave is rather large (74 nm in the
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present study) producing a very small effective field [H eff
DMF <

0.1 Oe in Fig. 4(b)] and (ii) the magnon flow (hence, the DM
torque) vanishes away from the rf source over the attenuation
length �. Therefore, thermal magnons driven by a uniform
temperature gradient, ∇T , are interesting candidates for the
proposed effect. Indeed, they possess a shorter wavelength
and can be maintained over the region where the thermal
gradient is applied. Following Eq. (34), these magnons exert
a torque of the form Tth

FL = (αDMm∗/�Ms)m × (z × jm) on
the magnetization, where jm is the magnon flow and can be
estimated using a phenomenological Boltzmann equation [36],

jm = −kB∂xT

2πα

[∫ Tc/T

KV/kBT

xexdx

(ex − 1)2

]
x. (35)

To evaluate the amount of magnonic current flowing through
the system, we choose reasonable parameters for YIG as
found in the literature [22,37]: α = 10−4, V ≈ 1.9 nm3,
K ≈ 2 × 105 erg/cm3, Tc = 550 K, T = 300 K, and ∂xT =
20 K/mm. Under these conditions, for a 1-nm-thick magnetic
slab, the flow of magnons is jm ≈ 2.29 × 1024 s−1 cm−1,
two orders of magnitude smaller than the usual critical
switching particle current in conventional spin-transfer torque
configuration (≈ 1026 s−1 cm−2). The effective magnetic field
generated by this magnon flow is HFL = �D/(2AMs)jx ≈
1.7 Oe, which is at least one order of magnitude larger
than the effective field obtained from rf spin waves in this
work. This conservative estimation leaves plenty of room for
improvement such as (i) increasing the temperature gradient,
(ii) reducing the magnetization damping, (iii) decreasing the
magnetic anisotropy, and (iv) increasing the DMI.

C. Simulations with a temperature gradient

We performed numerical simulations with a uniform tem-
perature gradient by including the thermal fluctuation fields,
i.e., the Gaussian-distributed random fluctuation fields h(t)

FIG. 5. (Color online) Magnetization tilting induced by uniform
temperature gradient. Spatial distribution of time-averaged (a) 〈my〉
and (b) 〈mz〉. Corresponding histograms of (c) 〈my〉 and (d) 〈mz〉.

(〈h(t)〉 = 0, 〈hi(t)hj (t + δt)〉 = 2αkBT /(γMSV δt)δij , where
i,j are the Cartesian coordinates, V is the unit-cell volume,
and δt is the integration time step [38]). We assume α = 0.1,
Hk = 500 Oe, Hd = 0 Oe, the nanowire width of 100 nm, and
∂xT = 0.025 K/nm. T is set to be zero at x = 0 and increases
with x. For simplicity, we ignored the temperature dependence
of other magnetic parameters and also their temperature-
dependent renormalization [39]. As a result, the magnitude
of the effect reported below should be regarded only as an
order of magnitude estimation. Figures 5(a) and 5(b) show the
time-averaged my and mz components with varying D. The
averaged magnetization components fluctuate around “0” for
D = 0, whereas they fluctuate around clearly nonzero value for
nonzero D. Figures 5(c) and 5(d) are histograms corresponding
to Figs. 5(a) and 5(b), respectively, which show the finite
magnetization tiltings induced by the temperature gradient.
The effective field generated by the thermally induced DM
torque is Hth

DMF ≡ Hk�my ≈ 0.25 Oe.

V. DISCUSSION AND CONCLUSION

In this paper, we demonstrated that Dzyaloshinskii-Moriya
interaction mediated by spin waves can generate a torque
on a homogeneous magnetization that resembles the Rashba
torque, its electronic counterpart, displaying both fieldlike
and dampinglike components. The torque is expected to be
much more efficient in the case of a magnon flow driven by
a thermal gradient than for a standard rf-excited spin wave.
It is important to stress that our results are not limited to
systems displaying interfacial DMI but can be also extended
to materials accommodating bulk DMI since the energy
functional needs only to display an antisymmetric exchange
term

∑
ij Dij · Si × Sj , such as in pyrochlore crystals [27],

chiral magnets [40], and multiferroics [41].
The recent realization of a magnonic transistor based on

a magnetic insulator has confirmed the ability of spin waves
for low energy consuming logic operations [42]. Since the
information process does not require charge currents nor
electric voltages, it is expected to reduce the energy losses due
to Joule heating. The present work builds up a bridge between
spin-orbit transport, magnonics, and spin caloritronics and
extends the properties of spin waves to systems without
inversion symmetry. This mechanism enables the magnonic
control of the magnetization direction in ferromagnets without
the use of charge currents or electrical voltages and is expected
to be detectable in systems ranging from thin magnetic
bilayers to bulk noncentrosymmetric crystals. It therefore
opens promising avenues in the development of chargeless
information technology.
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FIG. 6. (Color online) (Top panel) Three magnetic configura-
tions investigated in this work and their corresponding anisotropy
energy constants. At rest (i.e., in the absence ofmagnon flow), the
magnetization is assumed to be aligned either along the easy axis,
which is x (in-plane longitudinal anisotropy), y (in-plane transverse
anisotropy), or z (perpendicular anisotropy). (Bottom panel) The table
provides the values of anisotropy constants for the three cases depicted
above.

APPENDIX

In this Appendix, we analytically derive the DM torque
in the case of in-plane transverse anisotropy (i.e., along the
y direction) and perpendicular anisotropy (i.e., along the z

direction). Let us start by generalizing our approach and
consider a one-dimensional magnetic system described by the
following energy functional:

W = A
∑

i

(∂im)2 − Dm · [(z × ∇) × m] +
∑

i

Ki(m · ei)
2,

(A1)

where the first term is the symmetric exchange energy (A)
and the second term is the antisymmetric Dzyaloshinskii-
Moriya exchange energy (D). The last term (Ki) is a general
anisotropy term that accounts for the magnetic anisotropy and
demagnetizing energy along the three Cartesian directions
ex,y,z. More explicitly, Fig. 6 provides the actual values of
Ki in the case of in-plane longitudinal anisotropy, in-plane
transverse anisotropy, and perpendicular anisotropy.

The case of in-plane longitudinal anisotropy is treated in
the main text. In this case, Kx = −K , Ky = 0, and Kz =
2πM2

s = Kd . We here treat the two remaining cases of in-plane
transverse anisotropy and perpendicular anisotropy.

1. In-plane transverse anisotropy

In this case, Kx = 0, Ky = −K , and Kz = 2πM2
s = Kd .

We assume that the magnetization is mostly oriented along the
easy axis ±y, (θ,φ)→(π/2 − δ,ηπ/2 − ϕ) where δ,ϕ 
 1, so

that sin θ ≈ 1, cos θ ≈ δ and sin φ ≈ η, cos φ ≈ ηϕ (η = ±1).
Again δ and ϕ are of the second order in spin-wave amplitude.
Following the same procedure as above, and defining �mx =
ηϕ, �mz = δ, we obtain up to the second order in spin-wave
amplitude

∂2
x�mx − D̃∗∂x�mz − 1

λ2
�mx = 0, (A2)

∂2
x�mz + D̃∗∂x�mx − 1

λ2
d

�mz = 0. (A3)
Note that the source terms are absent on the right-hand side of
Eqs. (A2) and (A3) unlike in Eqs. (22) and (23) for the in-plane
longitudinal anisotropy case. The absence of the source terms
implies that the DM torque vanishes up to the second order
in spin-wave amplitude. This vanishing is actually consistent
with the vector expressions of the DM torque presented in the
main text; the fieldlike DM torque is proportional to m × y and
the dampinglike DM torque is proportional to m × (y × m),
both of which vanish in the in-plane transverse anisotropy case
since m is essentially aligned along the y direction.

2. Perpendicular anisotropy

In this case, Kx = 0, Ky = 0 and Kz = −K⊥ and the
perpendicular anisotropy field is H⊥ = 2K⊥/Ms . We assume
that the magnetization is mostly oriented along the easy axis
ηz, so θ 
 1 and sin θ ≈ ηθ , cos θ ≈ η. Here θ is of the second
order in spin-wave amplitude. In this case, the deviations
are defined as �mx = ηθ cos φ and �my = ηθ sin φ. The
equations are quite lengthy, but if one assumes a circular
precession of the spin wave, i.e., s0

θ = s0
φ , the following

relations are fulfilled:〈
s2
θ

〉 = 〈
s2
φ

〉
, 〈sθ∂xsθ 〉 = 〈sφ∂xsφ〉, 〈sθ∂xsφ〉 = −〈sφ∂xsθ 〉,

and then, it is possible to obtain the nonlinear equation
describing the spatial profile of the deviations,

∂2
x�mx − 1

λ2
⊥

�mx = −ηD̃∗〈sθ∂xsθ 〉, (A4)

∂2
x�my − 1

λ2
⊥

�my = −D̃∗〈sθ∂xsφ〉, (A5)

where λ2
⊥ = J/H⊥. Note that Eqs. (A4) and (A5) are es-

sentially identical to Eqs. (22) and (23) for the in-plane
longitudinal anisotropy case. Combined also with the result
for the in-plane transverse anisotropy case, one finds that for
all three types of the considered anisotropies, the DM torque
can be expressed as a sum of the fieldlike torque (∝m × y)
and the dampinglike torque [∝m × (y × m)].
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