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Mean-field theory of nearly many-body localized metals
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We develop a mean-field theory of the metallic phase near the many-body localization (MBL) transition, using
the observation that a system near the MBL transition should become an increasingly slow heat bath for its
constituent parts. As a first step, we consider the properties of a many-body localized system coupled to a generic
ergodic bath whose characteristic dynamical time scales are much slower than those of the system. As we discuss,
a wide range of experimentally relevant systems fall into this class; we argue that relaxation in these systems
is dominated by collective many-particle rearrangements, and compute the associated time scales and spectral
broadening. We then use the observation that the self-consistent environment of any region in a nearly localized
metal can itself be modeled as a slowly fluctuating bath to outline a self-consistent mean-field description of the
nearly localized metal and the localization transition. In the nearly localized regime, the spectra of local operators
are highly inhomogeneous and the typical local spectral linewidth is narrow. The local spectral linewidth is
proportional to the dc conductivity, which is small in the nearly localized regime. This typical linewidth and
the dc conductivity go to zero as the localized phase is approached, with a scaling that we calculate, and which
appears to be in good agreement with recent experimental results.
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I. INTRODUCTION

Many-body localized (MBL) states are states of isolated,
macroscopic quantum-mechanical systems in which thermal
equilibration and transport are absent. MBL states differ from
the more familiar “ergodic” states in which a macroscopic
system acts as its own bath, thus bringing itself into thermal
equilibrium. Since MBL states were first predicted to exist
in certain disordered interacting systems [1–9], they have
been shown to exhibit a number of unusual properties,
including orders and phase transitions that are forbidden in
equilibrium [10–13]. The properties of MBL states, such
as the absence of intrinsic decoherence and the persistence
of topological order in highly excited states, make them
potentially valuable resources for quantum computation.

Much of the theoretical work on MBL to date has focused
on the deeply localized regime, in which strong-disorder
methods can be applied [11,14] and a simple phenomeno-
logical description exists [15–20]. Such methods do not
readily extend to the complementary regime, in which MBL
emerges from a thermalizing state; indeed, the nature of the
MBL-to-ergodic transition in a closed system is at present
an unsolved problem, despite recent theoretical progress on
one-dimensional systems [21–24].

Our aim in this work is to construct a mean-field theory
of the MBL transition, using the following idea: the MBL
phase differs from the ergodic phase by failing to act as a bath
for its constituent degrees of freedom; correspondingly, local
spectral lines are infinitely sharp in the MBL phase (owing
to the absence of relaxation) and broadened in the ergodic
phase. In the spirit of dynamical mean-field theory [25–27],
one can separate out some subset of the degrees of freedom
(namely, a single localization volume), solve for the properties
(specifically, the widths of spectral lines) in the presence of a
“bath” due to the rest of the system, and use these results to
self-consistently determine the properties of the bath.

There are naturally two parts to this problem: first, un-
derstanding the properties of a localized system coupled to a
bath; and second, implementing self-consistency. We partially
addressed the first question in Ref. [28]; however, the baths
considered there were “broad-band” and had broad featureless
spectra (or, equivalently, short correlation times). By contrast,
one expects that near the MBL transition (assuming it is
continuous) relaxation will be extremely slow. Thus the
appropriate baths in the present context are slowly fluctuating
baths with long correlation times. Thus the first half of this
paper addresses, quite generally, the behavior of MBL systems
coupled to slowly fluctuating baths, and the second half builds
a mean-field theory on these results. The problem of an MBL
system coupled to a slowly fluctuating bath is of considerable
independent interest: for instance, the dominant source of
decoherence in low-temperature solid-state systems is the
nuclear spin bath, which fluctuates slowly compared with
the electronic degrees of freedom. More generally, slowly
fluctuating baths occur intrinsically in systems that are in
some sense near an MBL transition: e.g., in disordered dipolar
systems [29–31] or in metals close to a localization transition,
energy is transported through a percolating network of widely
spaced resonances; the energy scales of this network are much
weaker than the nearest-neighbor coupling.

We find that relaxation in the presence of a slowly
fluctuating bath is qualitatively different from that in the
wide-bandwidth regime [28]: a typical local transition in the
system requires much more energy than the bath can supply or
absorb; consequently, relaxation takes place through collective
rearrangements, which involve increasingly many particles as
the bath bandwidth decreases. The associated relaxation time
scale goes as a power law of the bandwidth of the bath. We then
extend these results to construct a self-consistent mean-field
theory, as outlined above. Our mean-field theory—which is
valid in the regime where the thermalization time is longer
than any other time scale in the system—goes beyond the
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original perturbative analysis of Basko et al. [4] by including
processes by which local charge rearrangements cause nearby
levels to jitter, through Hartree shifts. In this regime, the
local spectrum should be highly inhomogeneous, consisting
of narrowly broadened spectral lines. Each of these narrow
spectral lines may be viewed as a slowly fluctuating internal
bath, and thus we can use the results derived in this paper
to construct a self-consistent mean-field description of a
nearly localized metal, viz., a thermalizing system close to
the localization transition, which is characterized by a highly
inhomogeneous local spectrum.

The nearly localized metal is characterized by local
operators having a spectrum consisting of lines with a
broadening �. The relaxation time scale is of order 1/�. We
determine how � scales with various parameters (particularly
the temperature), and calculate how � scales to zero as the
localized phase is approached. Moreover, � can be related to
quantities such as the dc conductivity. We predict that, in the
nearly-localized regime, the low-temperature dc conductivity
vanishes with a faster-than-activated temperature dependence.
Over an intermediate temperature regime, the conductivity
should scale as

σ ∼ exp ( − a′T0/(T − T0)) (1)

consistent with the predictions of Ref. [32]. However, close
enough to T0, the conductivity should scale to zero much more
slowly, i.e., close to the critical point, the metal should be para-
metrically more stable than predicted by Ref. [32]. These
predictions appear consistent with recent experimental results
(Ref. [33]).

While the near critical regime is analytically inaccessible,
a numerical solution of the mean-field equations can be
obtained. A graphical fit to the numerical solution suggests
that the linewidth in the near-critical regime may scale as

σ ∼ exp(−a′′/(T − T ′
0)1/3), (2)

which is indeed slower than Eq. (1). While it is unclear how
general this scaling is, our analysis suggests that it should be
universally true that the near-critical scaling is much slower
than the single-quantum dot scaling (1) that holds further from
the critical point.

Our discussion is arranged as follows. In Sec. II, we
discuss the relaxation of an MBL system coupled to a slowly
fluctuating “external” bath. In Sec. III, we enumerate various
experimental instances of MBL systems coupled to slowly
fluctuating external baths. In Sec. IV, we turn to the case
where the MBL system is coupled to a self-consistent (i.e.,
“internal”) bath with slow dynamics: we first introduce a
solvable zero-dimensional model [32] (see also Ref. [34]) that
contains the physics of many-particle rearrangements, and then
use this model as the basis for a mean-field description of a
nearly localized metal [35]. We introduce a self-consistency
equation the solutions to which capture both the localized
phase and the metallic phase near localization. In Sec. V,
we discuss the solutions to this self-consistency equation, and
hence deduce how the line width scales to zero as the localized
phase is approached.

E

Fock-space distance

W

FIG. 1. (Color online) Schematic illustration of the physics of
bandwidth-limited relaxation. Only levels within W of each other can
undergo bath-mediated transitions; however, levels that are nearby in
energy are typically far apart in real space and/or Fock space.

II. SLOWLY FLUCTUATING EXTERNAL BATH

A. Model

We begin by discussing bandwidth-limited relaxation
in systems where all many-body eigenstates are localized
(the “fully many-body localized” or FMBL regime); such
systems have a simple phenomenological description (the
“l-bit” model [16–19]). We assume that our system+bath
Hamiltonian is given by H = H0 + Hbath + Hint, where H0

is the l-bit Hamiltonian for the MBL system [19],

H0 =
∑

i

hiσ
z
i +

∑
ij

Jij σ
z
i σ z

j +
∑
ijk

Vijkσ
z
i σ z

j σ z
k + · · · .

(3)

Here, σ z
ij are spin-1/2 degrees of freedom (l bits) that live

on a d-dimensional lattice. The various z-z couplings are short
ranged (potentially with exponential tails), and the many-body
eigenstates are eigenstates of all the σ z

i . The σ z
i are the

emergent local conserved quantities, which are related to the
physical degrees of freedom by a local unitary transformation
of finite depth (equal to the localization length ξ ), with
potential exponential tails. Flipping a single l bit typically
changes the energy by an amount �, the characteristic energy
scale of the system.

We now couple the l-bit Hamiltonian to a generic, thermal-
izing bosonic bath of bandwidth W (Fig. 1); the bosons are
taken to live on the links of the original lattice. The system-bath
coupling takes the σ z-conserving form

Hint = γ
∑
〈ij〉

(b†〈ij〉 + b〈ij〉)(σ+
i σ−

j + H.c. + · · · ), (4)

where the ellipses denote long-range and/or high-order jumps
that fall off exponentially with distance, with decay length ξ .

Before turning to the narrow-bandwidth limit, we briefly
summarize the results [28] for the wide-bandwidth limit W �
�. In this limit, the factors limiting relaxation are the (weak)
system-bath coupling γ (referred to in Ref. [28] as g), and
the temperature of the bath, T . At low temperatures, T � �,
most spins are frozen in their ground-state configuration;
excitations are essentially single-particle in character, and
relaxation takes place as in a noninteracting localized state.
At high temperatures T � �, again, the relaxation dynamics
shows few signatures of many-body processes: the bath is
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able to place nearest-neighbor l-bit hops on-shell, and these
processes therefore dominate relaxation.

These considerations suggest that nontrivial relaxation is
more likely to occur in the parameter regime W � � � T ,
such that the system and the bath are effectively at high
temperature, but the bath is narrow bandwidth. In the rest
of the present section, we shall focus on this regime; we shall
further assume that γ � W , so that the bath behaves in an
effectively Markovian fashion on the time scales over which
the system couples to the bath. Finally, we assume that the bath
has a higher heat capacity than the system; for narrow-band
baths, this entails the assumption that

N (W 2/T 2) � 1, (5)

where the bath has N � 1 times as many degrees of freedom
as the system.

B. Relaxation channels

We now discuss three kinds of processes by which a
slowly fluctuating bath can induce relaxation in the l-bit
model. The general principle is as follows: because W � �/z

(where z is the coordination number), the bath cannot supply
or absorb the energy for a single-l-bit hop. Long-range or
high-order processes connect the initial state to many more
final states (i.e., have a smaller accessible level spacing),
but have a smaller matrix element. For simplicity, we shall
work with a bounded bath spectrum having uniform spectral
density on the energy interval [−W/2,W/2]. The results
generalize straightforwardly to cases in which the bath has
a Gaussian or other sufficiently sharply peaked spectrum; for
a Lorentzian spectrum, however, the dominant processes are
typically nearest-neighbor hops that exploit the tails of the
Lorentzian (see Appendix). For the bounded bath spectrum,
it is clear that the dominant relaxation processes are those for
which the effective level spacing is ∼W ; in what follows, we
shall estimate the rates of these processes [Eqs. (6)–(8)]. We
find that, as W → 0, relaxation is dominated by multiple-l-bit
rearrangements (7). The mechanisms described in this section
are analogous to variable-range hopping [36], in either real
space or Fock space; because we focus on high temperatures
and short-range interactions, the physics of the Coulomb
gap is not relevant to our analysis. We note also that our
argument is at the “Mott variable-range hopping” level of
sophistication—more rigorous results could in principle be
obtained via percolation theory, but such calculations are
beyond the scope of the present analysis.

1. Long-range single l-bit hop

The coupling (4) includes exponentially suppressed long-
range hops of the form γ (b + b†) exp(−|ri − rj |/ξ )σ+

i σ−
j . To

find a single l-bit hop that is on shell to precision W , we must
typically hop a distance R, where �R−d ∼ W . This yields
R ∼ (�/W )1/d , and the matrix element for a hop at this range
is γ exp(−(�/W )1/d/ξ ). Thus the relaxation rate is

�a ∼ γ 2

W
exp

( − 2(�/W )1/d/ξ
)
. (6)

2. Multiple-l-bit rearrangements

In addition to long-range hops, Eq. (4) includes terms of
the form γ (b + b†)

∑
σ+

i σ−
j σ+

k . . . (which are analogous to
the many-body rearrangements discussed later in the zero-
dimensional case). In order to place the system on shell to
within W one must generically rearrange all the l bits in a
volume of linear dimension n̂, where � exp(−s(T )n̂d ) ∼ W .
Here, s(T ) is the entropy per l bit, which interpolates between
the limits s(∞) = 1 and s(0) = 0, and measures the fraction
of spins that are free to flip (see discussion in Ref. [28] for
details). Because excitations are localized in Fock space as well
as real space (see Sec. IV below, as well as Refs. [4,32]), the
corresponding matrix element is ∼γ exp(−n̂/ξ − s(T )n̂d/�),
where ξ,� are the real-space and Fock-space localization
lengths respectively. In d > 1, for sufficiently small W , this is
to leading order

�b ∼ γ 2

W

(
W

�

)1/�

. (7)

This power-law dependence holds more generally in d = 1,
but with � replaced by ξ�/(ξ + �).

3. Higher-order coupling to bath

A third channel for relaxation involves going to high
order in the system-bath coupling, rearranging all l bits
within a volume of linear dimension n̂ � nc, where
� exp(−s(T )nd

c ) ∼ nd
c W . The approximate solution is when

n̂ ∼ ( 1
s(T ) ln(�/W ))1/d . This gives a relaxation rate (for

large n̂)

�c ∼ γ 2n̂d

W�2n̂d−2
∼ γ 2

W

(
W

�

) 2 ln(�/γ )
s(T )

, (8)

where in the first line we have assumed that all the intermediate
virtual states are off-shell by the typical amount �. In the limit
γ /�,W/� → 0, the leading relaxation rate is �b, given by
Eq. (7).

C. Spectral line shape

We now use the estimate (7) of the relaxation rate in the
γ,W → 0 limit to discuss the l-bit spectral line shape. The
definition of a “line shape” in this context is ambiguous:
for instance, even for vanishing system-bath coupling, the
frequency of each l-bit line depends on the state of all the
other l bits, so upon thermal averaging the l-bit frequency can
in principle be continuous and independent of the system-bath
coupling [28]. This “inhomogeneous” broadening is not of
interest to us; it can be reversed by spin echo [37], and does
not correspond to real “irreversible” dynamics. Rather, we
are interested in the linewidth corresponding to the spin echo
decay rate [37]; this linewidth indeed vanishes as γ → 0.

There are two contributory processes to this linewidth. First,
each l bit flips at a rate �b; as the density of final l-bit states is
constant on energy scales ��, a golden-rule argument shows
that this decay is exponential on time scales t > 1/�. Second,
the flipping of each l- bit causes the energies of nearby l
bits to fluctuate. The echo decay of a spin coupled to fluctuating
two-level systems was exactly solved in Ref. [38]; we quote
the asymptotic forms for the spin-echo response ψi(t) at a
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FIG. 2. (Color online) Numerical Fourier transform of the de-
cay (10) (dots) and analytic approximation (12) (solid) on a log-log
plot, for parameters �b = 1,ξ ds(T ) = 4,J = 1000. Approximating
the line shape with a Lorentzian (dashed line) would lead to an
overestimate of the weight in the spectral tails.

site i:

ψi ∼
∏
j

ψij ; ψij (t) =
{

1, Ĵij t � 1

e−�bt , Ĵij t � 1
, (9)

where the product is over all sites j such that the effective
interaction Ĵij � �b. Further-away, more weakly coupled
spins contribute negligibly. Combining these two processes,
we find that the spin echo decay rate is

ψ(t) = exp(−�bnfast(t)t), (10)

where

nfast(t) =

⎧⎪⎨
⎪⎩

1, t � 1/J

s(T )ξd lnd (J t), 1/J � t � 1/�b

s(T )ξd lnd (J/�b), t � 1/�b

,

(11)

where J is the nearest neighbor interaction and further
neighbor interactions fall off exponentially with decay length
ξ [19]. Fourier transforming this expression gives the effective
line shape. To a good approximation (see Fig. 2), the line shape
is given by

S(ω) 
 �bnfast(1/ω)

ω2 + (�bnfast(1/ω))2 . (12)

Note that when �b � J , this deviation from Lorentzian
behavior becomes more pronounced. The width of the central
peak is �̃, defined by

�̃ ≈ �bnfast(1/�̃). (13)

To leading order in small �b, this yields �̃ ∼
�bs(T )ξd lnd (J/�̃b), consistent with Ref. [28].

We note in passing that an additional spectral feature is
possible if the system-bath coupling has diagonal (i.e., pure
dephasing) terms of the form σ z(b† + b), and if the detuning
δω < W . In this special case, the system can put itself “on
shell” by borrowing energy from the bath without needing
to undergo a collective rearrangement. For concreteness, let
us assume a tip-to-sample matrix element t , which is much
smaller than any other scale in the problem. Absorption of

a quasiparticle then proceeds via an intermediate virtual state
with detuning δω, where the matrix element to go to the virtual
state is t and the matrix element to leave the virtual state by
borrowing energy from the bath is γ . Given that the spectral
density in the bath is 1/W , it follows that tunneling proceeds
at a rate t2γ 2/δω2W , such that the tunneling density of states
is γ 2/δω2W , in the special rase that δω < W , and diagonal
couplings to the bath are allowed.

To summarize, although the dependence of the relaxation
rate and linewidth on W are very different in the wide- and
narrow-bandwidth limits, the phenomenology as a function
of �̃ is identical to the discussion in Ref. [28], and results
obtained in Ref. [28] can be carried over mutatis mutandis to
the narrow-band bath case, changing only �(g) to �̃(W ) given
by Eq. (13). We recall in particular that the dc conductivity σ

is related to the local linewidth �̃ by σ ∼ �̃.

D. Intermediate system-bath coupling

We now comment briefly on how these arguments would be
modified in the regime of intermediate system-bath coupling,
W � γ � �, as is typically the case for hyperfine inter-
actions [39–45]. In this regime, our golden-rule arguments
cannot be used directly because of the importance of the
back-action of the system on the bath. Let us consider, for
concreteness, a single (“central”) system spin at the origin
of coordinates, coupled to a lattice of N bath (e.g., nuclear)
spins, with a coupling of the form γ S·Sbath(j ) exp(−j ). The
bath spins are taken to have local interactions such that the
bandwidth is W . One can see immediately that the bath spins
within ln(γ /W ) of the origin get locked to the central spin;
these nearby spins are called the “frozen core” in nuclear
magnetic resonance [43–45], and should be included in the
system rather than the bath. For bath spins that are far
away, on the other hand, the effective system-bath coupling
is γeff � W � γ , allowing us to apply our previous analysis.

III. EXPERIMENTAL RELEVANCE

The most common instance of an ergodic, slowly fluctuat-
ing external bath in solid-state systems is a nuclear spin bath.
The dynamics of such a bath are due to nuclear spin diffusion,
Hbath ∼ ∑

ij Jij Ii ·Ij /|ri − rj |3, where the bandwidth associ-
ated with Jij is on the order of 10 kHz [39–42], which is orders
of magnitude smaller than the typical electronic scales. Under
typical experimental conditions [41,42], the nuclear spin bath
is effectively at infinite temperature. Thus realizations of MBL
that use the electronic spins of (for example) nitrogen-vacancy
centers in diamond [31] are naturally subject to narrow-band
relaxation due to this nuclear spin-bath at low temperatures.
(Indeed, power-law dephasing of the electron spins was
predicted on unrelated grounds in Refs. [39,40].) We should
caution, however, that making quantitative predictions for such
systems would require one to address various issues specific
to the nuclear case that are beyond the scope of this paper. A
more tunable kind of narrow-bandwidth bath can be realized by
placing the MBL system in a high-Q resonator; in this case, the
bandwidth of the bath is set by the linewidth of the resonator
mode. Our results are also applicable to the experimentally
relevant situation of almost MBL states in systems with
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long-range interactions, V (R) ∼ 1/Rα (e.g., dipoles in three
or possibly two dimensions [31]). In these settings, most of the
degrees of freedom are almost localized; however, there is a
thermalizing network of long-range resonances at a scale R0,
which can be regarded as an internal bath whose bandwidth,
∼1/Rα

0 , is narrow in the strong-disorder limit. Finally, our
results can be applied to almost localized systems coupled
to phonons or other Goldstone modes, if all phonons at
frequencies ω > ωc are localized, with ωc suitably small (as
in Ref. [46]).

IV. SLOWLY FLUCTUATING “INTERNAL” BATH:
THE NEARLY LOCALIZED METAL

The central idea in this section is that while the local spectral
function deep in the metallic phase is smooth, the local spectral
function in the localized phase is made out of delta functions
and contains a hierarchy of gaps [28]. Thus as the localization
transition is approached the local spectral function in the metal
should become increasingly inhomogeneous, and should be
composed of increasingly narrow lines. We apply the ideas of
the previous section to compute the width of a typical spectral
line coupled to a self-consistent bath in a typical-mean-field
approximation (similar in spirit to Refs. [25–27]), and hence
obtain a mean-field description of the nearly localized metal.

A. Approach

In previous sections, we discussed the behavior of a system
coupled to an external bath with slow dynamics. However,
any region of an isolated quantum system in the thermalizing
regime also behaves as if it were connected to an “internal”
heat bath, and close to the localization transition this internal
heat bath should have asymptotically slow dynamics. In what
follows, we use this observation to develop a simple mean-field
theory of the metallic phase near a many-body localization
transition. This mean-field theory allows us to compute the
MBL-to-ergodic phase boundary and to estimate how the
linewidth vanishes as the MBL transition is approached.

We work with a model that is closely related to that
of Ref. [4]. This model is specified in terms of electrons
hopping on a lattice with short range interactions, such that
electrons within a single-particle correlation length L (in real
space) are strongly coupled, but electrons further apart than
L (in real space) are weakly coupled. It is important that
L be much larger than the lattice scale. The system is now
carved up into correlation volumes, each of size L, and each
correlation volume is treated using a zero-dimensional model
of an interacting quantum dot, which we treat in the manner of
Ref. [32]. The analysis proceeds as follows: in Sec. IV B, we
compute the relaxation rate of each quantum dot, subject to a
slowly fluctuating external bath; in Sec. IV C, we specify the
nature of the interdot coupling; and in Sec. IV D, we replace the
external bath from Sec. IV B by a self-consistent internal bath,
and calculate the relaxation rate due to the interdot coupling.
This gives us a self-consistent mean-field equation for the
linewidth, to which we then present solutions in the next
section. While we shall use the terminology of (implicitly
quantum-mechanical) “baths” throughout, our calculations

can be reinterpreted in terms of a quantum dot coupled to
a self-consistent classical noise field [47,48].

B. Quantum dot coupled to slowly fluctuating bath

The first step in constructing our mean-field theory is to
estimate the relaxation rate of a level in the zero-dimensional
model of Ref. [32] in the presence of a slowly fluctuating
(external) bath. We therefore begin by reviewing some
results on this model, which consists of a quantum dot
with dimensionless conductance g = ET /�, where ET is the
Thouless energy of the dot (i.e., the rate at which electrons
diffuse across the dot) and � is the single-particle level
spacing [49]. The electronic states on the dot are described
by the Hamiltonian [32,50]

HAGKL =
N∑

α=1

εαc†αcα + Vαβγ δc
†
αc

†
βcγ cδ, (14)

where the statistics of εα and of Vαβγ δ are specified, up to an
overall interaction strength λ, by random-matrix theory [51].

We now briefly review the closed-system behavior of the
Hamiltonian (14), focusing on its eigenstates. For λ = 0,
each eigenstate is parameterized by the occupation numbers
of N single-particle levels; thus, it forms a vertex of an
N -dimensional hypercube (with quenched on-site disorder).
The interaction term in HAGKL changes only four occupation
numbers at once, and therefore acts as a local hopping term
on the hypercube. Reference [32] argued, by mapping the
Fock hypercube onto a Cayley tree with coordination number
K ≡ g3/6, that the many-body eigenstates undergo a transition
as a function of λ between a low-energy localized regime (in
which the eigenstates are localized in Fock space, in the sense
that their amplitudes at a point on the Fock hypercube decrease
exponentially with distance from some central site [52,53])
and a high-energy delocalized regime (sufficiently deep in
this delocalized regime, the eigenstates are “ergodic,” i.e.,
spread evenly over all configurations with the appropriate
energy). The transition point can be approximately estimated
by comparing the typical matrix element λ to the accessible
level spacing at a given energy δm(ε) 
 �3/ε2. For sufficiently
small λ, all eigenstates on the dot are localized. We shall
assume in what follows that we are in this regime, where
the isolated quantum dot is fully many-body localized. The
localization length in Fock space will in general depend
on energy. To treat this energy-dependence correctly one
would have to go beyond the Cayley-tree model [54,55]. For
simplicity, we ignore the energy dependence of the Fock space
localization length, and work with a quantum dot on which all
states are localized with a single characteristic Fock-space
localization length �.

We now imagine coupling the dot model (14) to a generic,
ergodic bath. The bath-mediated interaction is taken to have
the particle-number-conserving form

Hint = γ
∑
α,β

c†αcβ(b† + b), (15)

where the b’s are the excitations of the bath, which we assume
to be bosonic. The bath excitations are taken to have a bounded
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spectrum in the range [E − W/2,E + W/2], where in general
E = 0.

We now compute the relaxation rate of an excited particle
due to hopping, to leading order in small γ /W . At W = 0, a
system prepared at a particular vertex of the Fock hypercube
remains localized near that vertex. At nonzero W , the system
can relax by hopping to vertices with a different value of the
system energy ε, by borrowing the missing energy from the
bath. However, the bath can only supply or absorb energies
that are within a range W of E, while neighboring vertices
on the Fock hypercube have a level spacing δm � W , so that
nearest-neighbor hops are not, in general, on shell to within W .
To find a vertex that differs in energy by less than W , a particle
must tunnel to the n̂th neighbor, where δmK−n̂ � W , i.e., n̂ �
nc = ln(δm/W )/ ln K . However, the matrix element for a long-
range hop is of order exp(−n̂/�), because of the exponential
localization of states on the Fock hypercube. Summing over
all distances n � nc in a saddle-point approximation, we find
that the golden-rule estimate of the relaxation rate � is

�(W ) = γ 2

W

(
W

δm

)2/(� ln K)

. (16)

This defines a time scale for relaxation trelax ∼ γ −2W 1− 2
� ln K ,

so the relaxation time diverges as W → 0. Physically, this
divergence of n̂ and the consequent slow relaxation arise
because finding a transition which is on shell to precision
W requires increasingly large rearrangements of the system.
Once W [Eq. (16)] becomes smaller than the total many-body
level spacing of the dot (which is exponentially small in N ),
then the dot reverts to being fully localized despite the coupling
to the bath, since we can no longer find transitions that are on
shell to a precision W .

We note that the discussion above applies for a Lorentzian
bath only when � ln K > 1; otherwise (see Appendix) re-
laxation is dominated by lowest-order processes that exploit
the tails of the Lorentzian. The two cases � ln K > 1 and
� ln K � 1 are both taken into account in what follows.

C. Setup of the coupled-dot problem

We now make use of the insight that the AGKL quantum
dot model [32] can be regarded as an effective description for
a region with linear dimension of order the correlation length
L, which sees a bath due to the other quantum dots to which
it couples through the interaction (Fig. 3) [56]. It is important
for our purposes that the Fock space for each quantum dot
be large, i.e., that L be large, for reasons that will become

FIG. 3. (Color online) Schematic description of our mean-field
approach. We consider a lattice of statistically similar multilevel
quantum dots and approximate this as a single quantum dot coupled
to a slowly fluctuating bath.

apparent shortly. A similar setup was employed in [4] when
establishing stability of the MBL phase; however, we are not
aware of any work that uses such an approach to describe the
regime near the MBL transition.

Following Ref. [4], then, we consider an array of
statistically similar quantum dots coupled through a number-
conserving interaction of the form γ /

√
zN2

∑
IJ

∑
αβγ δ

KIJ c†α(I )cβ(I )c†γ (J )cδ(J ), where I and J label different
quantum dots, z is the coordination number of the array, N

is (as before) the number of single-particle levels on each
quantum dot, and the coupling KIJ decays exponentially with
distance between dots, with a decay length of order the size
of the dots. We now assume a mean-field decoupling in which
dot I is self-consistently coupled to an environment
consisting of all the other dots, i.e., γ /

√
zN2

∑
IJ

KIJ c†α(I )cβ(I )c†γ (J )cδ(J ) ∼ γ /
√

zN2
∑

Iαβ c†(I )αc(I )βm(I ),
where m(I ) = ∑

Jγ δ KIJ c†γ (J )cδ(J ).
We now ask whether states on the dot can relax by

“borrowing” energy from the environment. The environment
consists of all allowed transitions in the other quantum dots. If
the other quantum dots are localized, then the spectral function
of the environment is made up of delta functions. In this case,
we will not be able to find a transition in the environment that
places the transition in the dot exactly on shell. As a result,
a localized quantum dot placed in a localized environment
will remain localized. In contrast, if the spectral lines in the
environment are slightly broadened with a linewidth �, then
the dot will be able to relax, provided it can find a state, on shell
to a precision �, to which it can decay. Our objective is to obtain
a self-consistent mean-field theory that describes how this
linewidth � goes to zero as we approach the localized regime.

An important quantity for our analysis is the spectral
function of the self-consistent environment. The maximum
amplitude in the spectral function of the environment will
be wherever there is a spectral line corresponding to single-
particle transitions on a neighboring dot. The spacing between
these peaks is δ2/z, where δ2 ≡ �2/ε and 1/δ2 is the accessible
two-particle DOS on a single quantum dot. In order for our
discussion to make sense, we require that these dominant
spectral lines do not overlap. This then requires that γ � δ2/z,
for reasons that will shortly become clear. We assume the
interactions are sufficiently weak that we are operating in this
regime.

In addition to the large but sparse features coming from
single-particle transitions on the neighboring dots, there will
be additional features coming from multiparticle transitions
(Fig. 4). These “satellite” peaks will be much denser than
the large peaks coming from single-particle transitions on
neighboring dots, but they will have an amplitude that is much
smaller. The amplitude for peaks coming from multiparticle
transitions will fall off exponentially with the order of the
transition (with decay constant �). The spectral function of
the bath will also have satellite peaks coming from distant
dots; however, the amplitude of these satellite peaks falls off
exponentially with distance, whereas their density grows only
as a power law of distance, so for weak coupling we may
ignore the satellite peaks coming from transitions on distant
dots. (The Hartree shifts from distant dots will, however, have
to be taken into account, as we will discuss.)
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FIG. 4. (Color online) Spectrum of the self-consistent bath, av-
eraged over a time 1/�1. Due to spectral diffusion, this bath consists
of clumps of �2/�1 Lorentzians, each of linewidth �2, spaced within
an interval γ � �2 (see Sec. IV D). These clumps of Lorentzians are
separated from one another by a spacing δ2 � γ . The satellite peaks
contribute a broad weak background, indicated in pink.

D. Self-consistency equations

We shall now derive self-consistent mean-field equations
for the model specified in the previous section. This derivation
takes place in two steps. First, we assume that a typical
transition in the system happens at a rate �, and estimate
the line shape S�(ω) of the typical transition as a function of
�. (As discussed above, the typical spectral line is broadened
because of the Hartree shifts due to nearby transitions—in
the language of nuclear magnetic resonance, it includes both
T1 and T2 processes.) Second, we compute the decay rate �

of a typical level in the presence of an environment with the
characteristic line shape S�(ω). Together, these two relations
constitute a self-consistent theory of relaxation in a nearly
localized metal.

The first step is a straightforward application of the
reasoning in Sec. II C. A transition on any level causes the
energies of nearby levels to fluctuate and thus broadens them.
From Sec. II C, the broadened linewidth is given by

S�(ω) 
 �nfast(1/ω)

ω2 + (�nfast(1/ω))2 , (17)

where � is the assumed typical rate (which we will later
solve self-consistently for) and nfast(t) is given by Eq. (11).
In particular, at short times nfast 
 1 and at long times
nfast 
 s(T ) lnd (γ /�). One can arrive at a naive mean-field
theory by ignoring the Hartree shifts (i.e., by approximating �

by �b). As we shall see below, this would reproduce the results
of Refs. [3,4,57]. A central result of our paper is that including
the Hartree interactions parametrically enhances the stability
of the metallic phase.

The next step is to compute the decay rate given the line
shape. We shall use the golden rule for this estimate. The
validity of the golden rule is discussed at length in Appendix B:
briefly, our application of the golden rule is valid provided (a)
we are sufficiently close to the localization transition that the
lifetime � is much smaller than the other characteristic scales,
(b) we use typical rather than thermally averaged spectral
functions, and (c) the coordination number is large enough
that the “back-action” on an individual line can be treated
in mean-field theory. Using the golden rule, the decay rate
of a single level coupled to a self-consistent environment

is given by

� = γ 2
∑
n,p

S�(δEn,p) exp(−2(n + p)/�), (18)

where we sum over all processes that involve an n particle
rearrangement in the system and a p particle rearrangement in
the bath, assuming that the linewidth is the same for all spectral
lines, and where δEn,p 
 δmK−(m+n) is the typical detuning
from the nearest spectral line at that order. In the above
expression, we have assumed that the dominant contribution to
the decay rate comes from processes at leading order in γ . This
approximation is valid when ln(δm/γ ) � 1/�, so that it is less
costly to go to high order in the system or in the bath than to go
to high order in the system-bath coupling [58]. Assuming that
this condition is satisfied, Eq. (18) can be rewritten explicitly
as

� = γ 2�

δ2
m

∑
n,p

e−2(n+p)(1/�−ln K)nfast(Kn+p/δm)

1 + [�nfast(Kn+p/δm)Kn+p/δm]2
, (19)

where

nfast(t) =
⎧⎨
⎩

1, t � 1/γ

s(T )N lnd (γ t), 1/γ � t � 1/�

s(T )N lnd (γ /�), t � 1/�

. (20)

This pair of equations is the central result of our self-consistent
mean-field theory. In what follows, we shall explore its
behavior both numerically and, in some limits, using saddle-
point methods.

V. MEAN-FIELD SOLUTIONS

A. Numerical solution and limiting cases

The sum in Eq. (19) can be approximated as an integral over
n + p, which can then be solved self-consistently for �. One
expects this approximation to be good whenever the dominant
values of n + p are large, i.e., whenever rearrangements are
large and collective. (Moreover, this approach agrees well with
that of directly evaluating the sum (see Appendix), wherever
the mean-field equations are applicable.)

Before we turn to the numerical solution, let us briefly
discuss some limiting cases. First, when � ln K � 1, the sum
in Eq. (19) is dominated by its first term. One can check
that in this limit, there are no self-consistent solutions for
γ � δm. Second, when � ln K is greater than and not too
close to 1, the sum can be evaluated by saddle-point methods
(see Appendixes C–E) yielding the dependence

� = γ
� ln K

� ln K−1 . (21)

Note that this scaling is identical to that for a single dot.
We now turn to our numerical results, which are presented in

Figs. 5–7. Figure 5 shows the mean-field phase diagram, which
is controlled by the Cayley-tree parameter � ln K − 1. When
this parameter is positive, each quantum dot is susceptible to
delocalization (and would in fact be delocalized if it were
infinitely large), so any coupling between the dots gives
rise to a metallic state. By contrast, when this parameter is
negative, the states on an individual dot are localized, and
the interdot coupling must therefore be above a critical value
in order to establish a metal. This critical value increases
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FIG. 5. (Color online) Numerically computed mean-field phase
diagram. The ergodic phase is stabilized, even in the regime where
a single dot would be localized, by the interdot coupling. The
phase boundary is approximately linear (i.e., γc/δm ∼ 1/� − ln K)
for the larger values of γ , but approximately logarithmic [i.e.,
ln(γc/δm) ∼ ln K − 1/�] for smaller γ .

as � decreases; eventually γc becomes of order δm and the
mean-field procedure ceases to be consistent.

Figures 6 and 7 show how the linewidth vanishes near the
MBL transition. Figure 6 shows the vanishing of the linewidth
both for very weak interdot coupling γ and for stronger cou-
pling. Consistent with our intuition, as γ /δ → 0, we recover
single-dot scaling, as the system increasingly behaves like a set
of independent dots. However, even for very small γ /δ one sees
substantial deviations from single-dot scaling. Finally, Fig. 7
zooms in on the “critical” region where the linewidth vanishes.
Within our mean-field theory, we find that the linewidth
vanishes as −1/ ln(�) ∼ (� − �c)1/3, or equivalently,

� ∼ exp

(
− λ

(� − �c)1/3

)
(22)

with some nonuniversal prefactor λ.
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FIG. 6. Numerical solutions of the mean-field equations for N =
10,K = 3, and γ /δm = 10−4 (crosses) and γ /δm = 10−2 (circles). In
the saddle-point approximation, −1/ ln(�) should vanish linearly at
� ln K = 1 (i.e., at the origin). As the interdot coupling is decreased,
the saddle-point equations become more accurate. The parameters �

and K are defined in the main text.
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FIG. 7. (Color online) Numerical solutions of the mean-field
equations for N = 10,K = 10, and γ /δm = 10−3 showing how the
linewidth goes to zero. The data fit well to the critical behavior
−1/ ln(�) ∼ (� − �c)1/3.

B. Regime of validity of mean-field equations

In deriving the self-consistent mean-field Eqs. (19) and (20)
we made several assumptions. We now catalog the various
assumptions made, and discuss the regime of validity of the
resulting equations. In two separate places, we assumed that
γ was “weak enough.” Firstly, we assumed that γ /δm � 1/z

(where z is the coordination number) so that the dominant
spectral lines do not overlap. Next, we assumed γ /δm �
exp(−1/�), to justify restricting ourselves to lowest order in
γ . These two assumptions can be combined into the condition

γ

δm

� min(exp(−1/�),1/z). (23)

Additionally, to justify application of the golden rule, we
required (Appendix B) that

γ

δm

�
√

zN2K−N, (24)

where N is the number of single-particle states on a dot. We
thus conclude that our derivation of the mean-field equations
is valid over a parameter range√

zN2K−N � γ

δm

� min(exp(−1/�),1/z). (25)

This regime of validity can be made broad by taking N to be
large. Finally, in order to justify working with typical rather
than average bath spectra (Appendix B), we assumed

�

γ
ln2d γ

�
� 1. (26)

Additionally, our approach is only sensible if the decay rate
obtained is larger than the many-body level spacing of the
system, i.e., � > NδmK−N . Combining this condition with
Eq. (26), we conclude that the mean-field equations apply if
and only if:

NK−N � �

δm

� γ

δm

. (27)

Thus the mean-field approach becomes inconsistent when we
get too close to the critical point (so that the line broadening
is less than the many-body level spacing on the dot), and
also when we got too far from the critical point (when
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the central assumption of an inhomogenous bath spectrum
breaks down). However, Eq. (25) guarantees that there is
a nonvanishing regime in the vicinity of the critical point
where the mean-field equations can be safely applied. This
“window of applicability” may be extended arbitrarily close
to the critical point by making N large.

C. Temperature-dependence of the linewidth and conductivity

Thus far we have treated �, the Fock space localization
length on a dot, as our tuning parameter. In practice, �

is related to the disorder strength, the temperature, and the
interaction strength. Of these quantities, the temperature is the
most natural tuning parameter in experiment; therefore, we
close this section by re-expressing our main results in terms of
the temperature T . We note that T enters into our expressions
via three quantities [32]: the entropy density s(T ), which is ∝T

at low temperatures and essentially constant at high temper-
atures; the three-particle level spacing δm(T ) ∼ �3/T 2; and
the Fock-space localization length � ≈ 1/ ln[gδm(T )/(λ�)].
As one might expect, � decreases with temperature.

Substituting these relations into Eq. (C5), we find

�(T > T0) ∼
(

γ T 5/2

�3

)T0 ln K/2(T −T0)

. (28)

We recall [28] that the conductivity scales as σ ∼ �, and thus
the conductivity should scale the same way within the regime
of validity of the saddle-point solution. However, the saddle-
point approximation is only well controlled as long as we
satisfy Eq. (C7), which in the temperature regime means

T − T0

T0
>

1

4
. (29)

Once we get any closer to T0 than this bound, we can no longer
use the saddle-point solution, but instead must consider the full
numerical solution of the mean-field equations. We note that
a fit to the numerical solutions suggests that the near critical
scaling follows � ∼ exp(−1/(� − �c)1/3). This would in turn
imply a temperature scaling

σ ∼ exp (−a′′/(T − T ′
0)1/3). (30)

However, since this near critical regime is analytically in-
tractable, we cannot be certain that this scaling form is truly
universal.

VI. CONCLUSIONS

We have argued that a many-body localized system coupled
to a slowly fluctuating external bath exhibits rich relaxation
dynamics due to collective hops; in particular, the relaxation
time diverges as a power law of the bandwidth of the bath. We
have argued that our results apply to a wide range of realistic
experiments. The slow relaxation dynamics due to an extrinsic
(e.g., nuclear-spin) bath is intimately related to the slowing
of relaxation as the MBL transition is approached; thus, as
we have discussed, the narrow-band relaxation results can be
used to construct a self-consistent mean-field description of a
metal near the MBL transition (i.e., in the regime where the
intrinsic relaxation time scales are parametrically slower than
the characteristic dynamical time scales of the system).

The key quantity that we examine as a diagnostic of
proximity to the localized phase is the typical width of a local
spectral line; this quantity, which is related to observables such
as the dc conductivity, would be strictly zero in the localized
phase. As the localized phase is approached, the line width
scales to zero first as Eq. (28), and then more slowly (in
a manner that can be captured by numerical solution of a
self-consistency equation). We have also estimated how the
dc conductivity should scale to zero as the localized phase
is approached, and predict that it should originally follow
Eq. (1), before crossing over to a slower behavior at the lowest
temperatures (Fig. 7). We note that this expectation appears
consistent with experimental data reported in Ref. [33].

We have assumed that a finite-linewidth state is ergodic,
there is some numerical evidence [59] for an intermediate
phase that is conducting but not ergodic, in which the
eigenstates have sub-extensive entanglement entropy [60]. Our
mean-field theory cannot directly distinguish such a phase
from an ergodic metal, though it is possible that with some
refinements (e.g., treating distributions of linewidths [57], or
using the entanglement entropy density instead of the thermal
entropy density) it might be adapted to describe such an
intermediate phase.

Our mean-field approach does also assume that the sys-
tem is spatially homogenous. This assumption of spatial
homogeneity is expected to be a poor approximation to the
true physics in the vicinity of the critical point. However, a
generalization of our approach that (numerically) treats spa-
tially inhomogenous systems appears (at least conceptually)
straightforward.

To summarize, our mean-field approach, which consists
of treating a correlation volume as a zero-dimensional,
interacting system coupled to a self-consistent bath, should be
generalizable to a wide range of models with MBL transitions.
Moreover, our predicted scaling of the dc conductivity with
temperature as one approaches the many-body localization
transition should be directly testable in experiments, and
appears consistent with recent results [33].
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APPENDIX A: GAUSSIAN AND LORENTZIAN BATHS

The arguments in the main text were framed in terms
of a bath with a constant density of states over a window
[−W/2,W/2]. We now generalize these results to baths with
spectra that are Gaussian (e.g., a nuclear spin-bath) and
Lorentzian (e.g., a self-consistent bath). For concreteness, we
shall focus on the relaxation rate Eq. (7), but the generalization
to the other main results in the main text is straightforward.
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1. Gaussian bath

First, we consider the case of a bath with the density of
states N (E) ∼ exp[−(E/W )2]/W . Applying the golden rule,
we find that the relaxation rate of an nd -particle rearrangement
goes as

�n ∼ γ 2

W
exp

(
−2nd

�
− �2

W 2
e−2s(T )nd

)
. (A1)

One can optimize �n by steepest-descent methods. The
solution is

n̂d = 1

2s(T )
ln

(
�2

W 2

�s(T )

2

)
, (A2)

which agrees, up to logarithmic corrections, with Eq. (7).

2. Lorentzian bath

As discussed in the main text surrounding Eq. (16), the
case of a Lorentzian bath has two distinct regimes, depending
on whether the matrix element decreases faster or slower
than the density of states increases as we go to higher
order in Fock space. One can see this as follows: for a
decay process that uses the tails of the Lorentzian (of width
W ), the golden-rule decay rate can schematically be written
as W (matrix element/energy denominator)2. The quantity in
parentheses is precisely the perturbative expression for the
wave function amplitude on the target site; therefore this
quantity (and the golden-rule decay rate) must decay with
n whenever the wave function is localized. To state this more
quantitatively: for a density of states N (E) ∼ W/(E2 + W 2),
the typical matrix element for an nth order process is
suppressed as e−n/�. By contrast, the level spacing scales as
exp(−s(T )n). Localization at a given temperature requires that
s(T )� < 1.

The regime of collective relaxation for a Lorentzian bath
only exists (on a Cayley tree) when � ln K > 1. Here, the
relaxation rate of an n-step hop goes as

�n ∼ γ 2

W

e−2n/�

(�/W )2e−2n ln K + 1
. (A3)

Optimizing with respect to n yields the condition

e−2n ln K = W 2

�2

1/�

ln K − 1/�
, (A4)

which leads to the solution

n̂ = 1

ln K

[
ln(�/W ) + 1

2
ln(� ln K − 1)

]
, (A5)

which is again the same form as that in the main text.
Finally, we comment on the case in which the wings of the

Lorentzian have a hard (or Gaussian) cutoff at an energy �. In
this case, the lowest-order process that the bath can mediate is
at the order n0 ∼ ln(�/�)/ ln K . When � ln K < 1, one can
conclude from the arguments above that relaxation takes place

at exactly this order, and crucially, that the optimal order in
perturbation theory is independent of W .

APPENDIX B: VALIDITY OF THE GOLDEN RULE

In this Appendix, we justify our use of the golden rule in
estimating the decay rate of the coupled dot problem. There are
three potential problems with the use of the golden rule (none
of which, however, is important in the regime of interest).

Firstly, when γ /
√

zN2 < δmK−N , then the matrix element
between dots is less than the typical level spacing on a finite
size dot. In this limit, the golden rule is inapplicable and the
decay rate is strictly zero. However, we are working in the
large N limit when γ /

√
zN2 � δmK−N .

Secondly, for small enough �, we expect that the matrix-
element for system-bath coupling γ /

√
zN2 � �, so that in

principle the “back-action” of the system on the bath might
be important. Physically, this back-action corresponds to the
fact that the bath energy levels fluctuate whenever the system
undergoes a transition; this effect is precisely what gives rise to
the “Hartree” broadening of bath levels, which we discussed.
Thus our approach has already incorporated back-action at
the mean-field level, which is appropriate in the limit of large
coordination number—in this limit, most of the fluctuations of
a given bath level are due to other bath levels, rather than due
to the system.

The final difficulty is that the system and bath levels are
correlated as a result of local level repulsion. Thus, in the
MBL phase, the bath would have no spectral weight at the
system transition frequency. If one ignores these correlations
altogether, and uses averaged bath spectra, one incorrectly
finds that there is no localization transition, even in the
single-dot case [32]. However, this difficulty can be addressed
by working with typical rather than average bath spectra:
in the typical spectra, rare resonances between system and
bath levels are suppressed, and the physics of localization
transitions is captured [26]. In the many-body case, the
consistency criterion for using typical rather than average
spectra is that the bath spectral lines do not self-average (by
diffusing through their entire spectral range) on the time scale
of a typical system transition; i.e., we need the condition
�−1 � γ /(� lnd (γ /�))2. This condition is indeed satisfied
near the MBL transition, when � → 0.

APPENDIX C: SADDLE POINT SOLUTIONS TO THE
SELF-CONSISTENCY EQUATIONS

There are various different regimes, and we discuss each in
turn.

1. The localized phase 1
�

� ln K

When 1/� � ln K , the dominant rearrangements are those
at lowest order (n,p ≈ 1). Moreover, we are assuming that
δm/K2 � γ (i.e., we have weakly coupled dots), so nfast ≈ 1
for the dominant processes. If we further demand that the
decay rate � should be real, then we discover that the only
self-consistent saddle-point solution to Eqs. (18) and (19) in
the regime 1/� � ln K and δm/K2 � γ is � = 0, i.e., this
regime corresponds to the localized phase.
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2. The delocalized phase 1
�

< ln K

When 1
�

< ln K , then the numerator of Eq. (19) is an
increasing function of n and p. Meanwhile, the denominator
is of order one for small n + p, but cuts off the summand for
n + p > Nc, where Nc is set by the condition

(�/δm)KNcnfast(K
Nc/δm) = 1. (C1)

An explicit solution for Nc is obtained in Appendix D. We find
that

Nc ln K = ln(δm/γ ) + dW
[

(γ /(�s(T )N ))1/d

d

]
, (C2)

where W is the Lambert W function. In the limit of small �

(strictly the limit �s(T )N � γ ), this asymptotes to

Nc ln K ≈ ln(δm/�s(T )Ndd ). (C3)

Comparing with Eq. (C1), we conclude that in the limit
� → 0, nfast(KNc/δm) saturates to a � independent value
nc ≈ s(T )Ndd .

In the regime 1/� < ln K , when the numerator of Eq. (19)
is an increasing function of n + p, the sum in Eq. (19) is
dominated (at the saddle-point level) by the largest terms we
can get before the growth of the denominator cuts off the
summand, i.e., the sum is dominated by the ≈Nc terms with
n + p ≈ Nc. Making use of the defining relation Eq. (C1) we
can approximate Eq. (19) by

�

δm

= γ 2

δ2
m

NcK
Nc exp

(
−2Nc

�

)
. (C4)

This equation, together with Eq. (C2), in principle fully
determines �/δm in terms of the parameters s(T )N,�,γ /δm

and K . However, to obtain a closed form solution, we
make use of the � → 0 asymptotic form for Eq. (C2),
i.e., Eq. (C3). Substituting Eq. (C3) into Eq. (C4), taking
logarithms, dropping ln ( ln(δ/�)) corrections [which have
already been ignored in approximating Eq. (C2) by Eq. (C3)],
we find that (with logarithmic accuracy)

� = δ

nc

(
γ
√

nc

δ

) � ln K
� ln K−1

, nc ≈ s(T )Ndd. (C5)

This is a similar scaling behavior to that obtained in the
single quantum dot. Thus, we find that the saddle-point
analysis essentially reproduces the “single quantum dot”
scaling behavior, with the main correction coming through
the pre factor nc. In simplifying Eq. (C2) to Eq. (C3), and
in proceeding from Eq. (C4) to Eq. (C5), we retained terms
in ln(δ/�) but dropped terms in ln ln(δ/�). This “leading
logarithm” approximation becomes increasingly good as the
critical point is approached.

3. Regime of validity of saddle-point solutions

Firstly, we recall that self-consistency requires that the
saddle-point solution Eq. (C5) satisfy the inequality Eq. (27).
This requires that (up to logarithm corrections)

γ 2

δ2
s(T )Ndd < 1,

ln(δm/γ s(T )N )

N ln K
<

� ln K − 1

� ln K
< 1.

(C6)

The first condition [taken in conjunction with Eqs. (23)
and (24)], constrains our theory: if we take the limit of large N

to satisfy Eq. (24), we must simultaneously scale γ as N−1/2

in order for our derivations to hold. The second condition
simply tells us that our approach only works in a window
where we are close enough to the transition for the bath
spectrum to be highly inhomogenous, but not so close that
the self-consistently determined line broadening is less than
the many-body level spacing on the dot.

Finally, the saddle-point approximation itself is controlled
by the value of ln K − 1

�
. For ln K − 1

�
> 1/2, the sum

Eq. (19) is well approximated by the saddle -point Eq. (C4).
However, for ln K − 1

�
< 1/2, the saddle-point (C4) provides

a poor approximation to the sum, as terms with n + p = Nc

also make a substantial contribution. Combining this with
Eq. (C6), we conclude that the saddle-point solution (C5) well
approximates the behavior over the parameter regime

1

2 ln K
<

� ln K − 1

� ln K
< 1. (C7)

If we are too far from the critical point, the assumptions leading
to the self-consistency equations break down. If we are too
close to the critical point, the self-consistency equations them-
selves are fine, but the saddle-point approximation becomes
increasingly unreliable, and the equations must be solved
numerically. There is, however, a substantial intermediate
regime where the saddle-point solution Eq. (C5) is reliable,
and this window can be extended arbitrarily close to the critical
point by taking K → ∞.

APPENDIX D: SOLVING FOR THE SADDLE-POINT
PARAMETER Nc

We recall that Nc is defined by

KNc
�

δm

nfast(K
Nc/δm) = 1. (D1)

Now nfast lies in the range 1 � nfast � s(T )N lnd (γ /�). This
then implies that Nc must lie in the range

ln δm

�s(T )N lnd (γ /�)

ln K
� Nc � ln δm/�

ln K
. (D2)

We saturate the upper bound IFF nfast = 1. However, to obtain
nfast = 1, we require that γKNc/δm < 1 i.e. Nc = ln δm/�

ln K
<

ln(δm/γ )/ ln K . To satisfy this self-consistency condition
requires assuming that � > γ , i.e., the relaxation rate due
to inter dot coupling is bigger than the inter dot coupling
itself. This solution is self-evidently unphysical, and should
be discarded. Meanwhile, the lower bound solution for Nc

is obtained if we take nfast = s(T )N lnd (γ /�), but for this
to be consistent we require that �KNc/δm > 1 i.e. Nc =
ln δm

�s(T )N lnd (γ /�)

ln K
> ln(δm/�)/ ln K . This inequality is clearly vio-

lated, so a solution at the lower bound in (D2) is inconsistent.
A consistent and physically reasonable solution for Nc must
thus lie between tighter bounds than those presented in (D2),
and must have nfast given by the “intermediate time” form
nfast ≈ s(T )N lnd (γKNc/δm). Thus we conclude that Nc is the
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solution to the equation

Nc =
ln

[
δm

�s(T )N lnd (γKNc /δm)

]
ln K

. (D3)

This equation may be solved exactly using MATHEMATICA to
yield

Nc ln K = ln(δm/γ ) + dW
[

(γ /(�s(T )N ))1/d

d

]
, (D4)

where W is the Lambert W function. In the limit of small �

(strictly the limit �s(T )N � γ ), this asymptotes to Nc ln K ≈
ln(δm/�s(T )Ndd ). Comparing with Eq. (D1), we conclude
that in the limit � → 0, nfast(KNc/δm) saturates to a � inde-
pendent value nc ≈ s(T )Ndd . [This level of approximation
essentially amounts to dropping the ln(ln) correction in (D3).]

APPENDIX E: DIRECT NUMERICAL SOLUTION
OF MEAN-FIELD EQUATIONS

In the main text, we presented numerical solutions of
Eq. (19) that were attained by approximating the sum by
an integral. In this section, we present a different numerical
solution of the mean-field equations, as a function of the
parameters d,γ /δm,K,N , and s(T ). The solutions are obtained
for d = 1, γ /δm = 0.1, K = 3, N = 10, and s = 0.5, a choice
that respects the various inequalities discussed in Sec. IV E.
We then numerically solve for � as a function of 1

�
− ln K .

We begin by noting that (as discussed in Appendix C),
the sum in Eq. (19) is cut off by the growth of the
denominator well before nfast saturates to its maximum value
of sN lnd (γ /�). Thus, in Eq. (19), we can take nfast = 1
for n + p < N0, and nfast = sN lnd (γKn+p/δm) otherwise,
where N0 = (1 + s(T )N ln(δm/γ ))/s(T )N ln K . Introducing
the parameter ε = � ln K−1

� ln K
and measuring all energies in units

of δm (which we set to one), the self-consistency equations
then boil down to

� = γ 2�

⎡
⎣ ∑

n+p<N0

K2(n+p)ε

1 + �2K2(n+p)

+
n,p=N∑

n+p>N0

sNK2(n+p)ε lnd (γKn+p)

1 + �2K2(n+p)s2N2 ln2d (γKn+p)

⎤
⎦ , (E1)

N0 = 1 + sN ln(1/γ )

sN ln K
.

For the parameters we have chosen, we have N0 ≈ 2, and thus
the equation above can be well approximated by

� = γ 2�

N∑
n,p=1

sNK2(n+p)ε lnd (γKn+p)

1 + �2K2(n+p)s2N2 ln2d (γKn+p)
. (E2)

This is a self-consistency equation with ∼N2 terms. It is
now useful to note that the terms in the sum depend only
on n + p, and not on n and p individually. Moreover, there are
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FIG. 8. (Color online) Plot showing how −1/ ln(nc�) scales with
ε. The black data points are obtained by numerical solution of the
equation Eq. (E3), for parameters γ = 0.1, s = 0.5, N = 10, d = 1,
and K = 3 (a parameter choice that yields nc = 5). Open circles
are obtained by approximating the mean-field Eq. (19) with an
integral; the two numerical approaches predict the same behavior.
The red curve is the theory prediction Eq. (C5) (solid line in the
range of validity of the saddle-point approximation, dashed outside
the range of validity). We emphasize that the red curve is exactly
the saddle-point solution—there are no fitting parameters. We can
see that Eq. (C5) provides a reasonable approximation to the full
numerical solution (data points) within the regime of validity of the
saddle-point approximation 0.45 < ε < 0.8. However, for ε < 0.45,
it dramatically underestimates �, which goes to zero much more
slowly than would be predicted by a scaling of the form Eq. (C5).

∼n + p − 1 terms with a given value of n + p, and so the
above equation can be rewritten as a self-consistency equation
with ∼2N terms, which takes the form

� = γ 2�

2N∑
n=2

(n − 1)
sNK2nε lnd (γKn)

1 + �2K2ns2N2 ln2d (γKn)
. (E3)

We look for nontrivial solutions �(ε) = 0. We solve the
above equation numerically on MATHEMATICA for d = 1,γ =
0.1,K = 3,N = 10, and s = 0.5, and for various values of ε

in the range 0.01 < ε < 0.85. We stop at ε = 0.85 because
at this point the line broadening � becomes comparable to
γ , indicating that the mean-field equations are no longer
applicable [i.e., we violate the consistency condition Eq. (23)].
Meanwhile, the condition Eq. (C7) for our present choice of
parameters indicates that the saddle-point solution Eq. (C5)
should well approximate �(ε) as long as ε > 0.45, but should
become increasingly unreliable for smaller ε.

The numerical solution does appear to bear out these
expectations. In the regime of validity of the saddle-point
equations 0.45 < ε < 0.8, the theoretical expression Eq. (C5)
well approximates the numerical solution of the saddle-point
equations. However, for ε < 0.45, the theory expression
Eq. (C5) dramatically underestimates �, i.e., once we leave
the regime of validity of the saddle-point equations Eq. (C7),
the line broadening � decreases with ε much more slowly than
would be predicted by Eq. (C5). This is illustrated by Fig. 8.
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[42] L. Cywiński, W. M. Witzel, and S. Das Sarma, Phys. Rev. Lett.

102, 057601 (2009).
[43] N. Bloembergen, Physica 15, 386 (1949).
[44] A. Szabo, T. Muramoto, and R. Kaarli, Phys. Rev. B 42, 7769

(1990).
[45] P. Cappellaro, L. Jiang, J. S. Hodges, and M. D. Lukin, Phys.

Rev. Lett. 102, 210502 (2009).
[46] A. Amir, J. J. Krich, V. Vitelli, Y. Oreg, and Y. Imry, Phys. Rev.

X 3, 021017 (2013).
[47] A. Amir, Y. Lahini, and H. B. Perets, Phys. Rev. E 79, 050105

(2009).
[48] A. Amir (unpublished).
[49] In a homogeneous system, the MBL transition occurs at g � 1;

however, as we are considering a system of coupled grains, we
may consistently assume that g � 1.

[50] I. L. Aleiner, P. W. Brouwer, and L. I. Glazman, Phys. Rep. 358,
309 (2002).

[51] Note that although the single-particle properties are described by
random-matrix theory, in general, the many-body level statistics
is not.

[52] R. Abou-Chacra, P. W. Anderson, and D. J. Thouless, J. Phys.
C 6, 1734 (1973).

[53] J. T. Chalker and S. Siak, J. Phys.: Condens. Matter 2, 2671
(1990).

[54] X. Leyronas, P. G. Silvestrov, and C. W. J. Beenakker, Phys.
Rev. Lett. 84, 3414 (2000).

[55] A. M. F. Rivas, E. R. Mucciolo, and A. Kamenev, Phys. Rev. B
65, 155309 (2002).

[56] The l-bit model of the FMBL state is unsuitable for our present
purposes, because it has a decay length for the interactions that
diverges near the localization transition, and we want a model
where the interactions are short range.

[57] M. V. Feigel’man, L. B. Ioffe, and M. Mézard, Phys. Rev. B 82,
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