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There is a multiplicity of charge-ordered, pairing-based, or pair density wave theories of the cuprate pseudogap,
albeit arising from different microscopic mechanisms. For mean-field schemes (of which there are many) we
demonstrate here that they have precise implications for two-body physics in the same way that they are able to
address the one-body physics of photoemission spectroscopy. This follows because the full vertex can be obtained
exactly from the Ward-Takahashi identity. As an illustration, we present the spin response functions, finding that
a recently proposed pair density wave (Amperean pairing) scheme is readily distinguishable from other related
scenarios.
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Introduction. A number of theories associated with the
cuprate pseudogap phase have recently been suggested, based
on the now widely observed charge order [1–4]. While the
underlying physics may be different, what emerges rather gen-
erally are BCS-based pairing theories of the normal state with
band-structure reconstruction [5–7]. Distinguishing between
theories has mostly been based on angle resolved photoe-
mission spectroscopy (ARPES) [8]. However, the majority of
data available for the cuprates involves two-particle properties:
for example, the optical absorption [9], diamagnetism [10],
quasiparticle interference in scanning tunneling microscopy
(STM) [11], neutron [4,12,13], and inelastic x-ray scattering
in the charge [3] and spin [14] sectors.

In this Rapid Communication we use the Ward-Takahashi
identity (WTI) [15,16] to develop precise two-body response
functions for these pairing-based pseudogap theories. Such
exact response functions make it possible to address two-
particle cuprate experiments, including the list above, from the
perspective of many different theories. As an illustration, we
compute the spin-spin correlation functions relevant to neutron
scattering in three pseudogap scenarios. That the response
functions analytically satisfy the f -sum rule provides the
confidence that there are no missing Feynman diagrams or
significant numerical inaccuracies.

By comparing the Amperean pairing scheme [6], and that
of Yang, Rice, and Zhang [7] with a simple d-wave pseudogap
scenario, we find that the Amperean theory leads to a relatively
featureless neutron cross section in contrast to the peaks (at
and near the antiferromagnetic wave vector), found for the
other two theories.

In this Amperean pairing scheme [6] the mean-field self-
energy is
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We single out this particular theory as an example which
is complex and therefore somewhat more inclusive. In Eq. (1)

�pg(K) is expressed in terms of two different finite momentum
(p) pseudogaps, �1 ≡ �p and �2 ≡ �−p. In addition, we have
introduced charge density wave (CDW) amplitudes C1 and C2.
From the self-energy, the full (inverse) Green’s function can be
deduced: G−1(K) ≡ G−1

0 (K) − �pg(K) = ω − ξk − �pg(K).
This then determines the renormalized band structure, which
can be compared with ARPES experiments. One can similarly
add other mean-field contributions such as that related to
a spin density wave (SDW) [17] or even a d-density wave
(DDW) [18].

It is observed from Eq. (1) that in the Amperean pairing
case a BCS-like self-energy appears in a continued fraction
form within the self-energy itself. There are analogies with
the approach of Yang, Rice, and Zhang (YRZ) [7] in the
limit that only one gap term is present, say, �1, and when
the CDW ordering is absent. Importantly, this single-gap
self-energy involves two types of dispersion relations, so
that the pairing term leads to pockets or a reconstruction of
the band structure. For a simpler d-wave pseudogap, with
a single-gap model, both of these dispersion relations are
taken to be the same, as was studied microscopically [19] and
phenomenologically [20]. A central contribution of this Rapid
Communication is to show how, via two-particle properties,
important distinctions between these three different pseudogap
theories can be established.

While it is argued to be appropriate for the pseudogap phase
[6], the self-energy of Eq. (1) is indistinguishable from that of
a superconducting state. It is important, then, to ensure that
this form for �pg does not correspond to an ordered phase.
Phase fluctuations have been phenomenologically invoked
[5,6] to destroy order. Regardless of this phenomenology there
is a quantitative constraint to be satisfied: The absence of a
Meissner effect above TC implies that the zero frequency and
zero momentum current-current correlation function satisfies
↔
P (0) = −(

↔
n
m

)dia ≡ −2
∑

K
∂2ξk
∂k∂kG(K), so that there is a pre-

cise cancellation between the diamagnetic and paramagnetic
current-current correlation functions in the normal state.

Performing integration by parts [21] and using the identity
∂G(K)/∂k = −G2(K)∂G−1(K)/∂k then yields the following

expression for
↔
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Here K = (ω,k). Given the self-energy from Eq. (1), it is then

straightforward to arrive at the quantity
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For simplicity, throughout the main text we set C1 = C2 = 0
and present the complete expressions in the Supplemental
Material [22]. Here we have defined the following four
bare (inverse) Green’s functions, G−1

0,i (K) = (ω − ξk,i), i ∈
{1,2,3,4}, where ξk,1 = ξk+p, ξk,2 = ξk−p, ξk,3 = ξk+2p, ξk,4 =
ξk−2p are four dispersion relations. [The usual bare inverse
Green’s function is denoted by G−1

0 (K) = ω − ξk = ω − εk +
μ.] The partially dressed Green’s functions (which are neither
bare nor full) associated with Eq. (1) are

G−1
1,1(K) = ω − ξk,1 − �2

2
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, (4)
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In terms of these partially dressed Green’s functions, the
self-energy in Eq. (1) for the case where C1 = C2 = 0 has
the compact form �pg(K) = −�2

1G1,1(−K) − �2
2G1,2(−K).

The quantity
↔
P (0) in Eq. (3) provides a template for the form

of the Feynman diagrams that we will find in
↔
P (Q).

Ward-Takahashi identity (WTI) for the full vertex. The exact

expression for the current-current correlation function
↔
P (Q)

is contained in the response functions written as

P μν(Q) = 2
∑
K

	μ(K̃,K)G(K)γ ν(K,K̃)G(K̃). (6)

Throughout the text, we set K̃ ≡ K + Q. The full ver-
tex in four-vector notation is given by 	μ(K̃,K) =
[	0(K̃,K),			(K̃,K)], where the first argument denotes the
incoming momentum and the second argument the outgoing
momentum. Here the quantity γ ν(K,K̃) represents the bare
vertex.

The full response kernel is Kμν(Q) ≡ P μν(Q) +
( n
m

)μν

dia(1 − δ0,νδμ,ν), where there is no summation over indices
in the second term. The Ward-Takahashi identity in quantum
field theory is a diagrammatic identity that imposes a symmetry
between response functions. The particular symmetry we are
interested in is the U (1)EM Abelian gauge symmetry [15]. As
we shall show, satisfying the WTI also leads to manifestly sum-
rule-consistent response functions. Charge conservation is an
exact relation between the current-current and density-density
response functions that follows from this U (1)EM symmetry.
The WTI reflects this charge conservation which imposes the
constraint �K0ν + i divq Kjν = 0. The WTI for the vertex
	μ(K̃,K) on a lattice is

�	0(K̃,K) + i divq 			(K̃,K)

= G−1(K̃) − G−1(K),
= � + i divq γγγ (K̃,K) + �pg(K) − �pg(K̃). (7)

The WTI for the bare vertex γ μ(K̃,K) is � + i divq γγγ =
G−1

0 (K̃) − G−1
0 (K) = � − ξk+q + ξk. Similarly we introduce

the bare vertices γ
μ

i (K̃,K) associated with the dispersion
relations ξk,i . Here divq 			(K̃,K), complicated due to lattice
effects, is the Fourier transform of the divergence of 			.

In the limit Q → 0, the Ward-Takahashi identity reduces
to the Ward identity, δ	μ(K,K) ≡ 	μ(K,K) − γ μ(K,K) =
−∂�pg(K)/∂kμ. This is fully consistent with the arguments
leading up to the no-Meissner constraint in Eq. (2). In this
continuum limit (q → 0), the WTI and charge conservation
have familiar forms, qμ	μ(K̃,K) = G−1(K̃) − G−1(K) and
qμKμν(Q) = 0, respectively.

We emphasize that, given an arbitrary self-energy, solving
the WTI analytically for the full vertex 	μ(K̃,K) is generally
not possible. However, there is a well-defined procedure to
determine this vertex in principle. One inserts the bare vertex
in all possible places in the self-energy diagrams and sums
the resulting series of diagrams. For the class of theories
considered in this Rapid Communication, � itself does not
depend on the full Green’s function G(�), but rather depends
on the bare Green’s functions G0 and their simple extensions;
this is associated with generalized mean-field theories. For
example, in strict BCS theory, �(K) = −�2G0(−K).

Importantly, it follows that in the BCS-like theories of
interest here, the full vertex, 	μ(K̃,K), can be deduced from
the equivalent WTI by considering only finitely many loop
diagrams. We illustrate this procedure specifically for the first
term in the Amperean self-energy in Eq. (1). Using the form
of the self-energy, along with the bare WTI, we have

�1(K) − �1(K̃) = �2
1G1,1(−K)G1,1(−K̃){[� + ξk+q−p − ξk−p] + �2
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= �2
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2G0,4(K)G0,4(K̃)[� + i divq γγγ 4(K̃,K)]} (8)

and
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In this form we can then solve for the exact full vertex:

	μ(K̃,K) = γ μ(K̃,K) + �2
1G1,1(−K)G1,1(−K̃)[γ μ

1 (−K, − K̃) + �2
2G0,4(K)G0,4(K̃)γ μ
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]
. (10)
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Here we have now included the second term from �pg(K) in
Eq. (1).

We emphasize this is not an expansion in the bare vertices.
Rather, the WTI is used to obtain the exact full vertex. The
crucial step is that the self-energy does not depend on the
full Green’s function. If it did, then the full vertex would
appear on both sides of the equation, reducing the problem to
a Bethe-Salpeter equation [16].

Using the full vertex, the exact response function can then
be determined via Eq. (6). The Amperean pairing response
functions would have nine associated Feynman diagrams if
one considered the charge density wave: one of one-loop
order (two Green’s functions), four of two-loop order (four
Green’s functions), and four of three-loop order (six Green’s
functions). The nine Feynman diagrams contributing to the
response functions are presented in the Supplemental Material
[22].

The bare vertices for the density component are given by
γ 0(K̃,K) = γ 0

i (K̃,K) = 1. This then allows the exact density-
density response function Pρρ(Q) to be computed for all Q.
More complicated, for an arbitrary band structure, are the bare
vertices that enter into the current-current correlation function.
However, in the limit q → 0 these can be determined from
Eq. (3). The same reasoning which is used to determine
Pρρ(Q) for all Q is applicable to the spin (density) response,
as measured in neutron experiments.

The full spin response function P
μν

S (Q) is defined by

P
μν

S (Q) =
∑
K

∑
σ

	
μ

Sσ
(K̃,K)G(K)γ ν

Sσ
(K,K̃)G(K̃).

(11)

Here the bare spin vertex is denoted by γ
μ

Sσ
(K̃,K), where

Sσ = ±1 and Sσ̄ = −Sσ . The bare WTI for the spin ver-
tex is � + i divq γγγ Sσ

= Sσ (G−1
0 (K̃) − G−1

0 (K)) = Sσ (� −
ξk+q + ξk). Similarly the full WTI for the full spin vertex
	

μ

Sσ
(K̃,K) is

�	0
Sσ

+ i divq 			Sσ
= Sσ (G−1(K̃) − G−1(K)). (12)

We can then read off the spin-spin correlation function directly
using Eq. (10).
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FIG. 1. (Color online) Comparison of the spin density correlation function Im χ0(Q) = −Im P 00
S (ω,q) for three different values of q in the

Amperean, d-wave, and YRZ pseudogap theories. In (a) we have labeled the van Hove peaks appearing in the d-wave theory, which appear as
saddle points in the contour plot of Fig. 2. Here we use the band structure given in Ref. [3] with T = 0.01 and a broadening of 	 = 0.01. The
doping p = 0.12 and the chemical potential μ is fixed by the Luttinger sum rule. The band structure and frequency are all normalized by t ,
and the gap function has an amplitude of �0 = 0.15. For the Amperean theory we use a kx,ky-symmetrized Gaussian [6] gap function.

From the established constraints on the bare and full vertices
one can directly derive [23] the f -sum rule for the density-
density and spin density response functions,∫

dω

π
(−ω Im P 00(Q)) = 2

∑
k

nk[ξk+q + ξk−q − 2ξk],

(13)

where nk = T
∑

iω G(K). Importantly, this sum rule (and
counterparts for the current-current correlation function) is
satisfied exactly provided the response functions are consistent
with the WTI. This is discussed in more detail in the
Supplemental Material [22].

Behavior of the neutron cross section: Comparison of
pseudogap theories. For illustrative purposes we focus on the
spin-density response function, conventionally called χ0(Q).
Importantly, ensuring Eq. (13) is satisfied provides tight
control over numerical calculations of this correlation function.
When no simplifications are introduced, our numerical calcu-
lations agree with the sum rule to an accuracy of the order of
0.1%–0.2% [21] in all three models. The quantity Im χ0(Q) ≡
−Im P 00(Q) is the theoretical basis for neutron scattering
experiments. [Note that we adopt the sign convention for the
density correlation functions Pρρ(Q) = P 00(Q) for spin and
charge.]

For simple d-wave pairing models, a very reasonable
comparison between theory and neutron data has been reported
at high temperatures (where one sees a reflection of the
fermiology [24,25]) and below TC (where one sees both
a commensurate (π,π ) [26] and a slightly incommensurate
frequency-dependent “hourglass” structure [27,28]). This ap-
proach to neutron scattering presents a (rather successful) rival
scheme to stripe approaches; many different theories, built
on different microscopics, have arrived at similar behavior
[29–32]. In the pseudogap phase (which has received less
attention theoretically), there are peaks at and near (π,π )
[4,12,13] which have been recently argued [4] to reflect some
degree of broken orientational symmetry.

Here we compare the results for χ0(Q) using three different
theories of the pseudogap: a simple d-wave pseudogap, the
theory of Yang, Rice, and Zhang, and that of Amperean
pairing. For the Amperean case we follow Ref. [6] and consider
the simpler 3 × 3 reduced Hamiltonian. In this 3 × 3 form,
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C1 = C2 = 0 and terms involving ξk±2p are dropped. We
do not include the effects of the widely used random phase
approximation (RPA) enhanced denominator introduced in
Ref. [33]. In the RPA enhanced form, χ (Q) = χ0(Q)/[1 +
J (Q)χ0(Q)], where J (Q) is an effective exchange. Even
though χ0(Q) is exact, introducing this ratio will lead to
a violation of the f -sum rule; this effect is not central to
distinguishing between theories, as is our goal here.

Figure 1 presents a plot of Im χ0(Q), for three fixed q
corresponding to (π,π ) in Fig. 1(a), (π,0.75π ) in Fig. 1(b),
and (π,0) in Fig. 1(c) as functions of ω. The normal state
(above T ∗) band structure is taken to be the same, as is the
pseudogap amplitude. The behavior in the low ω regime is
principally, but not exclusively, dominated by the effects of
the gap, while at very high ω the behavior is band-structure
dominated. Importantly, all theories essentially converge once
ω is much larger than the gap. This means that interesting
effects associated with high energy scales [14], such as
observed in recent resonant inelastic x-ray scattering (RIXS)
experiments, would not be specific to a given theory.

Figure 1 shows that there is little difference in the spin
dynamics between the approach of YRZ [7] and that of a
d-wave pseudogap, emphasized earlier in a different context
[34], and helps to explain the literature claims of successful
reconciliation with the data that surround both scenarios
[27,28,32].

What appears most distinctive is the Amperean pairing
response function, particularly away from q = (π,0). Notable
here is the absence of the sharp van Hove peak (marked
by B in Fig. 1) which appears in both of the other theories
and which is ultimately responsible for commensurate peaks
or neutron resonance effects [26]. Also missing from the
Amperean scenario is the so-called spin gap, apparent at (π,π )
in both of the other two theories. Rather, for Amperean pairing
there are multiple low energy processes which contribute to
the spin density correlation function.

To better understand these processes, in Fig. 2 we probe
the dominant component of the integrand in Im χ0(Q) near
q = (π,π ) for the Amperean (right) as compared with d-wave
pseudogap (left) scenarios. We show the equal energy contours
for the sum of the quasiparticle dispersions, E2(k) ≡ Ek +
Ek+q vs kx and ky in the pseudogap state [35]. Indicated on
the figure are the van Hove singularities A and B (saddle
points in the contour plot), as labeled in Fig. 1(a). The
lower energy van Hove point (point B) is clearly suppressed
in the Amperean pairing case, while it is very pronounced

FIG. 2. (Color online) The equal energy contours E2(k) ≡ Ek +
Ek+q which appear as the integrand in Im χ0(ω,q) for both (a) d-wave
and (b) the Amperean pseudogap schemes. Here q = (π,π ). Note
there are several energy scales, as indicated by the legend. The labels
A and B indicate the location of the saddle points of Im χ0(q,ω).

and found to be important [28] for the d-wave case. Also
evident from the cyan region in Fig. 2 is the absence of a
low ω minimum (spin gap) in E2(k), as found in both of
the other two theories, as well as in the integrated response
function.

Conclusions. The central contribution of this Rapid Com-
munication has been to establish an analytically and numer-
ically controlled methodology for addressing the long list of
two-particle cuprate measurements. Given a mean-field-like
self-energy, the exploitation of the Ward-Takahashi identity
(and related sum rules) allows one to evaluate two-particle
properties, and in this way achieve the same level of accuracy
in these comparisons, as in, say, ARPES. To demonstrate
the utility of this method, we address the spin density
response functions of neutron scattering and have singled out
signatures of the recently proposed Amperean pairing theory
[6]. We cannot firmly establish that this pair density wave
theory is inconsistent with experiments (without digressing
from our goals and including the sum-rule-inconsistent RPA
enhancement denominator [33]), but it does lead to a rather
featureless neutron cross section [36]. We report two distinc-
tive observations: the absence of both spin gap effects and of
the sharp van Hove peaks near (π,π ).

This work is supported by NSF-MRSEC Grant No.
0820054. We are grateful to A.-M. S. Tremblay, Yan He, and
Adam Rançon for helpful conversations.
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