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Current inversion at the edges of a chiral p-wave superconductor
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Motivated by Sr2RuO4, edge quasiparticle states are analyzed based on the self-consistent solution of the
Bogolyubov–de Gennes equations for a topological chiral p-wave superconductor. Using a tight-binding model
of a square lattice for the dominant γ band, we explore the nontrivial geometry and band structure dependence of
the edge states and currents. As a peculiar finding, we show that, for high band fillings, currents flow in a reversed
direction when comparing straight and zigzag edges. We give a simple explanation in terms of the positions
of the zero-energy bound states using a quasiclassical picture. We also show that a Ginzburg-Landau approach
can reproduce these results. Moreover, the band filling dependence of the most stable domain wall structure is
discussed.
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Since the discovery of superconductivity in Sr2RuO4, nu-
merous experiments have revealed the unconventional nature
of the pairing state, with many suggesting the spin-triplet
chiral p-wave (CPW) state as the strongest candidate [1–3].
This state belongs to the two-dimensional irreducible repre-
sentation Eu of the tetragonal point group (D4h) with a gap
function parametrized by the vector d(k) = −tr{�̂kiσ̂y σ̂ }/2 =
ẑ�0(kx ± iky)/kF , where �̂k is the gap matrix in spin space
and �0 is the gap magnitude [4,5]. It was pointed out that
chiral superconducting phases are topological superconduct-
ing phases which can be characterized through the topological
invariant associated with their ground states [6–10]. Since time
reversal symmetry is broken, the topology is distinguished by
the Chern number (C1 ∈ Z).

An important consequence of the topology is that spatial
defects (sample surfaces, domain walls, etc.), where the Chern
number changes, can host quasiparticle bound states whose
energy eigenvalues cross the energy gap and connect the two
separate sectors of the bulk spectrum. Generally, in a chiral
phase such a gap crossing yields an imbalance between certain
momentum directions along the defect such that the bound
states can generate a quasiparticle flow and local currents. In
particular, in a CPW state we expect such surface currents
to generate local magnetic fields. While edge states have been
observed by tunneling spectroscopy in Sr2RuO4 [11], attempts
to observe chiral edge currents have failed so far [12–14]. Our
aim is to shed light on this question based on a microscopic
study of the edge states in the CPW state.

Using a tight-binding model of a square lattice for the γ

band of Sr2RuO4 [15] and, assuming a CPW state, we solve
the Bogolyubov–de Gennes (BdG) equations self-consistently.
We study the geometry and band structure dependence of
the edge states and discuss the current pattern that they
generate. It turns out that edge states and currents can strongly
depend on the band filling and the orientation of the surfaces.
For certain conditions the edge state spectrum qualitatively
changes and reverses the edge current directions and can give
rise to an unusual current pattern. This modification can also
be straightforwardly reproduced within a Ginzburg-Landau
formulation.
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The effective tight-binding mean field Hamiltonian reads

H =
∑
ij

εij c
†
i cj + �ijc

†
i c

†
j + �∗

jicicj , (1)

where εij = (ε0 − μ)δij − tγ δ〈ij〉 − t ′γ δ〈〈ij〉〉 is the tight-binding
dispersion relation of the γ band with on-site (ε0 − μ),
nearest-neighbor (tγ ), and next-to-nearest-neighbor (t ′γ ) hop-
ping terms. The mean field gap function is defined through
the gap equation �ij = −gij 〈cicj 〉, with the pairing gij =
gpδ〈ij〉, where we restrict to nearest-neighbor (intersublattice)
pairing interactions. The homogeneous system follows the
Hamiltonian,

Hbulk =
∑

k

c†khkck, hk =
[

εk �k

�∗
k −εk

]
, (2)

with ck = (ckc
†
−k)T . The dispersion relation for the

γ band is now given by εk = ε0 − μ − 2tγ (cos kxa +
cos kya) − 4t ′γ cos kxa cos kya, and the gap function is
�(k) = �x sin kxa + �y sin kya, with (�x,�y) = �0(1, ± i)
(�0 ∈ R).

In the following we solve the Bogolyubov–de Gennes
equation for a ribbon shaped system based on the Hamilto-
nian (1) for two basic orientations: one parallel to a principal
crystal direction having straight edges, and the other along the
diagonal direction, with zigzag edges. We assume translational
invariance and impose periodic boundary conditions along the
ribbon direction, introducing the Bloch wave vector parallel to
the edge, k‖, to label the eigenstates and energy eigenvalues.
For a ribbon with N sites in the perpendicular direction we
then have N equations,

∑
j

[
εij (k‖) �ij (k‖)

�∗
ji(k‖) −εij (−k‖)

] [
un

j,k‖
vn

j,k‖

]
= En,k‖

[
un

i,k‖

vn
i,k‖

]
, (3)

which lead to a spectrum of 2N eigenvalues {En,k‖ }n=1,...,2N for
every k‖ belonging to the reduced Brillouin zone (−�‖,�‖].
The local spectral function is then given by

A(E,k‖,r i) =
2N∑
n=1

∣∣un
i,k‖

∣∣2
δ(E − En,k‖ ). (4)
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FIG. 1. (Color online) Spectral function (drawing made from the
numerical self-consistent solution of the BdG equation) at an edge of
a ribbon as a function of the Block wave vector parallel to the edge,
k‖ ∈ (−�‖,�‖], and the quasiparticle energy E. The coordinates are
chosen such that the normal vector at the surface n = (1,0,0) is
pointing outwards. (a) Straight edge, i.e., the angle of the edge with
respect to the main crystal direction, is θedge = 0◦. (b) Zigzag edge,
i.e., with θedge = 45◦, at different fillings: low filling (red line), high
filling (green line), and transition filling (yellow line).

The clearest signature of the topological nature of the
superconducting state can be seen in the edge states, as
displayed in Fig. 1 through the local spectral function at one
edge of the ribbon. Figure 1(a) shows the situation for the
straight edge (θedge = 0◦) with one spin degenerate subgap
edge mode crossing from the upper to the lower continuum.
The qualitative behavior does not depend on band filling. This
is different for the case of the zigzag edge (θedge = 45◦),
where an intriguing filling dependence can be observed in
Fig. 1(b). The three subgap spectra correspond to the fillings
depicted in Fig. 2. For small filling the Fermi surface lies
within the “nesting” diamond [Fig. 2(a)] and the CPW state
generates a spectrum analogous to the case of Fig. 2(a) with
one zero crossing of the edge state (red curve). On the other
hand, if the band crosses the diamond [Fig. 2(c)], then we
find three momenta k‖ with zero-energy states (green curve).
The transition between the two limits is continuous where the
subgap state energy dispersion is flat at the crossing point
k‖ = 0 (yellow curve), coinciding with the band filling for
which the Fermi surface just touches the diamond [Fig. 2(b)].

The unexpected behavior for the large band filling (green
curve in Fig. 1) is caused by the phase structure of the
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FIG. 2. (Color online) CPW gap function of the γ band at the
Fermi level, �(kF )/�0 = sin kF,xa + i sin kF,ya, represented as a
vector in the complex plane (kx,iky) ∈ C, for different fillings. (a)
Low filling: There is no crossing point between the Fermi surface and
the nesting diamond. (b) Transition filling: The Fermi surface touches
the nesting diamond. (c) High filling: There are four pairs of crossing
points between the Fermi surface and the nesting diamond, which
we write k∗. We note that in addition to the π -phase shift of the gap
function under inversion, at high filling there is a π -phase shift of the
gap function between each two crossing points k∗ and σ k∗, where σ

is the reflection operation for a mirror plane along the diagonal of the
Brillouin zone. They are connected through k∗ = σ k∗ + Q, with the
“nesting” vector Q = (π/a,π/a).

gap function on the Fermi surface plotted in Fig. 2(c). It is
straightforward to derive from a quasiclassical approach that a
phase shift of π of the gap function between the momenta
incident to the edge and scattered from the edge, k and
k′ = σ k, with σ being the reflection operation using a mirror
plane parallel to the sample edge (for specular scattering), leads
to the existence of a zero-energy state with the momentum
k‖ = (k + k′)/2.

The gap function based on nearest-neighbor pairing ac-
quires a π -phase shift for straight edges, generally, and zigzag
edges at small filling [Fig. 2(a)] only, if k‖ = 0. The crossing
points of the Fermi surface on the nesting diamond in Fig. 2(c)
play a special role for the zigzag edge, because they correspond
to momenta with k′ − k = Q = (π/a,π/a), where we find for
intersublattice pairing �(k′) = �(k + Q) = −�(k), i.e., for
these momenta also a π -phase difference appears, leading to
additional zero-energy states.

It is important to notice that this modification of the
spectrum is not a topological feature. The topology of the
superconducting phase is described by the Chern number given
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FIG. 3. (Color online) Schematic edge current pattern for an
octagonally shaped sample at (a) low and (b) high filling. If it is
a CPW superconductor, Sr2RuO4 belongs to the regime (b).

by the integral

C1 = 1

4π

∫
T 2

d2km̂k · (
∂kx

m̂k × ∂ky
m̂k

)
, (5)

where the bulk Hamiltonian (2) is represented as hk = mk · σ̂ ,
from which we obtain the unit vector m̂k = mk/|mk|. The
difference in the Chern numbers on the two sides of the
edge, i.e., sample and vacuum, coincides with the number
of states in the spectrum traversing from the upper to the lower
bulk continuum when scanning the k‖ from −�‖ to +�‖.
In our case, �C1 = C1(outside) − C1(inside) = 0 − 1 = −1
implies that one state moves down, as can be seen in Figs. 1(a)
and 1(b). Indeed, this feature remains unchanged even in the
case of three zero crossings.

We add here a remarkable observation concerning the
current density at different edges. To motivate this we analyze
qualitatively the contribution of the subgap bound states to the
edge current density, which we express as J‖ ∝ ∑

k‖ nk‖vk‖ .
Note that the velocity vk‖ is determined by the quasiparticle
dispersion at the Fermi surface and v−k‖ = −vk‖ . For T = 0
only states with negative energy have nk‖ 
= 0. For straight
edges these are only bound states with k‖ > 0 for all band
fillings, as is obvious from Fig. 1(a). On the other hand, for
zigzag edges we see a change in the momentum distribution.
While for small filling the situation is identical to the straight
edge, for large filling the distribution of the occupied edge
states shifts to negative k‖ [Fig. 1(b)]. From this simple
discussion we anticipate a reversal of the current density for
zigzag edges at high filling, since the Fermi surface topology is
unchanged (Fig. 2) and vk‖ keeps its momentum dependence
qualitatively over the range of band filling considered here.
This qualitative observation is indeed confirmed by our
detailed numerical analysis including all contributions the edge
currents. By interpolation we can state that the edge current
density has to vanish at an intermediate orientation, i.e., for
0 < θe < 45◦, in this case.

It is illustrative to plot schematically the edge current
patterns in an octagonally shaped sample corresponding to
the low- and high-filling regimes in Figs. 3(a) and 3(b),
respectively. While at low filling the edge current has a fully
connected current circuit analogous to the quantum Hall state,
at high filling the edge current now alternates between the
straight and zigzag edges. In the latter case the overall current
pattern would be somewhat more complex. Note, however,
that edge currents are compensated over a distance of London

penetration depth so as to screen the induced magnetic fields.
The filling for Sr2RuO4 is rather large—a typical estimate for
the γ band is (μ − ε0)/tγ ≈ 1.4 [16]. Thus, if it realizes the
CPW state, we expect this material to most likely exhibit the
edge current pattern of Fig. 3(b).

We now turn to the Ginzburg-Landau (GL) formulation
which also accounts for edge currents. The GL free energy
functional can be expanded in the two complex order parameter
components (�x,�y) belonging to the irreducible representa-
tion Eu of the point group D4h. We focus here on the gradient
terms of the free energy density, needed to express the current
density,

fgrad =
∑

μ,ν = x,y

[Kμν |�μ�ν |2 + K̃μν{(�μ�ν)∗(�μ̄�ν̄)

+ c.c.}], (6)

with �μ = �

i
∂μ + γAμ (γ = 2e/c), Aμ the vector poten-

tial, and (x̄,ȳ) = (y,x) [17]. Within a weak-coupling ap-
proach for our tight-binding model we derive the coefficients
Kμν and K̃μν . These are given by the following averages
over the Fermi surface, Kμν = K0〈N0v

2
Fμφ2

ν 〉FS and K̃μν =
K0〈N0vFμvF ν̄φνφμ̄〉FS, with K0 a common constant. The
density of states is given by N0(k) ∝ |kF |/|vF |, the Fermi
velocities are defined as vF = ∇kε(k)|k=kF

, and the gap lattice
form factors are given by φν = sin kνa for nearest-neighbor
pairing. Note that by symmetry, Kxx = Kyy , Kxy = Kyx ,
K̃xx = K̃yy = K̃xy = K̃yx , and all coefficients are positive.

We consider now the edge currents within the GL formu-
lation. The order parameter at the edge can be characterized
by the simplified boundary conditions (ignoring the vector
potential) that the component �n = 0 and ∂n�n̄ = 0 at the
surface, where n denotes the component perpendicular (n̄
parallel) and ∂n is the derivative perpendicular to the surface.
We restrict ourselves to the two main directions with θedge = 0◦
and 45◦. An approximative spatial dependence of the order
parameter is given by �n(rn) = �0 tanh(−rn/ξn) and �n̄ =
i�0, with rn < 0 the coordinate perpendicular to the surface
located at rn = 0 and ξn the corresponding healing length.
The current density jn perpendicular to the surface vanishes
naturally and the current density parallel is approximately
given by

jn̄(rn) ∝ Kn�0∂n|�n(rn)| = −Kn�
2
0

ξn

cosh−2(rn/ξn), (7)

where Kn = K̃xx for θedge = 0◦ and Kn = (Kxx − Kxy)/2 for
θedge = 45◦. Therefore, we always find a negative current
density along a straight right edge [since ∂n|�n(rn)|rn=0 < 0].
On the other hand, the sign of the current density parallel
to a zigzag edge depends on the ratio Kxx/Kxy . Using the
weak-coupling expressions of the GL coefficients, we plot
this ratio in Fig. 4 as a function of the filling μ − ε0 (the
other tight-binding parameters are kept constant). We find a
threshold filling μc above which the ratio Kxx/Kxy becomes
smaller than 1, leading to a positive current density parallel to
a zigzag edge (the other way around if the filling is below
μc). Therefore, when μ < μc, the profile of the GL edge
currents of an octagonal sample corresponds to Fig. 3(a), and
when μ > μc, it is given by Fig. 3(b). The full self-consistent
solution of the quasiclassical and Ginzburg-Landau equations
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FIG. 4. (Color online) Ratio of Ginzburg-Landau coefficients
Kxx/Kxy as a function of the filling μ − ε0, computed in the
weak-coupling limit for a tight-binding model. The remaining tight-
binding parameter is chosen as t ′

γ /tγ = 0.43. There is a threshold
filling, (μc − ε0)/tγ ≈ 1, above which Kxy is bigger than Kxx . At
(μ − ε0)/tγ = −5.71, the filling is zero (isotropic limit) with the
ratio Kxx/Kxy = 3.

for the straight and zigzag edges will be presented in a future
publication.

We briefly address here the consequences of the filling
dependence of the ratio Kxx/Kxy for the structure of domain
walls in the CPW state, parallel to one principal crystal axis,
i.e., θDW = 0. An approximate shape of the domain wall
can be given by �ν(x) = αν�0 tanh(x/ξ̃ ) and �ν̄ = βν̄�0,
with ξ̃ ∝ √

Kxν , (αx,βy) = (1,i), and (αy,βx) = (i,1) for the
two basic structures. Inserting this into the GL free energy,
we obtain EDW ∝ ξ̃ ∝ √

Kxν , such that the relative energy
between the two types of domain wall is simply given by the
ratio Kxx/Kxy . The stable domain wall structure (for θDW = 0)
is once more determined by the band filling. When μ < μc,
the domain wall has a kink in the parallel component, here �y ,
and when μ>μc, the most stable domain wall has a kink in
the perpendicular component, here �x . Discussions of stable
domain wall shapes have so far been based on the low-filling

properties of the CPW. Our extension here requires, therefore,
also a revision of the conclusions drawn based on domain wall
structure, in particular, in the context of interference effects in
Josephson contacts [18–21].

Finally, let us comment on a recent experiment aiming at
detecting edge currents by a scanning magnetometer on the
top surface of small cylinders (of radius r ∼ 5–10 μm) of a
highly pure single crystal of Sr2RuO4 [14]. Since our analysis
of a CPW state that is compatible with the γ band of Sr2RuO4

reveals the reversal of current flow between the straight and
zigzag edges [Fig. 3(b)], we expect that the edge currents
may be strongly suppressed in circularly shaped samples of
small radius. This might be responsible for the rather small
upper bound for the currents, stated by Ref. [14]. Obviously,
also currents at extended edges might be influenced by our
finding, in particular, if the edges are faceted and lead to
retroreflection [12,22,23]. Note that a perfectly square sample
might be more suitable for a stronger conclusion.

We conclude by noting that functional renormalization
group calculations suggest that next-to-nearest-neighbor pair-
ing terms are very important in Sr2RuO4 [15]. Introducing
them does not change the qualitative picture discussed in
this work as long as the nearest-neighbor pairing coupling
dominates. With growing next-to-nearest-neighbor pairing, the
CPW state exhibits a phase transition from the topological
sector C1 = ±1 to C1 = ∓3 as a function of the filling.
While the qualitative picture for the edge currents and our
basic conclusions remain unchanged through such a transition,
the bound state spectrum is strongly modified. A detailed
discussion corresponding to this situation will be discussed
elsewhere [24].
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