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Super-Potts glass: A disordered model for glass-forming liquids
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We introduce a disordered system, the super-Potts model, which is a more frustrated version of the Potts glass.
Its elementary degrees of freedom are variables that can take M values and are coupled via pairwise interactions.
Its exact solution on a completely connected lattice demonstrates that, for large enough M , it belongs to the class
of mean-field systems solved by a one-step replica symmetry breaking ansatz. Numerical simulations by the
parallel tempering technique show that in three dimensions it displays a phenomenological behavior similar to
the one of glass-forming liquids. The super-Potts glass is therefore a disordered model allowing one to perform
extensive and detailed studies of the random first-order transition in finite dimensions. We also discuss its behavior
for small values of M , which is similar to the one of spin glasses in a field.
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Glass-forming liquids have a very peculiar and rich
phenomenology [1]. Dynamical correlation functions are
characterized by a two-step relaxation, indicating that a finite
fraction of degrees of freedom, e.g., density fluctuations, takes
an increasingly longer time τ to relax. This time scale actually
grows very rapidly—more than 14 orders of magnitude in
a rather restricted window of temperatures—and can be
fitted by the Vogel-Fulcher-Tamman law, hence suggesting
a possible divergence at finite temperature. The slowing
down of the dynamics is accompanied by the growing of
dynamical correlations, which can be measured by a four-point
susceptibility. This function displays at time τ a peak that
grows with decreasing temperature and is related to the number
of molecules that have to move in a correlated way in order to
make the liquid flow.

One of the most influential results obtained in the field of
glass transitions was the discovery by Kirkpatrick, Thirumalai,
and Wolynes [2] that some—apparently unrelated—fully
connected mean-field (MF) disordered systems, such as the
Potts glass, display a phenomenology very similar to the one
described above. This set the stage for an approach to the
glass transition problem that combined disordered systems,
and mode-coupling and Adam-Gibbs theories, and culminated
in the development of the random first-order transition (RFOT)
theory [3]. Although structural liquids do not explicitly contain
quenched disorder in the Hamiltonian, they are frustrated and
characterized by a very complicated rugged energy landscape.
This is the key element they have in common with several
disordered systems and that is at the origin of the relationship
cited above. MF disordered systems divide in two classes:
Some have a phenomenology similar to glass-forming liquids,
and others to spin glasses. The former are the ones for which,
in replica language, the one-step replica symmetry breaking
(1RSB) approximation is exact [4]. For these models the
relaxation time is known to diverge at a finite temperature,
called Td [5]. This transition was shown to be identical
to the one predicted by the mode-coupling theory of glass
transitions [1,6]. Below Td ergodicity is broken. The phase
space is fractured into a number of states N that is exponential
with the size N of the system: N ∝ eN� (� is called the
complexity or configurational entropy). The system undergoes
a thermodynamic phase transition in the manner of Kauzmann

at a smaller temperature TK < Td , where the configurational
entropy vanishes and hence the number of states that dominate
the Boltzmann measure becomes subexponential [7]. The
order parameter for this transition is the overlap q measuring
the similarity between two different replicas of the system
(characterized by the same realization of the disorder). Its
distribution P (q) shows a single peak at qRS for T > TK and
two distinct peaks q0 and q1 for T < TK . The lowest value,
q0, corresponds to the two replicas being in configurations
belonging to two different amorphous states, whereas the
higher one, q1, to configurations belonging to the same state.
There is, however, another class of MF disordered systems,
the spin glasses, characterized by a quite different behavior.
They display a continuous transition and are solved by the
full replica symmetry breaking (FRSB) ansatz [8]. Dynamical
correlation functions do not show any two-step relaxation, the
four-point susceptibility is not peaked, P (q) has continuous
support below the transition, and TK = Td .

In view of the aforementioned analogy between structural
glasses and MF 1RSB disordered models and of its relevance
in RFOT theory, the numerical results on finite-dimensional
counterparts of MF 1RSB systems were deceiving. It was
found that the usual fate of these systems, once studied on
finite-dimensional lattices, is to display either a continuous
spin-glass transition or no transition at all. For instance, the
MF Potts glass [9], the model from which RFOT theory
originated, is characterized by a glass transition for any p > 4,
where p is the number of values that Potts variables can
take, but in three dimensions (3D) it does not show any
transition for p = 10 [10]. The problem of the disappearance
of the 1RSB phenomenology in finite dimensions could be
a signal of the fragility of the 1RSB theory out of MF, and
poses the question of the validity of RFOT in D = 3, as
discussed in a series of papers by Moore and collaborators
[11]. In a recent work [12] it was pointed out that the MF
disordered models studied so far are not frustrated enough
and even simple local fluctuations are enough to change their
physics (see also Ref. [13]). This is well illustrated by their
change of behavior on Bethe lattices, which provide a better
mean-field-like approximation than fully connected models
since they have finite connectivity and, hence, allow one to
take into account the kind of local fluctuations present in finite
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dimensions. One should not conclude, however, that there are
no models or results connecting MF theory to the behavior
of finite-dimensional glass-forming liquids. Indeed, there are.
Lattice glass models display the correct phenomenological
behavior and they belong to the 1RSB class when solved
on a Bethe lattice [14,15]. A particular form of a disordered
five-spin model appears to behave correctly, too [16]. Finally,
hard spheres in the limit of infinite dimensions do display a
1RSB transition [17]. However, from the point of view of the
quest for finding simple finite-dimensional models displaying
a glass transition, all these systems suffer from one or more
limitations: They are either too hard to simulate in finite
dimensions or they display a crystal phase that preempts the
existence of the glass transition and deep supercooling or they
do not have pairwise interactions, which makes them difficult
to be analyzed in finite dimension, in particular, by real space
renormalization group methods.

The aim of this Rapid Communication is to introduce and
study a model that short circuits these problems and therefore
offers a way to test RFOT theory and to answer questions on
glassy physics. We call it the super-Potts model. It is similar
to the modifications of the Potts glass introduced and studied
in Refs. [18,19], which display a continuous transition and not
the discontinuous one that we are looking for. Its degrees of
freedom are variables that take M values, as in the usual Potts
model, and its Hamiltonian reads

H ({σ }) =
∑
(i,j )

εij (σi,σj )

with

εij (σi,σj ) =
{
E0 if (σi,σj ) = (σ ∗

i ,σ ∗
j ),

E1 otherwise,
(1)

and (σ ∗
i ,σ ∗

j ) are randomly drawn among the M × M possible
couples (σi,σj ) [independently for any couple of neighbors
(i,j )]. For simplicity we will take E0 = 0. We believe that
singling out one random couple of variables per link makes
the model more frustrated than the usual Potts glass [9] and
the random-permutation versions of Refs. [18,19]. This is
manifest in dimension D = 1. For these models, after having
chosen the value of the first Potts variable, one can easily
find sequentially the configuration of the next variable that
minimizes the energy, because for each value of one variable,
there exists a value of the neighboring one that can minimize
the energy of the link. For the super-Potts glass, instead, there
is only one particular configuration of both variables that
minimizes the energy of the link, and not all the links can
be satisfied simultaneously, even in D = 1. The super-Potts
glass can be easily generalized to more complicated choices
of the link energy, e.g., εij (σi,σj ) randomly drawn from a
Gaussian distribution. In this way, in the limit M → ∞, one
ends up with a random energy model on each link [20,21].

We first present the analytical solution of the fully con-
nected MF super-Potts glass. The corresponding Hamiltonian
is the one in Eq. (1) with the sum over all pairs of Potts variables
and the energy that scales as E1 = e1√

N
, with e1 = O(1) for

finite M and N being the total number of Potts variables. We
sketch briefly the main steps of the computation and the results
(more details can be found in the Supplemental Material [22]).

The replica method allows one to compute the average free
energy f = fε , where the bar indicates the average over the
disorder, in terms of the partition function of n replicas:

e−βNnf = lim
n→0

Zn = lim
n→0

∑
{σ }

∏
i,j

e−β
∑n

a=1 εij (σa
i σ a

j ). (2)

Repeating standard procedures [7], i.e., computing the average
over the disorder, expanding the exponential for large N , and
introducing Gaussian integrals over an auxiliary matrix Qab,
we obtain

Zn ∝
∑
{σ }

∫ ∏
a<b

dQabe
−NA(Q,{σ }) ∝

∫
dQe−NS(Q), (3)

with

A(Q,{σ }) = C
∑
a<b

Q2
ab − 1

N

∑
a<b

2C

N∑
i=1

δσa
i σ b

i
Qab, (4)

where we defined C = ( βe1

M
)2. We have chosen e1 = M in order

to reabsorb the scaling with M of the critical temperature. The
integral over Q is performed by the saddle-point method. The
saddle-point value of Qab, defined by the equation dA(Q,{σ })

dQ =
0, corresponds to the average value of the overlap 1

N

∑
i δσ a

i σ b
i
.

By using the replica symmetric (RS) ansatz, we restrict the
possible forms of Qab to Qab = qRS. Within this assumption
the saddle-point equation simplifies to

qRS =
∫ M∏

τ=1

dhτ√
4π

e− h2
τ
4

∑M
τ=1 e2

√
CqRShτ(∑M

τ=1 e
√

CqRShτ

)2 .

Here and in the following, we shall solve these kinds of
M-dimensional integrals by the Monte Carlo method. Note
that even when the RS solution is the correct, stable one,
qRS is different from zero. In order to analyze whether the
RS solution is the correct one, we have also studied its local
stability by diagonalizing the Hessian of the action: Gab,cd =
d2S(Qab)
dQabdQcd

|Qab=qRS [23]. One eigenvalue is always larger than 0,
while the other one becomes negative at TRS(M), indicating
that the RS solution becomes unstable at low temperature. The
values of TRS(M) are listed in Table I for M = 4,10,20,50.
Below TRS(M) one necessarily has to look for a RSB solution.
The next step is therefore to assume a 1RSB ansatz [4] for the
matrix Qab, which is parametrized by three parameters, q0, q1,
0 � m � 1. We are interested in finding Td,TK and deciding
whether the transition is continuous or discontinuous; all this
information can be obtained in the limit m → 1 [24]. In this

TABLE I. βRS, βd , βk , and the difference q1 − q0 at the dynamical
transition for different values of M for the fully connected MF version
of the super-Potts model.

M βRS βd βk q1(βd ) − q0(βd )

4 2.0841(9) 2.07(3) 2.07(3) 0
10 1.9658(6) 1.949(12) 1.949(12) 0
20 2.306(1) 2.215(4) 2.229(1) 0.2623(1)
50 3.255(6) 2.589(7) 2.665(3) 0.5772(7)
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case, q0 = qRS and the saddle-point equation on q1 reads

q1 =
∫ M∏

τ=1

dητ√
4π

e− η2
τ
4∑M

τ=1 eC(q1−qRS)+√
CqRSητ

×
∫ M∏

τ ′=1

dhτ ′√
4π

e− h2
τ ′
4

∑M
τ ′=1 e2(

√
C(q1−qRS)hτ ′+√

CqRSητ )∑M
τ ′=1 e

√
C(q1−qRS)hτ ′+√

CqRSητ

.

Note that q1 = qRS is always a solution. As usual, we locate
Td as the highest temperature at which one finds a solution
q1 �= q0 and TK as the temperature at which the configurational
entropy vanishes [25]. We found that for large values of
M (M = 20,50), q1 emerges discontinuously from q0, and
TK (M) < Td (M), signaling that the transition is 1RSB, i.e.,
glass-transition-like. For smaller M (M = 4,10), instead, q1

emerges continuously from q0 and TK (M) = Td (M), meaning
that the transition becomes continuous and similar to the one
of MF spin glasses in a field, i.e., of FRSB type. The difference
between q0 and q1 at Td grows for larger M , indicating that
increasing M indeed favors structural glasslike behavior. The
values of Td (M), TK (M), and q1 − q0 at Td are listed in
Table I. In agreement with previous results, for M = 4 and 10,
the critical temperatures are compatible within the error with
TRS [26].

As discussed previously, three-dimensional glass models
may behave quite differently from their MF counterparts. It
is therefore crucial to check that the super-Potts glass still
behaves as a glass beyond MF. To this aim, we performed
Monte Carlo (MC) numerical simulations of the model on a
cubic lattice. We use the parallel tempering algorithm [27]
to thermalize the system at low temperatures, running it
simultaneously at 30 different temperatures. Four replicas have
been simulated in parallel, letting them evolve independently
with the same realization of disorder. We measure the overlap q

between two of them, replicas a,b, as qab = 1
N

∑N
i=1 δσa

i ,σ b
i
. We

check the equilibration by dividing the first measurements into
bins with a logarithmically growing size, and we assume that
the system has reached the equilibrium when the probability
distribution of the overlap P (q) between the first two replicas
is equal to P (q) of the second two replicas inside the last
bin, and with respect to the precedent bin (practically, we
check the first four moments of q). Equilibration time is of
the order of 108 MC steps for systems with M = 30 and size
L = 8. Once the system is thermalized, we run standard MC
simulations to measure the dynamical correlation functions.
Disorder averages were performed over 30 samples, while
thermal ones over 100 trajectories. The behavior of the two
times correlation (the angle brackets indicate the thermal
average),

C(t) = 1

N

∑
i

〈σi(0)σi(t)〉,

is shown in Fig. 1 for M = 30 [28]. By lowering the temper-
ature, the two-step relaxation characteristic of glass-forming
liquids emerges (for M = 30, the true plateau, corresponding
to the peak of the susceptibility, is preceded by a first plateau
that saturates at low enough temperature). Note that the
asymptotic value of C(t), C(∞) ≡ q0, is nonzero since the
super-Potts glass, as many other disordered models introduced
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FIG. 1. (Color online) Two-time correlation function for systems
with M = 30 and L = 8 (main panel, inverse temperature β equally
spaced in [0.28,0.85], from left to right) and with L = 12 M = 4
(inset, β equally spaced in [0.76,1.09], from left to right). Note
that the characteristic two-step relaxation emerges on top of the
asymptotic value C(∞) = q0 > 0.

previously [9,18,19], has no symmetry precluding q0 from
being different from zero (in consequence, the two-step
relaxation emerges on top of q0) [29]. The value of q0 grows,
lowering the temperature, as found also in the MF model,
starting from q0 = 1/M at T = ∞. For small values of M ,
instead, one finds a relaxation similar to the one of spin glasses
in a field, as shown in the inset for M = 4. In Fig. 2 we show
that the evolution of the four-point susceptibility χ4(t), defined
as

1

N

∑
i,j

(〈σi(0)σi(t)σj (0)σj (t)〉 − 〈σi(0)σi(t)〉〈σj (0)σj (t)〉),

confirms this trend: χ4(t) is peaked, its maximum takes place
at the time at which the correlation escapes from the plateau,
and grows when lowering the temperature, as it happens for
supercooled liquids. This behavior, present for M = 30, is
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FIG. 2. (Color online) Four-point susceptibility for a system with
L = 8, M = 30 (main panel) and with L = 12, M = 4 (inset).
Temperatures as in Fig. 1.
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FIG. 3. (Color online) P (q) for a system with L = 10, M = 20.
β equally spaced in [0.55,1.3] (from left to right).

markedly different from the one shown in the inset for M =
4. For M’s in between the two presented values the system
actually seems to show a mixed behavior; for instance, χ4(t)
shows a peak but also a growing plateau. We also studied
the overlap distribution P (q). Although of course one would
need much larger sizes to provide convincing evidence of a
phase transition, our results, shown in Fig. 3, suggest that if
there is a transition, then it should be discontinuous already for
M = 20, since a second peak seems to appear discontinuously
at small temperatures as if a 1RSB transition were indeed
taking place. Overall, our numerical results indicate that at
large M (M � 20) the super-Potts glass behaves similarly to
glass-forming liquids, whereas for smaller M’s analogously
to a spin glass in a field, in agreement with the MF treatment
presented before.

In conclusion, we introduced a model, the super-Potts glass,
and showed that is an example of a glassy disordered system
with pairwise interactions, solved by a 1RSB ansatz at the MF
level, and which has, in three dimensions, a phenomenological
behavior strongly reminiscent of glass-forming liquids. In
particular, it shows stretching (nonexponential behavior) and
two-step relaxation for the correlation function, a time for
the relaxation from the plateau that seems to diverge at finite
temperature, a growing peak in the four-point correlation
function, and a discontinuous peak appearing in the P (q). The
glassy behavior is only found for sufficiently high numbers M

of values that the Potts variables can take. This is reasonable
if we think of a real-world structural glass, where the degrees
of freedom, i.e., the position of particles, can take infinite
values. Compared to previous models for which the glassy
behavior does not survive in finite dimensions, the super-Potts
glass is more frustrated and this enhances its stability. Indeed,
we computed the so-called surface energy cost Y to disrupt
amorphous order, as was done in Ref. [12], and found a
value of Y/TK , which is an order of magnitude higher than in
previous models for large values of M , e.g., M = 50. There
are several extensions of our work worth pursuing further.
First, it would be interesting to clarify how the transition
between the glasslike to the spin-glass-like behavior induced
by decreasing the value of M takes place, both in mean field
and in finite dimensions. A possible scenario, inspired by
the behavior of the 2 + 4 spin MF model, is the following
[30]: Whereas at small M there is a pure FRSB phase and at
large M a pure 1RSB phase, at intermediate M , by decreasing
the temperature, there is first a RS to FRSB transition, and
then, lowering the temperature further, there is a transition
to a 1 + FRSB in which P (q) has a continuous part but also
develops a discontinuous peak. This is consistent with the
fact that for intermediate values of M the correlation function
and the four-point susceptibility show mixed features that are
characteristic of both the 1RSB and FRSB phases. Another
research direction for future studies is solving exactly the
super-Potts model on Bethe lattices. This would provide a
good approximation to the 3D case since, as we found in
numerical simulations, the behavior on cubic and Bethe lattices
with connectivity C = 6 is qualitatively and also quantitatively
similar. The exact solution of models on the Bethe lattices can
be obtained via the cavity method, which in the case of the
super-Potts glass, however, is particularly challenging [31]. It
could be also interesting to apply the trick used in Ref. [18]
to obtained a modified version of the model that could have a
symmetric P (q), allowing an easier thermalization and more
extensive numerical simulations. Finally, another interesting
route to follow in order to clarify the behavior of the 3D model
is by performing a renormalization group analysis. Since the
model has pairwise interactions, this can be naturally done by
the Migdal-Kadanoff approximation.
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