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First-principles study of the multimode antiferroelectric transition in PbZrO3
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We have studied ab initio the phase transition in PbZrO3, a perovskite oxide usually presented as the prototypic
antiferroelectric material. Our work reveals the crucial role that antiferrodistortive modes—involving concerted
rotations of the oxygen octahedra in the structure—play in the transformation, as they select the observed
antiferroelectric phase, among competing structural variants, via a cooperative trilinear coupling.
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From a structural point of view, most ABO3 perovskite
oxides present phases that can be regarded as distorted versions
of the cubic prototype [1–3]. Many are characterized by
concerted rotations of the O6 octahedra that constitute the
basic building block of the lattice (e.g., SrTiO3, most man-
ganites and nickelates). A second group presents off-centering
displacements of the A and B cations, which typically result
in a switchable ferroelectric (FE) polarization (e.g., BaTiO3

or PbTiO3). Finally, these two features appear combined in
some cases (e.g., BiFeO3 or LiNbO3). Exceptions to these
typical situations are uncommon, but are attracting growing
interest. In particular, materials displaying an antipolar cation
displacement pattern, i.e., the so-called antiferroelectric (AFE)
order, are currently a focus of attention for both fundamental
and applied reasons [4–6].

Many phases characterized by rotations of the O6 octahedra
(antiferrodistortive or AFD modes henceforth) also display
antipolar displacements of the A cations. Such antipolar
distortions are typically a consequence of the AFD modes [7]
and would not exist in their absence; the ensuing AFE order
can thus be regarded as improper in nature. In contrast, here
we are interested in materials usually described as proper
AFEs, in which a phase transition accompanied by a dielectric
anomaly is supposedly driven by a primary antipolar order
parameter. (We adopt the most common definition of a proper
AFE transition [4].) PbZrO3 (PZO) displays such a striking
behavior, and is usually presented as the prototypic AFE
crystal [8–11]. However, the nature of PZO’s transition is far
from being settled, as new experimental results and conflicting
physical pictures have recently been reported [12,13]. Hence,
there is a need to clarify PZO’s behavior and status as a model
AFE. Here we present a first-principles investigation to that
end.

Main modes and their couplings. We followed the usual
first-principles approach to the investigation of a nonrecon-
structive phase transition, taking advantage of the experimental
knowledge of the high-temperature (cubic Pm3̄m, with the ele-
mental five-atom unit cell) and low-temperature (orthorhombic
Pbam, with a 40-atom unit cell) structures [14,15]. The
unit cell of the AFE Pbam phase can be viewed as a√

2 × 2
√

2 × 2 multiple of the elemental unit, as sketched
in Fig. 1(a). More precisely, if a1 = a(1,0,0), a2 = a(0,1,0),
and a3 = a(0,0,1) define the ideal five-atom cell in a Cartesian
reference, the Pbam cell vectors are given by b1 = a1 − a2,
b2 = 2(a1 + a2), and b3 = 2a3. As shown in Fig. 1(b), PZO’s

AFE distortion involves displacements of the Pb cations along
the pseudocubic [11̄0] direction, modulated according to the
wave vector q = q� = 2π (1/4,1/4,0)/a of the first Brillouin
Zone (BZ) of the five-atom cell. (We give all vectors in the
pseudocubic setting.)

We used standard methods based on density functional the-
ory (details in [16]) to relax the Pm3̄m and Pbam phases, and
got results [16] in good agreement with experiments [14,15]
and previous theoretical works [17,18]. Then, we employed
standard crystallographic tools [19] to identify the symmetry-
adapted distortions connecting these two structures, and found
three dominating ones [20]: (1) A �2 component associated
with the q� wave vector and which captures 36.0% of the total
distortion. This is the AFE� displacement pattern sketched in
Fig. 1(b). Interestingly, this distortion also has certain AFD
character, as oxygen displacements reminiscent of an in-phase
rotation about the b3 axis are clearly appreciated. (2) A
R+

4 component associated with qR = 2π (1/2,1/2,1/2)/a and
involving antiphase rotations of the O6 octahedra about the
[11̄0] axis [see sketch in Fig. 1(c)]. This AFD distortion
amounts to 59.7% of the total. (3) A S4 distortion associated
with qS = 2π (1/4,1/4,1/2)/a that captures 4.1% of the
total and is sketched in Fig. 1(d). This distortion too has a
mixed character, combining AFE features with others that are
reminiscent of AFD modes.

We then considered the simplest model that captures how
the energy of PZO changes as a function of these three
distortions of the cubic phase. Let Q� , QR , and QS denote
the respective amplitudes, which we normalize so that Q� =
QR = QS = 1 describe the situation at the Pbam ground state.
To fourth order, the energy has the form [19]

E = Ecubic + A�Q2
� + B�Q4

� + ARQ2
R + BRQ4

R

+ASQ
2
S + BSQ

4
S + C�RSQ�QRQS

+D�RQ2
�Q2

R + D�SQ
2
�Q2

S + DRSQ
2
RQ2

S. (1)

Interestingly, we find a trilinear coupling C�RS involving all
three modes under consideration. Such a coupling, whose
existence had been noticed already [13,21], is cooperative
in nature and provides a mechanism for the simultaneous
occurrence of the involved distortions. In order to get a
quantitative estimate of the model parameters, we investigated
various paths to transit between the Q� = QR = QS = 0
and Q� = QR = QS = 1 states. Figure 2 shows the results;
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FIG. 1. (Color online) (a) Sketch of the five-atom primitive cubic
cell (small cube) and the

√
2 × 2

√
2 × 2 cell corresponding to PZO’s

AFE phase (large polyhedron). For the latter, the bi lattice vectors
are shown (see text). (b)–(d) Three main distortion modes that lead to
PZO’s ground state (see text). Symmetry labels indicated. Bonds
between Zr (dark blue) and O (red) atoms are drawn. Note the
characteristic AFE displacement of the Pb (cyan) atoms associated
with the �2 distortion.

the quality of the fit to Eq. (1) (parameters in caption) is
excellent [22].
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FIG. 2. (Color online) Circles: Computed energies of various
structures defined by (Q�,QR,QS) triads (see text; the triads for
the limit and intermediate structures are indicated). Lines: Fit to
Eq. (1); fitted parameters (meV per formula unit): A� = −337.3,
B� = 112.7, AR = −420.9, BR = 149.1, AS = −16.4, BS = 0.6,
C�RS = −48.4, D�R = 131.7, D�S = 13.6, and DRS = 22.4. For all
triads we considered the equilibrium cell of the Pbam phase in the
calculations (note that the Q’s do not involve any strain); results using
the relaxed cubic cell are very similar [16]. The dashed horizontal line
marks the energy of the fully relaxed ground state.

Several conclusions can be drawn from these results. First,
all three �2, R+

4 , and S2 modes are instabilities of the cubic
phase when considered individually. The AFD instability is
the dominant and strongest one, closely followed by the AFE
mode; in contrast, the energy gain associated with the S4

mode is clearly smaller. Next, note that all the biquadratic
couplings in Eq. (1) are competitive in nature, i.e., we
have D�R,D�S,DRS > 0. Interestingly, the AFE and AFD
instabilities are strong enough to coexist in spite of their mutual
repulsion; in contrast, condensation of either the AFE or AFD
distortion results in the stabilization of the S4 mode. Finally,
and remarkably, the trilinear term has a considerable impact in
the ground state energy: When going from (1,1,0) to (1,1,1)
via relaxation of the S4 distortion, the energy undergoes a
considerable reduction, by about 27 meV per formula unit
(f.u.). These three distortions together produce an energy gain
of 392 meV/f.u. compared to the cubic phase. Full relaxation
(via other structural modes not considered here) leads to a
further energy decrease of only 3 meV/f.u., which confirms
the dominant character of Q� , QR , and QS .

Competing phases. Earlier studies suggest that the equi-
librium Pbam phase of PZO competes with other FE, AFE,
and AFD structures [17,21,23–25]. We thus ran a series of
computer experiments to shed some light on why PZO chooses
such an unusual phase over more common alternatives.

We computed the energy of several hypothetical PZO
phases displaying combinations of the most typical AFD and
FE displacement patterns. We also considered a number of
AFE patterns similar to AFE� but with different periodicities.
To obtain the AFEq states, we first displaced the Pb cations
by hand along the [11̄0] direction with the spatial modulation
of the targeted wave vector, and then let the structure fully
relax while preserving the initial symmetry. (In some cases
the relaxed structures present more complex Pb displacements
than initially expected.) From the results, which are summa-
rized in Table I, a number of conclusions emerge. On one
hand, the pure FE state R3m is more stable than the purely
AFD or AFE ones, although they all lie relatively far from the
ground state (e.g., the R3m solution lies at 58 meV/f.u. above).
Combinations of FE and AFD distortions, on the other hand,
can produce structures that are remarkably close to the ground
state (the R3c and Ima2 solutions lie at 7 and 19 meV/f.u.,
respectively). In fact, the energy difference between the Pbam

and R3c or Ima2 phases is smaller than the energy associated
with the trilinear term discussed above (27 meV/f.u.), which
suggests that such a coupling is essential for the stabilization
of the ground state. The central role played by the mutual
interaction between modes is also corroborated by our results
for the AFEq phases: q� is not the most favorable modulation,
suggesting that, in the absence of the R+

4 and S4 modes,
there would be no reason for the crystal to favor it over, e.g.,
q = 2π (1/8,1/8,0)/a.

Phonon mode analysis. The results discussed so far point
to a crucial role played by the AFD distortions in stabilizing
the observed antiferroelectric phase of PZO. It is therefore
reasonable to speculate that condensation of the AFD modes
may have an important impact on the unstable phonon branch
associated with the polar (FE/AFE) modes. To verify this
hypothesis, we calculated the phonon spectrum of PZO in two
different configurations: first in the optimized cubic phase,
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TABLE I. Computed energies of PZO adopting several structures
characterized by the presence of AFD (labeled using Glazer’s
notation [1]) and polar distortions. For the polar distortions, we
indicate whether they are FE or AFE and the (approximate in some
cases) direction along which the dipoles lie. In cases in which there is
more than one AFE component, we only indicate the dominant wave
vector.

E − Egs

Structure (meV/f.u.) AFD dist. Polar dist.

Pbam (gs) 0 a−a−c0 AFE [11̄0]
q = 2π (1/4,1/4,0)/a

Pm3̄m 375
I4/mcm 113 a−b0b0

Imcm 52 a−a−c0 AFE [11̄0]
q = 2π (1/2,1/2,1/2)/a

R3̄c 75 a−a−a−

Pnma 35 a−a−c+ AFE ∼ [110]
q = 2π (0,0,1/2)/a

P 4mm 124 FE [100]
Amm2 91 FE [110]
R3m 58 FE [111]
Ima2 19 a−a−c0 FE [110]
R3c 7 a−a−a− FE [111]

Pbmm 217
AFE [11̄0]

q = 2π (1/2,1/2,0)/a

Pbama 68
AFE ∼ [100]

q = 2π (1/4,1/4,0)/a

Pbama 60
AFE ∼ [100]

q = 2π (1/8,1/8,0)/a

aThis structure has the same space group as the ground state (gs), but
its corresponding cell is different.

and second in a phase where we optimized (by freezing it in
by hand with an amplitude corresponding to QR = 1.13) the
relevant AFD (a−a−c0) component, while keeping the other
structural parameters identical to those of the cubic geometry.

The resulting phonon bands, calculated on a �′-Y ′ path in
reciprocal space, are shown in Fig. 3. At QR = 0 [Fig. 3(a)]
we recover the spectrum of the cubic reference, appropriately
folded onto the smaller BZ of the

√
2 × √

2 × 2 cell that
we used to accommodate the AFD tilts. As previous authors
noted [26], this phase presents multiple strong instabilities
of both polar and AFD character, with the latter (particularly
those at qR) appearing to dominate over the former. As ex-
pected, we observe a whole band of unstable polar distortions,
which includes the FE and AFE patterns associated with most
of the phases of Table I. Within this band, the FE mode at �′
clearly dominates over the AFE modes.

The onset of the AFD distortions has a dramatic influence on
the unstable region of the phonon spectrum [Fig. 3(b)]. Most of
the formerly unstable modes have been stabilized—only five
branches with imaginary frequency persist. At the �′ point
of the folded BZ these are (from most to least unstable)
(A) a c+-type AFD mode that would lead to the Pnma

structure of Table I; (B) a FE mode with the polarization
oriented along [11̄0] that would lead to the Ima2 phase;
(C) a c−-type AFD mode leading to R3̄c; (D) an AFE mode
with q = 2π (1/2,1/2,0)/a and polar distortions aligned with
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FIG. 3. (Color online) Phonon bands calculated along the �′-Y ′

line in the BZ of the 20-atom (
√

2 × √
2 × 2) cell used to simulate the

QR-distorted structure (see text). Primed labels denote wave vectors
of this BZ. As a consequence of the folding, such a path encompasses
four inequivalent segments in the BZ of the primitive cubic cell,
each of which has been assigned a different color and symbol type:
�-� (black circles), M-�̄ (red squares), Z-S (green crosses), and
R-S̄ (blue stars), where q�̄ = −q� and qS̄ = −qS . The size of each
symbol corresponds to the decomposition (projection) of a given
mode into the four components described above. (a) Cubic phase
(QR = 0). (b) Distorted phase (QR = 1.13). The dashed lines in (b)
indicate the hypothetical phonon spectrum obtained by suppressing
the interaction (off-diagonal terms) between q-point pairs (see text).
Only the low-energy part of the spectrum, including the unstable
branches, is shown.

[11̄0]; (E) a similar AFE mode but with q = 2/π (0,0,1/2)/a
that is also present in the Pnma phase. All of these branches,
except two, eventually become stable when moving away
from �′. The surviving doublet (F) is predominantly of AFE�

character (80%) with a smaller S4 component (20%). This is,
of course, the distortion that directly leads to the ground-state
structure. Remarkably, the doublet is now more unstable than
the FE mode at �′ [only AFD-c+ appears to be stronger in panel
(b)], confirming the crucial role played by QR in selecting a
specific AFE ground state [27].

To understand which couplings are primarily responsible
for such an outcome, we performed a further computational
experiment. Note that, to leading order, the effect of a certain
QR = Q̄R distortion on the phonon spectrum is given by two
types of terms: trilinear ones of the form Qq1,sQq2,s ′Q̄R , where
s and s ′ label atomic displacements and q1 + q2 + qR is a
reciprocal lattice vector; and biquadratic ones of the form
Qq,sQ

∗
q,s ′Q̄

2
R . Hence, we recalculated the phonon bands of

the Q̄R-distorted structure while suppressing the off-diagonal
elements of the dynamical matrix that couple (q1,q2) pairs. The
result, shown as dashed lines in Fig. 3(b), clearly shows that the
trilinear terms play a crucial role in pushing the zone-boundary
doublet (F) to lower energies than the FE mode at �′, and
effectively favors the occurrence of the former in the ground
state.
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Nature of PZO’s phase transition. PZO’s AFE structure
involves distortions of various symmetries, and it seems
experimentally proved that all of them appear spontaneously at
a single, strongly discontinuous transformation upon cooling
from the cubic phase [4,11]. Our simulations do not incorpo-
rate thermal effects, which prevents us from discussing PZO’s
transition in a conclusive way. Yet, they provide some hints
that are useful in light of recent experimental measurements in
which simultaneous softening of multiple phonon modes was
observed [12,13]. Based on the fact that the acoustic branch
was also involved in the softening, theoretical models have
been formulated where the phase transition is rationalized in
terms of flexoelectric couplings [12]. Note that in this recent
model the ferroelectric branch is believed to drive the transition
and, in line with earlier works [10], the AFD distortions are
assumed to play a secondary role.

Let us begin by noting that, in principle, a strongly first-
order transition like PZO’s may or may not be accompanied
by a significant mode softening. Our results are compatible
with such a quasireconstructive transformation, of the sort that
occurs in perovskite oxides sharing some of PZO’s peculiar
features. A notable example is BiFeO3 [28–31], which also
presents stable phases lying far below the cubic phase, strong
FE, AFE, and AFD instabilities, low-lying R3c and Pnma

polymorphs, etc.
Notwithstanding these considerations, a particular soft

mode might still drive the transformation. Let us assume that
the AFD R+

4 mode plays such a role. (Our argument remains
valid if we swap the roles of the R+

4 and �2 modes.) Then,
let us consider the harmonic part of a Landau potential for the
�2 and S4 modes, at the AFD transition temperature (TR) at
which a R+

4 distortion of amplitude Q̄R materializes. We would
have

F (Q�,QS) ∼ [
Ã� (TR − T�) + D̃�R Q̄2

R

]
Q2

�

+ [
ÃS (TR − TS) + D̃RS Q̄2

R

]
Q2

S

+ (C̃�RSQ̄R) Q�QS, (2)

where T� and TS are the critical temperatures for the
corresponding instabilities, and all the Ã and D̃ parameters
are positive. Our calculations show that the AFD and AFE�

instabilities are similarly strong; thus, we can tentatively
assume TR � T� . In such conditions, if [Ã� (TR − T�) +

D̃�R Q̄2
R] is comparable in magnitude to C̃�RSQ̄R , then the

above harmonic term might present a combined �2 + S4

instability. In other words, the occurrence of a discontinuous
AFD transition could spark the �2 and S4 distortions, resulting
in a single Pm3̄m → Pbma transformation. Alternatively,
if the conditions for the �2 + S4 instability occurred at
T�S � TR , an intermediate phase could be observed between
T�S and TR . This kind of phenomenology—i.e., the possi-
bility of observing the so-called avalanche transitions and/or
intermediate phases—has been discussed in some detail by
Perez-Mato, Etxebarria, and co-workers for systems and toy
models that, according to our results, bear obvious similarities
with PZO [32,33].

Regardless of whether we should view PZO’s transition as a
quasireconstructive one or a soft-mode driven one, the central
role of the AFD modes (to stabilize the Pbam phase over
other alternatives or provide the induction mechanism through
a trilinear coupling, respectively) is clear from our results. This
is in line with the hypotheses made in [13] and questions the
validity of models that treat the AFD distortions as a secondary
effect [12].

In summary, our work has led to key insights concerning
PZO’s AFE transition. Most importantly, our results suggest
that the multimode character of the transformation is essential
to its very occurrence. In particular, we have found that AFD
modes associated with oxygen octahedra rotations play a key
role in selecting the experimentally observed AFE structure,
over competing structural variants, via a cooperative trilinear
coupling. Consequently, it does not seem appropriate to think
of a primary AFE order parameter driving PZO’s transition;
rather, our results suggest a peculiar improperlike nature of
the AFE order. PZO thus appears as a very complex material,
which poses the provocative question of whether its intricate
behavior can be taken as representative of antiferroelectricity
in perovskite oxides.

Acknowledgments. This work was supported by
MINECO-Spain (Grants No. MAT2010-18113 and No.
CSD2007-00041). We also acknowledge support from
Generalitat de Catalunya (2014 SGR 301) (J.Í. and
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