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Quantum phase transition with a simple variational ansatz
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We study the zero-temperature quantum phase transition between liquid and hcp solid 4He. We use the
variational method with a simple yet exchange-symmetric and fully explicit wave function. It is found that the
optimized wave function undergoes spontaneous symmetry breaking and describes the quantum solidification of
helium at 22 atm. The explicit form of the wave function allows us to consider various contributions to the phase
transition. We find that the employed wave function is an excellent candidate for describing both a first-order
quantum phase transition and the ground state of a Bose solid.
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Properties of solid 4He have regained attention due to a
host of unexpected physics discovered in the past decade
[1–8]. Most of the new features occur close to absolute zero
and are believed to be primarily driven by quantum effects.
Consequently, the solidification of 4He came under renewed
scrutiny. The role of quantum statistics in the transition
location has been recently revisited in Ref. [9]. At small but
nonzero temperatures, indistinguishability of particles destabi-
lizes the quantum solid. Distinguishable particles, on the other
hand, would solidify even at low pressures, with the phase
diagram reminiscent of the Pomeranchuk effect [10,11]. The
feature was dubbed in [9] as thermocrystallization. A similar
effect was seen numerically for the Wigner-crystallization of
a two-dimensional Coulomb system [12]. The solidification
of 4He at zero temperature was revisited in Ref. [13] with
the density functional theory (DFT). Results were improved
compared with previous DFT studies.

In this paper, we show that the quantum solidification of
4He can be considered variationally, with a single explicit
wave-function which selects the phase through optimization
of the thermodynamic potential. Quite surprisingly, we find
that the phase transition is predicted properly, given the relative
simplicity of the wave function. While the variational treatment
is used for quantum phase transitions at the mean-field level
[14], it is relatively uncommon that a (discontinuous) transition
can be described with a microscopic wave function. The
finding is also interesting in light of growing interest to the
first-order quantum phase transitions [15,16].

At zero temperature, the phases of 4He can be studied in an
essentially exact form with a family of projector methods,
including Green’s-function Monte Carlo [17,18], diffusion
Monte Carlo [19], and path-integral ground-state Monte Carlo
[20]. These methods properly describe the phase transition in
helium, and can provide insight on the nature of its ground
state [21,22].

Variational calculations with shadow-type wave functions
(SWFs) [23] provide accurate results both for the liquid and
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solid phases of 4He [23,24], and describe the transition [25–27]
and coexistence [28] between the two phases. The SWFs can
be seen as representing a single step of a projection calculation
[23]. The projection is carried out by performing the numerical
integration of the shadow degrees of freedom. In this sense,
the SWF is not fully explicit, as one cannot write down the
result of such an integration. We consider SWF calculations as
a class of their own, in between the exact projection methods
and the simple and fully explicit wave function used here.

Highly effective wave functions have been developed over
the years for liquid and (nonsymmetric) solid helium. Accurate
multiparameter two- and three-body terms [29–31] result in
energies that are nearly exact [31]. However, efficient one-body
(lattice) terms that are also exchange-symmetric have not been
reported.

The wave function that we consider here was proposed
specifically for solid 4He [32]. It has been since then used
extensively for importance sampling in projector Monte Carlo
methods [33–35]. This wave function is a product of the
Jastrow term, which accounts for the pair correlations, and a
cleverly symmetrized Nosanow-like term. The wave function
has the form

ψsnj =
⎛
⎝ Np∏

i<j

f (|r i − rj |)
⎞
⎠

⎛
⎝ Ns∏

k

Np∑
i

g(|r i − lk|)
⎞
⎠ , (1)

where Np is the number of atoms, and Ns is the number of
lattice sites, located at lk . The position of the ith particle is
labeled r i . Suitable for our interest in the thermodynamic
limit, ψsnj has the translational invariance broken by the
lattice site locations lk . Notice that the second, product-sum
term in Eq. (1), is not a permanent, and the computational
cost of ψsnj scales only as the square of the number of
particles. Pair-correlation factors f (rij ) can be taken with the
pseudopotential either in the McMillan form [36,37],

f (r) = exp

[
− 1

2

(
b

r

)5]
, (2)

or in a more involved form with midrange correlations, as
detailed below. Atoms are localized to the lattice sites with
factors g(r). We use the Gaussian form

g(r) = exp
[− 1

2γ r2], (3)
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FIG. 1. (Color online) Energy per particle obtained with the two-parameter symmetric wave function ψ
{b,γ }
snj given by Eqs. (1)–(3), as

a function of variational parameters b and γ , for three different densities. Parameters are shown in terms of σ = 2.556 Å. Simulation used
Np = Ns = 900 particles. (a) Density ρ = 22.2 nm−3 displays a single minimum, at γ = 0, which corresponds to a liquid phase; (b) intermediate
density ρ = 25.8 nm−3 is in the liquid-solid coexistence region, and has two separate local minima; (c) density ρ = 29.3 nm−3 displays only
one minimum, corresponding to the solid phase. Contours are separated by 0.4 K.

with parameter γ describing the strength of the site localiza-
tion.

To better understand the structure of ψsnj, we can write the
wave function in the form

ψsnj =
Np∏
i<j

f (rij )
Ns∏
k

Sk, (4)

with the site sums Sk(r1, . . . ,rNp ) given by

Sk =
Np∑
i

g(|r i − lk|).

While each sum Sk depends on the coordinates of all particles,
it does not contain interparticle distances. One can view them
as a generalized form of one-body correlation factors, in
the formal sense that ∇i �=j · ∇j Sk = 0. In this view, Eq. (4)
consists of the one- and two-body terms of the general
Feenberg form for the trial wave function [38,39]. Equation
(4) also emphasizes the flexibility of ψsnj. The number of sites
does not need to be equal to the number of particles. One
may confine atoms to given regions of the lattice by including
these atoms only in some of the sums Sk . Limiting each sum
to only one atom recovers the original Nosanow-Jastrow wave
function [40], with Ns = Np,

ψnj =
⎛
⎝ Np∏

i<j

f (|r i − rj |)
⎞
⎠(

Ns∏
k

g(|rk − lk|)
)

. (5)

The Nosanow-Jastrow wave function ψnj yields good varia-
tional energy and has long been used to describe solid 4He.
Unfortunately, ψnj is not exchange symmetric [41]. The one-
body term imposes a heavy penalty for removing an atom away
from its “parent” site. A straightforward symmetrization of ψnj

yields poor results [42], or otherwise results in computationally
prohibitive wave functions.

The lattice structure lk , which enters through the site-
localization terms g(·), can in principle be seen as a parameter
to the wave function. In this case one may optimize between
different lattice symmetries, or optimize individual site posi-
tions. On the other hand, the lattice can be seen as an input to
the problem. Here we follow the latter path, since we aim to
study the experimentally known zero-temperature solid phase
of 4He. Thus lk are located on a geometrically ideal hcp lattice.

We begin with the variational energy optimization of the
two-parameter trial wave function ψ

{b,γ }
snj given by Eqs. (1)–(3).

The energy is given by

E(b,γ ) = 〈
ψ

{b,γ }
snj

∣∣Ĥ ∣∣ψ {b,γ }
snj

〉/〈
ψ

{b,γ }
snj

∣∣ψ {b,γ }
snj

〉
, (6)

with many-body Hamiltonian

Ĥ = − �
2

2mHe4

Np∑
i=1

∇2
i +

∑
i �=j

V (rij ),

using the pairwise interaction potential proposed by Aziz et al.
[43]. The multidimensional integral implied by Eq. (6) was
evaluated with a Metropolis Monte Carlo scheme [44,45].
We performed a direct minimization on a grid of b and γ

values, for a range of densities. Three characteristic examples
of the energy surface are shown in Fig. 1. At low densities,
there is a single minimum with γ = 0. The wave function
with γ = 0 reduces to the translationally invariant Jastrow
product and corresponds to a liquid phase. At intermediate
densities, an additional local minimum appears at nonzero
values of γ , corresponding to a state with broken translational
symmetry. This minimum corresponds to a crystalline phase,
as was verified from the scaling with Np of the static structure
function. With further increase in density, this second γ �= 0
minimum lowers in energy and eventually “overtakes” the liq-
uid γ = 0 minimum. Thus the solid phase becomes preferred
variationally, and the optimized system loses translational
symmetry. With the densities increased further still, the liquid
minimum disappears. While this picture is quite similar to
the classical first-order phase transition, where energy is
considered as a function of thermodynamic parameters of the
system, here we are plotting the energy surface as a function
of variational parameters of the wave function. The optimal
values of parameters b and γ , shown in Fig. 2 as a function of
density, display a clear transition between the solid and liquid
states. As our simulated system is finite, the sharpness of this
transition is in fact a remarkable occurrence [46–48]. Despite
effort, we were not able to detect any smooth rollover between
the phases. Technically, the two minima in the energy surface,
as shown in Fig. 1(b), are always distinct. We attribute this
effect to the fact that the thermodynamic limit is accessible to
the finite system through the provided lattice lk .

Full thermodynamic analysis requires minimization of the
Gibbs free energy, which at T = 0 equals enthalpy, G = E +
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FIG. 2. (Color online) Optimized parameters of the two-
parameter symmetric wave function given by Eqs. (1)–(3), as a
function of density. Parameters are shown in units of σ = 2.556 Å.
Left vertical axis corresponds to the value of the site-localization
parameter γ , while the right axis shows parameter b.

PV . Enthalpy has to be extracted from the equations of state
E{b,γ }(ρ) computed for each possible set of parameters {b,γ }.
The pressure can be computed via

P {b,γ }(ρ) = ρ2 ∂E{b,γ }/N

∂ρ
.

We solve the above equation for ρ {b,γ }(P ) and find the Gibbs
energy for each set of parameters,

G{b,γ }(P ) = E[ρ {b,γ }(P )] + PN/ρ {b,γ }(P ). (7)

Next, we minimize G{b,γ }(P ) with respect to variational
parameters,

G(P ) = min
{b,γ }

G{b,γ }(P ). (8)

It is possible to show that only the parameters which minimize
energy at some density will also minimize free energy at any
pressure. The parameters which minimize the free energy at
a given pressure also provide the density and energy at that
pressure. While this method is relatively straightforward, such
analysis has not been reported in the past, presumably because
of the large underlying computational costs.

We carried out the minimization procedure outlined above
for a range of densities. The Gibbs free energy, shown in Fig. 3
as a function of pressure, exhibits a kink characteristic of a
first-order phase transition. Corresponding to the weakness
of this transition, the kink is subtle yet well defined. We
performed a linear fit to the free energy of the solid phase near
the transition, and subtracted this fit from the free energies. The
result, which emphasizes the transition, is plotted in the inset
to Fig. 3. Somewhat unexpectedly, the transition occurs at a
pressure of 20 atm, close to the correct value of 25 atm. This is
especially surprising given the simplicity of our two-parameter
wave function. The optimization of the Gibbs energy at a
given pressure also selects the density of the state. This is
equivalent to inverting Eq. (7) for the density ρ under the
minimization condition of Eq. (8). At the transition pressure,
optimized density jumps from the lower density of freezing ρf

to the higher density of melting ρm [49]. At zero temperature,
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FIG. 3. (Color online) Gibbs free energy, per particle, of the
optimized state of the two-parameter symmetric wave function given
by Eqs. (1)–(3). Arrow indicates the location of the phase transition.
The inset shows the free energies with subtracted linear fit to the solid
phase of the 180-particle system.

the density discontinuity also provides information about the
latent heat �E, since �E = P (1/ρf − 1/ρm). Optimized
density ρ(P ) is plotted in Fig 4, along with the experimental
values [50]. Results are shown for several particle numbers,
from Np = 180 to Np = 900. As can be seen, the size effects
are moderate and the extrapolated transition pressure for the
two-parameter wave function is close to 20 atm.

The two-body factors of Eq. (2) account for the short-range
behavior of the interaction potential. More accurate two-body
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FIG. 4. (Color online) Optimized density as a function of pres-
sure. Blue lines show density for the two-parameter symmetric wave
function ψsnj for varying number of particles, N = 180, 448,and 900.
The size effects in the transition location are below the statistical error,
which is about 1 atm. Purple line shows density for five-parameter
symmetric wave function with improved pair-correlation factor (9),
with transition at 22 bars. Green line shows density for the traditional,
nonsymmetric Nosanow-Jastrow wave function of Eq. (5), with
transition at 5 bars. Red cross marks show experimental melting
and freezing densities [50]. The piecewise appearance of data comes
from different equations of state ρ(P ) selected by the varying
pressure-optimized variational parameters; size of the steps is thus
indicative of the statistical error.
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factors can be obtained by including mid-range correlations,
as in the form proposed in Ref. [51],

f (r) = exp

[
−1

2

(
b

r

)5

+ 1

2
s exp

(
r − λ

w

)2]
. (9)

The resulting five-parameter symmetric wave function given
by Eqs. (1), (3), and (9) was optimized and analyzed as de-
scribed above. For nonzero optimal γ , the midrange correlation
factor optimizes away, i.e., s = 0. That is, the solid phase does
not benefit from such correlations. The results for the optimal
density at each pressure are shown in Fig. 4. As can be seen, the
transition location has improved, and the zero-pressure liquid
density has increased, which is closer to the experiment. We
also carried the optimization with the two-body factors that
included the low-energy phonon contribution along Ref. [52].
Such terms had little influence on the transition location. We
conclude that the main source of discrepancy in the pressure
of the phase transition stems from deficiencies in the two-body
factors and the absence of three-body correlation factors in the
liquid phase.

The optimization of the thermodynamic potential was also
carried out for the two-parameter (unsymmetrized) Nosanow-
Jastrow wave function ψnj given by Eqs. (2), (3), and (5). The
optimization results are included in Fig. 4. Solidification for
ψnj occurs already at 5 bars, a dramatic fivefold departure
from the correct location of the transition. This coincides with
early findings by Hansen and Levesque, who determined the
transition for the unsymmetrized wave function to occur at
pressures of about 8 atm [53]. In fact, the freezing density
ρf for ψnj lies below the correct experimental equilibrium
density of helium liquid at vapor pressure. (The equilibrium
density is underestimated by all wave functions by as much

as 15%.) Thus the nonsymmetric Nosanow-Jastrow wave
function misses the transition by a wide margin. It should be
noted that ψnj in fact provides lower energies for the solid than
the symmetric ψsnj, by up to 1 K. Strict site localization makes
ψnj insensitive to the deficiencies in the two-body factors.
The symmetrical ψsnj allows for virtual interstitials and is
more sensitive to the form of two-body factor f (r). As the
balance between phases amounts to the difference between
free energies, to some extent a cancellation occurs, improving
the location of the transition for ψsnj.

To summarize, we studied at the variational level the
quantum phase transition between superfluid and hcp solid
4He. The transition properties were determined by optimizing
the Gibbs free energy. We used a wave function which
describes a quantum solid with broken translational symmetry
but that is, at the same time, exchange symmetric. Below the
melting pressure, the optimized wave function reduces to a
translationally symmetric Jastrow function describing a liquid.
Given the simplicity of the wave function, it is remarkable that
the transition is found at a pressure that is only three to five
atm away from the correct experimental value. We attribute
the discrepancy to the quality of the pair-correlation terms
and the lack of three-body correlations in the liquid phase.
These findings strongly support the form given by Eq. (1)
as a suitable symmetric wave function for describing both a
first-order quantum phase transition and a quantum Bose solid.
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