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We theoretically investigate electronic transport through a junction where a quantum dot (QD) is tunnel
coupled on both sides to semiconductor nanowires with strong spin-orbit interaction and proximity-induced
superconductivity. The results are presented as stability diagrams, i.e., the differential conductance as a function
of the bias voltage applied across the junction and the gate voltage used to control the electrostatic potential
on the QD. A small applied magnetic field splits and modifies the resonances due to the Zeeman splitting of
the QD level. Above a critical field strength, Majorana bound states (MBS) appear at the interfaces between
the two superconducting nanowires and the QD, resulting in a qualitative change of the entire stability diagram,
suggesting this setup as a promising platform to identify MBS. Our calculations are based on a nonequilibrium
Green’s function description and is exact when Coulomb interactions on the QD can be neglected. In addition,
we develop a simple pictorial view of the involved transport processes, which is equivalent to a description in
terms of multiple Andreev reflections, but provides an alternative way to understand the role of the QD level in
enhancing transport for certain gate and bias voltages. We believe that this description will be useful in future
studies of interacting QDs coupled to superconducting leads (with or without MBS), where it can be used to
develop a perturbation expansion in the tunnel coupling.
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I. INTRODUCTION

During the last few years there has been considerable
interest in the search for Majorana bound states (MBS) [1],
partly because they have a unique capability for so-called
topological quantum computation [2]. Some systems believed
to host MBS include the ν = 5

2 fractional quantum Hall
state [3], p-wave superconductors [4], topological insulators
coupled to s-wave superconductors [5], and two-dimensional
electron gases with strong spin-orbit interaction (SOI), coupled
to s-wave superconductors and exposed to a magnetic field
[6,7]. A slight twist to the two-dimensional electron gas
proposal is to realize MBS in one-dimensional semiconductor
nanowires with strong SOI and large g factors, which can
be coupled to a superconductor simply by fully or partially
covering the wire with a superconducting material [8–12]. We
will focus here on the nanowire system.

This research was originally driven by theoretical efforts,
but has very recently also attracted the attention of several
experimental groups. In order to detect the MBS which
are possibly realized in such experiments, several types
of hybrid devices have been fabricated, such as super-
conductor/normal metal (S/N) structures [13,14], supercon-
ductor/quantum dot/normal metal (S/QD/N) structures [15],
and superconductor/quantum dot/superconductor (S/QD/S)
structures [15,16] [where the S electrode(s) are made from
a nanowire covered with a superconductor and (possibly)
hosts the MBS]. MBS can then be detected by driving a
current from one side to the other (tunnel spectroscopy),
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where the presence of a MBS gives rise to a zero-bias peak
(ZBP) in the conductance. Such ZBPs have indeed been
experimentally observed [13–18]. However, ZBPs can also
appear for many other reasons [19–24] and more evidence of
MBS is needed. In devices with two superconducting leads,
the 4π periodic dc Josephson effect has been theoretically
predicted to serve as a signature of MBS [25] and although
this has not yet been observed experimentally, there have been
reports of unusual current-phase relations [26] and fractional
ac Josephson effect [27] which might also indicate the presence
of MBS. Calculations have shown that in a topological weak
link between two trivial superconductors the existence of
MBS changes the subgap features related to multiple Andreev
reflection (MAR) [28]. It has also been shown theoretically
that MAR in a weak link between two superconductors in
the topological phase (i.e., hosting MBS) could cause novel
subgap structures different from the trivial case [29] which can
also be regarded as signatures of MBS.

In this paper, we investigate a S/QD/S setup. Nanowires as
links between two superconducting leads were experimentally
realized almost a decade ago [30,31] (although these studies
did not aim to realize MBS) and it was shown that the
supercurrent can be controlled by a gate voltage. We investigate
instead a voltage-biased junction and, assuming that the QD
level can be controlled by a gate voltage, we calculate the full
stability diagram, i.e., the nonlinear differential conductance
as a function of gate and bias voltage. To this end, we calculate
the time-averaged ac Josephson current and differential con-
ductance (dI/dVb) using the nonequilibrium Green’s function
(NEGF) method. We show that the stability diagram looks
completely different when the superconducting electrodes
host MBS compared to the case without MBS. This allows
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FIG. 1. (Color online) (a) Sketch of the transport setup with a
voltage-biased nanowire S/QD/S configuration. The bias voltage Vb

is applied between the superconducting contacts and the electrostatic
potential on the QD is controlled by the gate voltage Vg . (b) The
model abstracted from the setup in (a). The leads are semi-infinite
tight-binding chains with the end sites coupling to the QD with tunnel
couplings �L and �R .

detection of MBS through the qualitative appearance of the
entire stability diagram, rather than just from a zero-bias peak
which is more likely to arise for other reasons. To complement
the calculations, we develop a simple pictorial view of multiple
Andreev reflection (MAR) in S/QD/S junctions and analyze
and explain how this changes when MBS are present.

The paper is structured in the following way. In Sec. II, we
introduce our setup and model. The leads can be driven into
a topological phase with MBS appearing at the edges next to
the QD, giving rise to novel Majorana-related signals in the
conductance. The details of the calculation can be found in the
Appendix. The main results are presented in Sec. III, where
we show the calculated stability diagrams with and without
MBS and analyze the positions of the peaks in both cases. The
main focus is on the limit of weak S/QD tunnel coupling, but
we also present results in the strong-coupling limit. Section IV
summarizes and concludes.

II. MODEL AND METHOD

In our S/QD/S transport setup (see Fig. 1), the total
Hamiltonian Htotal consists of three parts: the leads Hα=L,R ,
the QD HQD, and the coupling between them Hc.

The leads and the QD are realized in a one-dimensional
nanowire along the x axis with strong SOI which is exposed to
a magnetic field. The leads have been made superconducting
by proximity coupling to s-wave Bardeen-Cooper-Schrieffer
(BCS) superconductors (not shown). Introducing the electron
creation/annihilation operator c

†
nσ /cnσ for site n and spin σ ,

after discretizing the continuous Hamiltonian [8,9], the tight-
binding Hamiltonian is Hα = ∑

nm Hα
n,m, where

Hα
n,m =

∑
σ

c†nσ δn,m[(2t − μ) + Vzσz]σσ cmσ

+
∑
σσ ′

c†nσ [(−t + iα0σy)δn,m−1 + H.c.]σσ ′cmσ ′

+�δn,m(eiφc
†
n↓c

†
m↑ + H.c.). (1)

Here, m,n are the site indices, t = �
2

2m∗a2 is the parameter
related to bandwidth, with � the reduced Planck constant, m∗
the effective mass, and a the lattice spacing. α0 is the Rashba
SOI strength, μ is the chemical potential, Vz is the Zeeman
energy, and � and φ are the absolute value and phase of the
superconductor pair potential, respectively. In Eq. (1) and in
the following, we have suppressed the lead index α on all
quantities even though they may be different in the two leads
(in the actual calculations presented, only μα are different for
α = L and R). Rewritten in Nambu basis

Cn = [cn↑ cn↓ c
†
n↓ − c

†
n↑]T , (2)

each lead is described by a tight-binding Bogoliubov–de
Gennes (BdG) Hamiltonian

Hα = 1

2

∑
n,m

C†
n

(
Hα

BdG

)
n,m

Cm + const, (3)

(
Hα

BdG

)
n,m

= h0δn,m + h1δn,m−1 + h−1δn,m+1, (4)

where

h0 = (2t − μ)τz + Vzσz + �(τx cos φ − τy sin φ), (5)

h1 = (−t + iα0σy)τz, (6)

h−1 = (−t − iα0σy)τz. (7)

The Pauli matrices σi=x,y,z, τi=x,y,z operate on spin and
particle-hole spaces, respectively. Note that � is the induced
superconducting pairing potential in the nanowire, which is
experimentally found in InSb and InAs wires to be in the range
0.13–0.45 meV [14–16,27,32–35], while the SOI strength α0

typically is 0.07–0.3 meV [14,36].
The applied bias voltage Vb acting on the superconductor

lead enters Hα
BdG through a change of chemical potential,

which can be transferred to a time-dependent phase of the
Nambu basis [37,38]. The phase of the superconductor pair
potential φ can also be removed fromHα

BdG to the Nambu basis
through a similar gauge transformation. These transformations
result in a time-dependent coupling of the QD and lead in
Eq. (13). The relevant lead Green’s function is that of the
site closest to the QD, which can be found numerically by
extending the lead tight-binding chain to infinity [39–41]. This
semi-infinite lead Green’s function captures both bulk states
and possible edge states (such as MBS). Note that we here
assume the potential resulting from the bias voltage to drop
only at the tunnel barriers defining the QD. The possibility
that, e.g., surface roughness causes the bias voltage to drop
over the whole nanowire and form a Majorana island will be
considered elsewhere.

The single-level QD is described by the Hamiltonian

HQD =
∑

σ

d†
σ

(
E0 − eVg + Vzσz − eVb

2

)
σσ

dσ , (8)

where d†
σ /dσ is the creation/annihilation operator of the QD,

E0 is the energy of the QD level without applied voltages,
and Vg is the gate voltage (for simplicity, we set the gate
coupling to one). The Zeeman energy Vz is assumed to be the
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same as in the lead. The term involving Vb appears because
we assume the bias to be applied only to the right lead, VR =
−Vb, VL = 0, and assume the capacitances associated with the
right and left leads to be equal and much larger than the gate
capacitance (the physics is equivalent to using symmetric bias
VR = −Vb/2, VL = +Vb/2, with a QD level independent of
Vb, but for technical reasons it is easier to consider only one
lead to be biased). Rewritten in Nambu basis

D = [d↑ d↓ d
†
↓ − d

†
↑]T , (9)

the Hamiltonian becomes

HQD = 1
2D†HQD

BdGD + const, (10)

with

HQD
BdG =

(
E0 − eVg − eVb

2

)
τz + Vzσz. (11)

The retarded Green’s function of the isolated QD is

gr
QD(ω) = (

ω − HQD
BdG + iδ

)−1
(12)

and the advanced Green’s function is ga
QD(ω) = g

r†
QD(ω), where

δ = 0+ is an infinitesimal positive number (in the numerical
calculations we will use a small finite δ).

Tunneling between the QD and leads is described by the
coupling Hamiltonian, which in terms of the Nambu basis
defined above is given by

Hc = 1

2

∑
αk

[C†
αkTα(τ )D + D†T †

α (τ )Cαk], (13)

where Tα(τ ) = tcτze
iτzeVατ . The coupling tc is assumed to

be real, independent of lead momentum, and to only couple
components with the same spin. With the bias being applied
only to the right lead, the couplings are TL(τ ) = TL = tcτz,
TR(τ ) = tcτze

−iτzeVbτ .
The time-averaged current Idc is (see the Appendix for a

derivation)

Idc = e

h
Re Tr

∫ eVb

−eVb

dω

× [
Gr

QD(ω)�<
L (ω) + G<

QD(ω)�a
L(ω)

]
τz, (14)

where G and � are matrices in Fourier space, and the trace
is also taken in Fourier space [42]. The full retarded Green’s
function of the QD is derived from the Dyson equation Gr

QD =
gr

QD + Gr
QD�r gr

QD,

Gr
QD = [(

gr
QD

)−1 − �r
]−1

, (15)

and the lesser Green’s function is obtained from the Keldysh
equation

G<
QD = Gr

QD�<Ga
QD, (16)

where retarded/lesser self-energies are �r/< = �
r/<

L + �
r/<

R .
The Fourier components of the above Green’s functions and
self-energies are

gr
QD,mn(ω) = δmng

r
QD(ωm), (17)

�
r/<

L,mn(ω) = δmn�τzg
r/<

L (ωm)τz, (18)

0zV

zV
.50zV

/

2zV

FIG. 2. (Color online) DOS at the end site of an isolated lead for
t = 10�, μ = 0, α0 = 2�, and δ = 10−5� in the retarded Green’s
function. The different curves are the results for Zeeman energy
Vz = 0 (blue line), Vz = 0.5� (black dotted-dashed line), Vz = �

(green dotted line), and Vz = 2� (red dashed line).

�
r/<

R,mn(ω)=�

[
δmng

r/<

R,11(ωm+ 1
2
) −δm,n−1g

r/<

R,12(ωm+ 1
2
)

−δm,n+1g
r/<

R,21(ωm− 1
2
) δmng

r/<

R,22(ωm− 1
2
)

]
,

(19)

where the coupling strength between the QD and both leads
is the same, � = t2

c , and subscript ij in g
r/<

R,ij (ω) means the
ij th 2 × 2 block of the corresponding 4 × 4 matrix. The lesser
Green’s function of the lead is related to the retarded Green’s
function as

g<
L/R(ω) = −f (ω)

[
gr

L/R(ω) − ga
L/R(ω)

]
(20)

= −2if (ω)Imgr
L/R(ω), (21)

where f (ω) = 1/(e
ω

kB T + 1) is the Fermi-Dirac distribution
function with kB the Boltzmann constant and T the tempera-
ture. The second equality is a result of the lead Green’s function
being symmetric when φ = 0, which can always be satisfied
by a gauge transformation.

The current is calculated from Eq. (14) by numerical
integration and the size of the matrices in Fourier space is
increased until the current has converged.

III. RESULTS AND ANALYSIS

A. Density of states at the end of the leads

We first examine the density of states (DOS) at the end
site of an isolated lead, which is calculated from the Green’s
function

ρ(ω) = − 1

π
Tr

{
Imgr

L(ω)
}
. (22)

For Vz = 0, the DOS exhibits the well-known BCS singular-
ities and superconducting gap (see blue line in Fig. 2). As
the Zeeman energy Vz increases, the energy gap Eg decreases
from Eg(Vz = 0,μ = 0) ≡ � and the singularities at the edge
of energy gap become smoother (see black dotted-dashed
line in Fig. 2 where Vz = 0.5�). The gap closes when
Vz =

√
�2 + μ2, shown in the green dotted line in Fig. 2.

For larger Vz the gap opens again, but the superconductor is
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now in a topological phase and a MBS emerges as a sharp
peak in the DOS, which persists at zero energy regardless
of how the Zeeman energy varies (see the red dashed line
in Fig. 2).

B. Tunnel spectroscopy in the trivial phase without MBS

In order to have a clear comparison, we first investigate
tunnel spectroscopy in a S/QD/S junction without MBS. We
focus on the tunneling limit, where the coupling is weak
enough that only tunneling processes of low order in �

are visible in the differential conductance dI/dVb (which is
fulfilled when �/� < 1).

It is well known that a junction between two super-
conductors with not too weak coupling can exhibit subgap
structures inside the gap at eVb = 2Eg

m
. This was explained

in terms of MAR by Octavio et al. (OBTK model) [43,44],
using an incoherent Boltzman equation approach. In coherent
superconducting junctions, multiparticle tunneling has been
considered in terms of perturbation theory in the tunneling
coupling [45,46], and later theories [47–50] further increased
the understanding of MAR, with application to, for example,
quantum point contacts [32] and resonant structures, such as
S/N/S junctions [51,52], molecules [53], or single-level QDs
[54–59]. In a S/QD/S structure, the QD levels shift the peaks
of MAR considerably. It has been argued that the subgap
structures in S/QD/S devices can be understood in terms of
enhancements when the QD level lies on the trajectory of a
MAR process. Here, we present an alternative picture which
only relies on energy conservation and which more clearly
reveals why some MAR resonances are enhanced and some
are suppressed in the presence of a QD. In the following, this is
first used to explain our calculations for the S/QD/S junction
in the situation without MBS.

In Figs. 3(a), 3(c), and 3(d), we show dI/dVb as a function
of eVb and E

(0)
↓ , the latter being the energy of a spin-down

electron on the QD, i.e., E
(0)
σ=↑,↓ = E0 − eVg ± Vz, without

the effect of bias. Figure 3(b) shows dI/dVb as a function of
E

(0)
↓ for Vz = 0 and different values of eVb, i.e., horizontal

cuts in Fig. 3(a). We first note that we recover previously
discussed features of transport in S/QD/S junctions, such as
the existence of negative differential conductance [54] and
the absence of all the even-order MAR peaks along E

(0)
↓ = 0

[56,57]. There are two different types of peaks. The first type,
which is marked with black arrows in Fig. 3(a), appears along
the lines

eVb = ±2Ē, (23)

where Ē = (E(0)
↑ + E

(0)
↓ )/2 is the average energy of the spin-

split QD level. When Vz = 0, this is the same as the position
of the edges of Coulomb diamonds in transport through QDs
coupled to normal leads, but in the case of superconducting
leads it is related to the possibility for a Cooper pair to
tunnel onto or off the QD. Moreover, in contrast to the
standard Coulomb diamond edges, these peaks are not split
in a magnetic field because of the singlet nature of the Cooper
pairs.

The second type of peak appears along the lines where eVb

and E(0)
σ approximately satisfy

eVb = 2

n

(
Eg ± E(0)

σ

)
, (24)

where n = 3,5,7, . . . [only the lines corresponding to n =
3,5 are visible in Fig. 3 and are marked with dotted lines
in Figs. 3(a), 3(c), and 3(d)]. Notice, however, that these
lines reduce to eVb = Eg

m
, with n = 2m ± 1 at the resonance

conditions E(0)
σ = Eg

2m
, in agreement with the picture that the

MAR path goes through that QD level.
To understand the appearance of these lines, consider the

lowest-order (in �) tunnel process which is allowed, meaning
that energy is conserved in the entire process. If the QD level
is within the gap, tunneling into or out of the QD with a
single electron (tunnel rate ∝�) can never conserve energy.
Figure 3(e) shows the lowest-order tunnel process (∝�3)
which empties an initially singly occupied QD level inside
the gap while conserving energy: the electron on the QD
tunnels into the right lead (red arrow, ∝�), where it forms
a Cooper pair together with an electron which cotunnels from
the left to the right lead (blue arrows, ∝�2). If the QD level
lies at δE above the chemical potential of the right lead
[see Fig. 3(e)], the electron originally residing on the QD
gains the energy δE when forming a Cooper pair, which
must be compensated by taking the second electron from a
quasiparticle state in the left lead at δE below the chemical
potential of the right lead. Existence of such quasiparticle state
requires that eVb > 2

3 (Eg − E(0)
σ ). For a stationary current to

flow, it must also be possible to fill the QD with an electron
again and the corresponding lowest-order process (∝�3) is
shown in Fig. 3(f): a Cooper pair breaks up in the left lead,
with one electron tunneling onto the QD (red arrow, ∝�) and
the other cotunneling through the QD into the quasiparticle
states above the gap in the right lead (blue arrows, ∝�2).
Energy conservation gives that this process is possible when
eVb > 2

3 (Eg + E(0)
σ ). These conditions give peaks in dI/dVb

according to Eq. (24) with n = 3. For E(0)
σ = 0, the two

conditions are the same and identical to the condition for
third-order MAR in a junction without a QD, eVb >

2Eg

3 . Thus,
the presence of the QD level enhances the current by allowing
a third-order MAR process (which is ∝�6) to be split into two
consecutive processes ∝�3, involving real (rather than virtual)
occupation of the QD. Similar arguments show that Eq. (24)
in general corresponds to the onset of tunnel processes ∝�n.
An example with n = 5 is shown in Fig. 3(g), where a Cooper
pair cotunnels through the QD (red and blue arrows, ∝�4)
from the left to the right lead while one electron tunnels into
the QD from quasiparticle states below the gap in the left
lead (purple arrow, ∝�). In general, the QD level allows a
MAR process to be split into two separate tunnel processes
of lower order in �. We have thus developed a perturbative
(in �) way of understanding the observation that tunneling
is enhanced when the QD level lies on the path of a MAR
process [54,56,57].

Upon closer inspection, we see that the peaks do not
exactly fit Eq. (24), but are shifted by a more or less
voltage-independent energy δ� . The origin of this shift is
tunneling renormalization of the QD level position [60], i.e.,
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FIG. 3. (Color online) dI/dVb as a function of eVb and E
(0)
↓ for (a) Zeeman energy Vz = 0, (c) Vz = 0.1�, and (d) Vz = 0.2�. The

color scale is limited to the range [−0.001,0.005]e2/h. In (a), (c), and (d), the dotted black lines, added as guides to the eye, are given by
eVb = 2

3 [Eg ± (E(0)
↓ − δ�)] with a mark n = 3 and eVb = 2

5 [Eg ± (E(0)
↓ − δ�)] with a mark n = 5 next to the peaks, and the black arrows

point at the resonances given by Eq. (23). Note that Eg is the energy gap which is also changed when Vz varies. We do not show results for
eVb < 0.1� because the number of harmonics which have to be taken into account when evaluating the Green’s functions grow with decreasing
Vb. We have chosen � = 0.9� and kBT = 0.01�. δ� = 0.13� was found to give the best fit to the peaks. All other parameters are the same
as in Fig. 2. (b) Shows dI/dVb as a function of E

(0)
↓ for Vz = 0, i.e., horizontal cuts in (a), for eVb = 0.45� (blue line, multiplied by 6),

0.6� (red dotted line, multiplied by 4), and 0.8� (green dashed line). (e) Schematic diagram of an O(�3) tunnel process at eVb = 0.8� and
E

(0)
↓ = −0.2� which empties an initially full QD. (f) Same as (e), but showing a process filling an initially empty QD with one electron.

(g) Same as (e), but showing an O(�5) tunnel process at E
(0)
↓ = �.

E(0)
σ → E(0)

σ − δ� . The renormalization effect is much stronger
here than with standard BSC superconducting leads because
the chemical potential is close to the bottom of the band,
creating a strong energy asymmetry in the number of available
lead states. In Fig. 3(a), we have included the shift in the dashed
lines indicating the resonance positions.

With a finite Zeeman energy Vz [see Figs. 3(c) and 3(d)],
the breaking of the spin degeneracy of the QD level results
in a splitting of these resonances because E

(0)
↑ − E

(0)
↓ = 2Vz.

The increased smoothness of the DOS and decreased Eg as Vz

increases (see the DOS for Vz = 0.5 in Fig. 2) further modifies
the peaks.

C. Tunnel spectroscopy in the topological phase with MBS

With our detailed understanding of the transport features
of the S/QD/S junction in the trivial phase, we are now
ready to consider the case with MBS by tuning the magnetic
field to drive the leads into the topological superconducting
phase, which is the central result in this paper. The huge
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FIG. 4. (Color online) dI/dVb as a function of eVb and E
(0)
↓ with a large Zeeman energy, Vz = 1.7� in (a), Vz = 1.8� in (b), and Vz = 2.0�

in (c). The color scale is limited to the range [−0.1,0.5]e2/h. The dashed black lines are guides to the eye given by eVb = ± 2
3 (E(0)

↓ − δ�)

marked with n = 3 and eVb = ± 2
5 (E(0)

↓ − δ�) marked with n = 5, where δ� = 0.16�. (d) Shows dI/dVb as a function of E
(0)
↓ for Vz = 2�,

i.e., horizontal cuts in (c), for eVb = 0.2� (blue line), 0.3� (red dotted line, multiplied by 10), and 0.4� (green dashed line). We have used
δ = 10−3; the other parameters are the same as in Fig. 3. (e)–(g) Schematic diagrams of tunnel processes in the presence of MBS corresponding
to (c) at eVb = 0.3�. In (e) and (f), E

(0)
↓ = −0.45�, while E

(0)
↓ = 0.75� in (g). We have for illustrative purposes drawn electrons inside the

MBS peaks, although in reality the charge will disappear into the superconductor and not be localized at the edge.

difference in the stability diagram when comparing the trivial
phase and the topological phase with MBS arises from the
possibility, introduced by the MBS, to tunnel into the leads
with single electrons exactly in the middle of the gap. In
addition, the smoothening of the singularities at the edge
of the superconducting gap and the spin polarization due
to the large Zeeman splitting of the QD levels result in a
suppression of the conventional MAR resonances, making
the MBS-related transport signatures stand out in the stability
diagram.

Typical stability diagrams in the topological phase are
shown in Figs. 4(a)–4(c), and Fig. 4(d) shows dI/dVb as a
function of E

(0)
↓ at constant eVb. There are two new types of

peaks not present without MBS. The first type appears at

eVb = 2E(0)
σ , eVb > Eg, (25)

and are marked with black arrows in Fig. 4(a). (As in the trivial
case, tunneling renormalization shifts the QD level E(0)

σ →
E(0)

σ − δ� , which we for simplicity ignore in the resonance
conditions.) Note that these lines are different from those in the
trivial case described by Eq. (23) since they do not correspond
to coherent tunneling of Cooper pairs, but rather to processes
where single electrons tunnel directly from the Fermi level in
one lead (made possible by the MBS) onto the QD and then out
to the quasiparticle states outside the gap in the other lead, or
vice versa. When Eq. (25) is fulfilled, these processes involve
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resonant tunneling into/out of the QD level and the rate is ∝�,
similar to standard sequential tunneling, giving rise to the very
large conductance. Note also that E(0)

σ rather than Ē appears in
Eq. (25) and the peaks are completely missing for eVb < Eg .

The second type of new peaks appear at

eVb = ±2

n
E(0)

σ , (26)

where n = 3,5,7, . . . corresponds to tunnel processes ∝�n

[only the peaks with n = 3,5 are visible in Figs. 4(a)–4(c) and
are marked with dashed lines]. These peaks can be understood
in the same way as without MBS, except that single electrons
can now tunnel into or out of the MBS inside the gap.

Let us focus on E
(0)
↓ < 0 and try to understand the n = 3 line

with negative slope. An initially occupied QD can be emptied
as shown in Fig. 4(e): one electron tunnels from the QD into
the right lead (red arrow, ∝�) where it forms a Cooper pair
together with an electron cotunneling from the Fermi energy in
the left lead (blue arrows, ∝�2). The energy δE gained by the
first electron in forming a Cooper pair has to be compensated
by the energy lost by the second electron. This is possible
when eVb = − 2

3E
(0)
↓ . Note that since no quasiparticle states

are involved, this process is allowed only at this Vb, not at
higher voltages. It is clear from Figs. 4(a)–4(c) that this peak
becomes very weak for small Vb, which is related to processes
filling the QD again. A process ∝�3 filling the QD is shown
in Fig. 4(f): a Cooper pair breaks up in the left lead, with
one electron tunneling into the QD (∝�) and one cotunneling
into the quasiparticle continuum above the gap in the right
lead (∝�2). Along the resonance eVb = − 2

3E
(0)
↓ this becomes

energetically allowed when eVb >
Eg

3 . For voltages below this
threshold, the peak becomes very weak because although the
QD can be emptied by processes ∝�3, higher-order processes
are needed to fill it again. The peak increases further in height
for eVb >

Eg

2 : here it becomes possible to fill the QD by a
sequential tunneling process where an electron tunnels into the
QD from the left lead (∝�). An analogous argument can be
made to explain the lines with positive slope for E

(0)
↓ > 0, but

with the roles of processes filling and emptying the QD being
reversed. An example of a higher-order process with n = 5 is
shown in Fig. 4(g). In addition to one Cooper pair cotunneling
from the left to right lead through the QD (red and blue arrows,
∝�4), one electron tunnels into the QD from the MBS (purple
arrow, ∝�) which can only happen in the topological phase.

For eVb → 0 and E
(0)
↓ → 0, the resonances are seen to

bend away from the linear voltage dependence described by
Eq. (26). The reason is a level-repulsion effect when the QD
level comes close to the MBS.

In summary, the signatures of MBS are a series of unique
straight lines starting from E(0)

σ = 0 inside the gap according
to Eq. (26). Finally, we want to comment on the effect of
Coulomb interactions between electrons on the QD (leading
to Coulomb blockade), which were neglected in this study.
In the topological regime with MBS, the Zeeman splitting is
large and at low Vb and close to E

(0)
↓ = 0, only the spin-down

state can be occupied even without Coulomb interactions.
Therefore, in this case we do not expect Coulomb interactions
to drastically change the results in the topological regime.
In the opposite regime of small magnetic fields, Coulomb

)/(/ 2 hedVdI b

5.3

/beV

0.0

/)0(E

FIG. 5. (Color online) dI/dVb as a function of eVb and E
(0)
↓

for the MBS-QD-MBS configuration with large coupling � =
3.5�, where Vz = 2� and μ = 0. The horizontal dashed lines
are guides to the eye indicating MAR peaks at eVb = Eg

m
, where

Eg ≈ 0.71�, and m = 1,2, . . . ,6. The color scale is limited to the
range [−0.1,0.5]e2/h. The other parameters are the same as in Fig. 4.

interactions are expected to affect those resonances associated
with double occupation of the QD. Therefore, we would expect
the signatures of Cooper pair tunneling to change, whereas the
MAR resonances described by Eq. (26) [see Figs. 4(e)–4(g)]
should be less affected. We thus expect that the qualitative
difference of the stability diagram with and without MBS
remains also in the presence of strong Coulomb interactions.
Nonetheless, including Coulomb interactions is certainly an
interesting problem for future studies.

D. Transport in the topological phase with large tunnel coupling

As described above, when there is a small tunnel coupling
between the QD and leads, we see a series of peaks in dI/dVb,
the positions of which depend linearly on the applied voltage
bias and QD level position. When the tunnel coupling becomes
larger, higher-order MAR processes become increasingly
important and the perturbatively oriented picture we relied
on earlier is no longer valid. The Green’s function method
used for the actual calculations is, however, still accurate and
we show results with a large tunnel coupling in Fig. 5.

In contrast to the case of weak tunnel coupling in Fig. 4(a),
the main effect of changing the position of the QD level is to
change the strength of the peaks in dI/dVb, which persist at
eVb = Eg

m
, m = 1,2, . . ., indicated by horizontal dashed lines

in Fig. 5. This is the same as the position of MAR resonances
for a MBS/weak link/MBS structure [29]. The large coupling
reduces the role of the QD and the capability of tuning the
transport with a gate voltage is limited.

IV. CONCLUSIONS

We have theoretically investigated tunnel spectroscopy of a
S/QD/S structure using the NEGF method. The peaks inside
the superconducing gap were analyzed in detail, both when the
leads are in the trivial and in the topological phase. In addition
to Cooper pair tunneling, there are two classes of electron
tunneling processes, one relevant for the trivial phase and one
occurring only in the topological phase, giving rise to peaks in
the differential conductance which can be distinguished based
on their voltage dependence. In short, in the trivial phase the
peaks are related to the gap edge, giving the straight lines
described by Eq. (24), while in topological phase, the MBS
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support single-electron tunneling in the middle of the gap,
rendering peaks along the lines described by Eq. (26). Based
on our findings, we suggest a S/QD/S junction with a gate-
tunable QD level as a promising platform for detection of
MBS. In contrast to standard tunnel spectroscopy, the presence
of MBS qualitatively changes the whole stability diagram,
giving rise to peaks with a voltage dependence which cannot
be explained without zero-energy states at the edges of the
superconducting leads.
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APPENDIX: DERIVATION OF THE EXPRESSION
FOR THE STATIONARY CURRENT

The current flowing into the left contact is

IL(τ ) = −e〈ṄL〉
= −i

e

�
〈[Htotal,NL]〉

= e

�
Re

∑
k

Tr[G<
QD,Lk(τ,τ )TL(τ )τz], (A1)

where the electron number operator NL = ∑
kσ c

†
Lkσ cLkσ and

the total Hamiltonian is Htotal = ∑
α=L,R Hα + Hc + HQD,

where the mixed 4 × 4 Nambu Green’s function G<
QD,Lk(τ1,τ2)

is defined as

G<
QD,Lk(τ1,τ2) = i〈C†

Lk(τ1)D(τ2)〉. (A2)

This Green’s function can be found from the QD Green’s
function G

r/<

QD (τ1,τ2) and lead Green’s function g
a/<

Lk (τ1,τ2)
(the derivation can be found in Ref. [61], Appendix B)

G<
QD,Lk(τ,τ ) =

∫ +∞

−∞
dτ ′[Gr

QD(τ,τ ′)T †
L(τ ′)g<

Lk(τ ′,τ )

+G<
QD(τ,τ ′)T †

L(τ ′)ga
Lk(τ ′,τ )

]
. (A3)

Substituting this into the current gives

IL(τ ) = e

�
Re

∫ +∞

−∞
dτ ′Tr

[
Gr

QD(τ,τ ′)�<
L (τ ′,τ )

+G<
QD(τ,τ ′)�a

L(τ ′,τ )
]
τz, (A4)

where the lesser/advanced self-energy on the left side is

�
</a

L (τ ′,τ ) =
∑

k

T
†
L(τ ′)g</a

Lk (τ ′,τ )TL(τ ) (A5)

= T
†
L

∑
k

g
</a

Lk (τ ′ − τ )TL (A6)

= �
</a

L (τ ′ − τ ) (A7)

=
∫

dω

2π
e−iω(τ ′−τ )�

</a

L (ω), (A8)

which only depends on time difference because TL is time
independent. This is a consequence of applying the bias voltage
only to the right lead, and the lesser/advanced self-energy on
the right side is therefore different:

�
</a

R (τ ′,τ ) =
∑

k

T
†
R(τ ′)g</a

Rk (τ ′,τ )TR(τ ). (A9)

The current IL(τ ) is periodic with period T = 2π
ωV

, where ωV =
2eVb. This allows it to be expressed as the Fourier expansion

IL(τ ) =
∑

n

einωV τ In. (A10)

We will also need the Fourier expansion for the QD Green’s
function and self-energies

GQD(τ1,τ2) =
∑

n

einωV τ1

∫
dε

2π
e−iε(τ1−τ2)GQD,n(ε), (A11)

�L(τ1,τ2) =
∫

dε

2π
e−iε(τ1−τ2)�L(ε), (A12)

where we neglected the superscripts because the relation holds
for all self-energies and QD Green’s functions (r,a,<,>). The
Fourier component In is

In = 1

T

∫ T

0
dτ e−inωV τ IL(τ ) (A13)

= 1

T

∫ T

0
dτ e−inωV τ e

�
Re

∫ +∞

−∞
dτ ′Tr

[
Gr

QD(τ,τ ′)�<
L (τ ′,τ )

+G<
QD(τ,τ ′)�a

L(τ ′,τ )
]
τz (A14)

= e

�
Re Tr

1

T

∫ T

0
dτ e−inωV τ

∫ +∞

−∞
dτ ′ ∑

m

eimωV τ

×
∫

dε1

2π
e−iε1(τ−τ ′)

∫
dε2

2π
e−iε2(τ ′−τ )GQD,m(ε1)�L(ε2)τz

(A15)

= e

�
Re Tr

∫
dε1

2π
GQD,n(ε1)�L(ε1)τz, (A16)

where we used the shorthand notation GQD�L = Gr
QD�<

L +
G<

QD�a
L. Following Ref. [42], we rewrite this expression as

a sum of integrals over the fundamental domain ω ∈ F =
[−ωV

2 , ωV

2 ],

In = e

�
Re Tr

∞∑
j=−∞

∫ jωV + ωV
2

jωV − ωV
2

dε

2π
GQD,n(ε)�L(ε)τz (A17)

= e

�
Re Tr

∞∑
j=−∞

∫
F

dω

2π
GQD,n(ωj )�L(ωj )τz (A18)

= e

�
Re Tr

∞∑
j=−∞

∫
F

dω

2π
GQD,n+j,j (ω)�L,jj (ω)τz, (A19)

where the shorthand notation ωj = ω + jωV is used, and
G

r/<

QD,n+j,j (ω) ≡ G
r/<

QD,n(ωj ), and the same for �
a/<

L,ij (ω). The
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time-averaged current Idc is the zero harmonic

Idc = I0 (A20)

= e

�
Re Tr

∞∑
j=−∞

∫
F

dω

2π
GQD,jj (ω)�L,jj (ω)τz (A21)

= e

�
Re Tr

∫
F

dω

2π
[GQD(ω)�L(ω)τz] (A22)

= e

h
Re Tr

∫
F

dω
[
Gr

QD(ω)�<
L (ω) + G<

QD(ω)�a
L(ω)

]
τz,

(A23)

where G and � are matrices in terms of the Fourier components
and the third equality follows from the fact that the trace also
operates on Fourier space and � is diagonal [Eq. (18)]. The last
equality expands the shorthand notation. This is the expression
used in the main text.

The current above is straightforwardly constructed starting
from the numerically calculated Green’s functions (see the
equations in Sec. II). A check of the convergence of the current
will help us to confirm the reliability of our results. The current
including K Fourier components is

Idc,K = e

�
Re Tr

K∑
j=−K

∫
F

dω

2π
GQD,jj (ω)�L,jj (ω)τz (A24)

= e

h
Re Tr

∫
F

dω
[
Gr

QD(ω)�<
L (ω) + G<

QD(ω)�a
L(ω)

]
τz,

(A25)

,
,

,

×
1
0
0
(%
)

= 0.1

= 0.3

= 0.5

=

       

FIG. 6. (Color online) A convergence check of the current for
some example points along the line E

(0)
↓ = 0.5� in Fig. 3(a) with an

increasing number K of Fourier components included. The relative
error function is (Idc,K − Idc,K−1)/Idc,K−1 × 100(%).

where the size of the matrices Gr,a,<
QD (ω),�r,a,<

L,R (ω) is 4(2K +
1) × 4(2K + 1). When the number K of Fourier com-
ponents increases, the current will converge Idc,converged =
limK→∞ Idc,K .

In practical calculation, an adaptive algorithm is used,
where K is increased until a certain error condition is met. In
Fig. 6, we plot the relative error (Idc,K − Idc,K−1)/Idc,K−1 ×
100(%). For large bias (roughly eVb � 0.1� in our case), the
current will be converged after only a few steps.
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