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Shear viscosity and imperfect fluidity in bosonic and fermionic superfluids
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In this paper we address the ratio of the shear viscosity to entropy density η/s in bosonic and fermionic
superfluids. A small η/s is associated with nearly perfect fluidity, and more general measures of the fluidity
perfection/imperfection are of wide interest to a number of communities. We use a Kubo approach to concretely
address this ratio via low-temperature transport associated with the quasiparticles. Our analysis for bosonic super-
fluids utilizes the framework of the one-loop Bogoliubov approximation, whereas for fermionic superfluids we
apply BCS theory and its BCS-BEC extension. Interestingly, we find that the transport properties of strict BCS and
Bogoliubov superfluids have very similar structures, albeit with different quasiparticle dispersion relations. While
there is a dramatic contrast between the power law and exponential temperature dependence for η alone, the ratio
η/s for both systems is more similar. Specifically, we find the same linear dependence (on the ratio of temperature
T to inverse lifetime γ (T )) with η/s ∝ T/γ (T ), corresponding to imperfect fluidity. By contrast, near the unitary
limit of BCS-BEC superfluids a very different behavior results, which is more consistent with near-perfect fluidity.
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I. INTRODUCTION

There is a growing interest among particle, condensed-
matter, and atomic physicists regarding the behavior of the
shear viscosity η and the degree to which the ratio η/s,
where s is the entropy density, is close to the lower bound
η/s � �/(4πkB) conjectured by Kovtun, Son, and Starinets
(KSS) [1]. The KSS conjecture has led to renewed interest
as to which fluids in nature are “perfect” fluids, i.e., those
that come as close as possible to minimizing the conjectured
bound.

For atomic Fermi gases there have been experimental [2,3]
and theoretical [4] studies of this ratio which suggest a close
approach to the KSS bound. These have been in the specific
unitary regime; no such studies are yet available for bosonic
superfluids. Theories of η/s in graphene [5], along with high-
TC superconductor experiments [6], have also made claims
that these exhibit an η/s near the KSS bound.

It is of interest then to perform concrete calculations of this
ratio, particularly in the presence of the many-body physics
which gives rise to superfluidity. Thus, in this paper we
address the quasiparticle contribution to η/s for bosonic and
fermionic superfluids. We arrive at a fairly generic behavior
for this ratio of the form η/s ∝ T/γ (T ), where γ (T ) is the
temperature-dependent inverse quasiparticle lifetime. While
classical arguments have led to a prediction of this form, we
show that it holds as well for the extreme nonclassical regimes
in systems with widely different quasiparticle dispersion
relations. A scaling of η/s of this form has also been argued
to apply near quantum critical points or for nodal d-wave
superfluids, and in these contexts, it has been argued that the
behavior is suggestive of near-perfect fluidity [6].

More generally, here we present a comparison of the
dissipative transport properties of bosonic and fermionic su-
perfluids mostly at low temperatures, where bosonic superfluid
theories exist and are controlled. For the fermionic superfluids
there is no restriction on temperature, and one can, further-
more, probe the behavior of an interesting normal phase (with
a pseudogap) in the regime of BCS-BEC. In addition to the

shear viscosity η, we focus on the quasiparticle contributions
to transport (which are the exclusive contributions) in the
thermal conductivity κ , the ω �= 0 mass conductivity σ , and
the off-diagonal thermoelectric coefficients. These are to be
distinguished from condensate contributions, which dominate
the ω ≡ 0 mass conductivity. For the latter, a proper theory
of transport has to deal with a number of subtle features
involving gauge invariance and the important constraint in
bosonic transport in which the (two-particle) density excitation
spectrum or sound modes are intimately coupled to the single-
particle excitations. Our starting point for bosonic superfluids
is due to Wong and Gould [7] and Talbot and Griffin [8] and
is known as the “one-loop approximation.”

We note that prior to the recent focus on trapped atomic
gas superfluids there were puzzles concerning the behavior of
the shear viscosity alone, which originated from contrasting
observations of the fermionic and bosonic counterparts of
liquid helium. For example, 3He and 4He exhibit a remarkable
difference in their shear viscosity for low temperatures.
At temperatures below the critical temperature the shear
viscosity of fermionic 3He has been measured [9] to be a
decreasing function of decreasing temperature, whereas the
shear viscosity of bosonic 4He [10] is an increasing function
of decreasing temperature. In this paper we suggest that
these differences can be understood as reflecting the different
dispersions of the quasiparticles. Indeed, a central theme of
this work is that the shear viscosity itself provides a sensitive
measure of the nature of the quasiparticle excitations.

Our calculations show that the one-loop Bogoliubov theory
for bosons and the BCS theory for fermions are formally
strikingly similar. Nevertheless, primarily as a result of
differences in the quasiparticle excitation spectrum, as well
as the statistics, there are important differences in superfluid
transport. Quite generally, in bosonic systems, because the
dispersion relation is gapless, the transport coefficients in-
crease more rapidly as a function of temperature than those
of the gapped fermionic systems. This difference results in
low-temperature transport in the bosonic case being more
accessible experimentally.
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II. THEORY

Previous studies of superfluid transport have relied heavily
on kinetic theory and a Boltzmann equation ansatz [11,12].
A less widely applied approach has been the use of linear re-
sponse theory and Kubo formulas, which we will use here. The
advantage of the Kubo formula approach is that because these
formulas relate directly to Green’s function diagrammatics,
one has better control over the processes included in transport
and the appropriate constraints. This enables a more systematic
imposition of perturbation expansions, which is especially
crucial when considering bosonic superfluids. Also important
are the constraints which must be imposed on separating
the contributions associated with longitudinal and transverse
correlations since it is only in the former that the condensate
will directly enter. Finally, a subtle but important issue here
arises in the shear viscosity, for example, where the Kubo
formula shows that there are multiple response functions which
enter in addition to the simplest stress-tensor–stress-tensor
correlator [13]. It is not as apparent how to include these
response functions in a Boltzmann-based approach.

Since it is likely that dissipation in the ultracold gases
is linked to the details of the experimental setup, we will
introduce dissipation via a phenomenological parametriza-
tion within the Kubo approach. The philosophy behind our
phenomenological approach to dissipation is similar to that
articulated by Kadanoff and Martin, who emphasized the
importance of the Kubo-based correlation functions and their
symmetries [14]. In related work on superconductors [15],
they argued for the suitability of introducing a parametrization
of the lifetimes associated with transport. In building any
phenomenology it is important to emphasize that interparticle
collisions cannot be the sole source of dissipation in mass
transport, as in the particle conductivity. This particular
transport coefficient reflects the fact that the total momentum
would be conserved (in the presence of Galilean invariance)
without other sources of momentum relaxation.

By contrast, the strength of Boltzmann theory is that if
all the details of the processes giving rise to dissipation
are well established, one can incorporate dissipation via
specific collision integrals. Within a Boltzmann-based theory
of bosonic superfluid transport, there is a fairly extensive
review by Griffin et al. [12] in which the shear viscosity
and the thermal conductivity are addressed. At a qualitative
level our Kubo calculations are consistent with this earlier
work, but we also include additional transport coefficients.
A Kubo formulation of the shear viscosity of a trapped Bose
condensed gas was studied in Ref. [16] within the second-order
Beliaev approximation, but this analysis did not incorporate
the contribution from anomalous Green’s functions. This paper
revisits this earlier work (albeit without a trap), with the
important inclusion of the anomalous Green’s functions, which
are a crucial component for consistent treatment of superfluid
transport.

A. Physical analysis of the quasiparticle regime

In order to further understand the role of the phenomenolog-
ical inverse lifetime, we address η/s using a simple classical
argument [17]. The entropy density s of a weakly interacting

system is proportional to the quasiparticle number density n:

s ∼ kBn.

The shear viscosity is proportional to the product of the average
energy per particle ε and the mean free time between collisions
τ ≡ 1/γ :

η ∼ nε/γ.

Then, assuming ε ∼ kBT , the ratio η/s is

η/s ∼ T/γ. (1)

In order for the quasiparticle picture to be valid, the particles
must be long-lived, �γ � kBT , so that the ratio η/s is far
above the KSS bound:

η/s � �/4πkB.

Importantly, we will show in this paper that, even in the
nonclassical regime, for both bosonic and fermionic BCS
superfluids, an equation of the form given in Eq. (1) results.
In this way the quasiparticle regime should be understood as
a regime where the system is far from being a perfect fluid.

B. Overview of our transport results

We begin by summarizing our results, which serve to
emphasize the formal similarity between the bosonic one-loop
transport theory and the fermionic BCS transport theory. We
define the general transport coefficients Lij via particle (Jp)
and heat (JQ) current densities as follows:

Jp = −L11∇μ − L12∇T , (2)

JQ = −L21∇μ − L22∇T , (3)

where ∇μ and ∇T represent imposed gradients of the
chemical potential (analogous to the electric field for a
charged system) and the temperature. (We work in units where
� = kB = e = 1.) Here the particle or mass conductivity σ ≡
L11, and the thermal conductivity κ ≡ L22. The off-diagonal
transport coefficients appear, for example, in the quasiparticle
thermopower.

For a superfluid it should be stressed that the various
correlation functions that enter into Lij may be distinct for
longitudinal and transverse properties. This distinction is most
important for the mass conductivity, as the longitudinal contri-
bution reflects the condensate (and diverges at zero momentum
and frequency), while the transverse contribution reflects the
quasiparticles. The shear viscosity is also represented in terms
of this transverse response.

Following the approach of Kadanoff and Martin [15],
lifetime effects are phenomenologically incorporated by intro-
ducing the parameter γ (T ). In this context γ −1 was introduced
as the lifetime required to restore local equilibrium to a
system perturbed from the equilibrium state. It may therefore
be regarded as an additional experimental parameter for the
particular system of interest. In the context of superfluids γ −1

can be associated with quasiparticle lifetime processes, which
in certain cases are known [11].

Using the correlation functions which will appear in
Eqs. (16)–(19) below, we find that, for bosons, the transport
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coefficients (in three dimensions) are

ηB =
∫ ∞

0
dk

k6

30π2m2

(
ξk

Ek

)2(
−∂n(Ek)

∂Ek

)
1

γ
, (4)

ReLB
ij = T 1−j

∫ ∞

0
dk

k4

6π2m2
ξ

i+j−2
k

(
−∂n(Ek)

∂Ek

)
1

γ
. (5)

Note that we have evaluated ηB,ReLB
ij in the limit ω → 0.

We introduce n0 as the condensate density and g as the in-
teraction strength. The Hugenholtz-Pines theorem determines
the chemical potential, in the Bogoliubov approximation, as
μB = n0g. The free-particle dispersion relation is εk = k2

2m
,

and we define ξk = εk + μB . The Bogoliubov quasiparticle
dispersion relation is then E2

k = ξ 2
k − (μB)2. We define n(x) =

[ex/T − 1]−1 as the Bose-Einstein distribution function.
The same calculations performed above for bosons can

be performed for strict BCS fermions. The only differences
that arise are a sign factor due to the different statistics, a
degeneracy factor of 2 due to spin, and a redefinition of the
dispersion relation. For fermions the transport coefficients are

ηF =
∫ ∞

0
dk

k6

15π2m2

(
ξk

Ek

)2 (
−∂f (Ek)

∂Ek

)
1

γ
, (6)

ReLF
ij = T 1−j

∫ ∞

0
dk

k4

3π2m2
ξ

i+j−2
k

(
−∂f (Ek)

∂Ek

)
1

γ
, (7)

where ξk = εk − μF , E2
k = ξ 2

k + �2, and f (x) = [ex/T +
1]−1. (We have again evaluated ηF ,ReLF

ij in the limit ω → 0.)
This expression for the shear viscosity was obtained previously
in Ref. [4]. Similarly, the mass and thermal conductivities L11

and L22 are consistent with results obtained from BCS theory
[15]. Our emphasis here is that a comparison between Eqs.
(4) and (5) and Eqs. (6) and (7) shows the striking similarities
between the transport coefficients in bosonic and fermionic
superfluids. A key difference between the transport coefficients
arises from the soft quasiparticle excitations for bosons as
opposed to the gapped excitations for fermions.

C. Details of the derivation

We now proceed to derive Eqs. (4)–(7). In linear response
theory the response of a system perturbed slightly from thermal
equilibrium is expressed in terms of the correlation functions
of the unperturbed system [14]. Equations (2) and (3) lead to
four possible correlation functions involving combinations of
particle and heat or energy currents. These four correlation
functions are

↔
χij (x1 − x2,τ1 − τ2) = −〈Tτ ji(x1,τ1)jj (x2,τ2)〉, (8)

where i,j ∈ {1,2}. The particle and heat currents which appear
above are defined as [15]

j1 = − i

2m
(∇1 − ∇′

1)ψ+(1′)ψ(1)|1′=1+ , (9)

j2 = − i

2m

(
∂t2∇′

2 + ∂ ′
t2
∇2

)
ψ+(2′)ψ(2)|2′=2+ . (10)

It is convenient to decompose a generic superfluid correlation
function

↔
χ ij into longitudinal and transverse components,

which are given by χL
ij = q·↔χ ij ·q

q2 ,χT
ij = 1

2 (
∑

α χαα
ij − χL

ij ).

We define the Fourier transform by
↔
χ ij (x1 − x2,τ1 − τ2) =

1
β

∑
iωm

∫
d3q

(2π)3

↔
χ ij (q,iωm)eiq·(x1−x2)e−iωm(τ1−τ2). Then the

Kubo formulas for the transport coefficients, except those
associated with χ11, are

ReLij = −T 1−j lim
q→0

ImχL
ij (q,ω)

ω
, i,j �= 1. (11)

Using this definition, one can compute transport coefficients
ReLB

ij ,i,j �= 1 for the bosonic case and ReLF
ij ,i,j �= 1 for the

fermionic case.
The quasiparticle contribution to the mass conductivity

and the shear viscosity (for which there is no condensate
component) depend only on the transverse component of

↔
χ 11

and are given by [14]

Reσ (ω �= 0) = − lim
q→0

ImχT
11(q,ω)

ω
, (12)

η = −m2 lim
ω→0

lim
q→0

ω

q2
ImχT

11(q,ω). (13)

By limiting consideration in σ to ω �= 0, we focus on the
quasiparticle transport. The total mass conductivity (which in-
cludes the condensate) is Reσ (ω) = Reσ (ω �= 0) + πns

m
δ(ω),

where ns

m
is the superfluid density. The mass conductivity of

the condensate is infinite, but all condensate thermoelectric
coefficients vanish. More specifically, the condensate enters
directly into only L11. Finally, we note that the Onsager relation
between the associated transport coefficients is L12 = L21/T .

D. Bosonic one-loop approximation and correlation functions

In order to evaluate the various
↔
χ ij we introduce the

appropriate Green’s functions. These functions are well
established for the case of fermionic BCS superfluids. For
the bosonic case, the one-loop approximation is based on
the Bogoliubov Green’s functions and thus involves the
Bogoliubov quasiparticle dispersion relation. The Green’s
functions in the Bogoliubov approximation are

G(K) = u2
k

iωn − Ek
− v2

k

iωn + Ek
, (14)

F (K) = −ukvk

(
1

iωn − Ek
− 1

iωn + Ek

)
, (15)

where u2
k = 1

2 (1 + ξk/Ek),v2
k = u2

k − 1. Because bosonic su-
perfluid theories involve a controlled perturbation in the
interaction strength, they lead to a clear hierarchy of diagrams,
and we can restrict our attention in the dilute fluid limit to
those involving one or, at most, two Green’s functions. The
latter constitute the “loops” of the transport approximation.

For transverse response functions, the only diagrams that
contribute are those that cannot be divided into two parts by
removing one line representing a single-particle propagator.
Such diagrams are called proper. The condensate contributions
to a generic correlation function (dependent on a single-
particle Green’s function) are not proper and therefore do not
contribute to the transverse response functions. It follows that,
for a one-loop theory, the transverse component of a generic
correlation function is completely determined by diagrams
containing only two single-particle Green’s functions. For
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FIG. 1. (Color online) The normalized (a) mass and (b) thermal conductivity coefficients for bosonic (dashed blue line) and fermionic
(solid red line) superfluids as functions of T/TC . The left and right axes are associated with the bosonic and fermionic coefficients, respectively.
The fermionic transport coefficients are normalized by the normal-state expressions σN = σ (� = 0),κN = κ(� = 0). In the bosonic case we
define T/TC=T/μB . In the Bogoliubov approximation n0 is the particle number at T = 0. Thus, our calculations are confined to T/TC � 1,

so we use the normalization σ0 = (2mμ3)1/2

6π2γ
,κ0 = (2mμ5)1/2

6π2γ
. Here the mass conductivity corresponds to the ω �= 0 contribution.

longitudinal correlation functions, other than L11, there are
no condensate contributions, and again, the leading-order
contribution involves two single-particle Green’s functions.
In the superfluid phase there are two such Green’s functions
(the anomalous and normal Green’s functions.)

At this bosonic one-loop level we relate these correlation
functions to the imaginary-time single-particle Green’s func-
tions in position space, given by G(x,τ ) (normal) and F (x,τ )
(anomalous), defined by 〈Tτψ(x1)ψ+(x2)〉 = −G(x1 − x2) +
n0 and 〈Tτψ(x1)ψ(x2)〉 = −F (x1 − x2) + n0. For conve-
nience, we make the following definitions: the four-vector
summation

∑
K ≡ − 1

β

∑
iωn

∫
d3k

(2π)3 , the vertex factors v1 =
(

k+ 1
2 q

m
),v2 = q

2m
, and v3 = [(iωn + iωm) k

2m
+ iωn

k+q
2m

]. The
dissipative parameter γ previously introduced also serves to
analytically continue the Matsubara frequencies iωm to real
frequencies ω via iωm = ω + iγ .

With these definitions, the four momentum space correla-
tion functions can be computed. The particle-current–particle-
current correlation function is given by
↔
χ 11(q,iωm) = n0v2v2 [G(Q) + G(−Q) − F (Q) − F (−Q)]

+
∑
K

v1v1[G(K)G(K + Q)

− F (K)F (K + Q)]. (16)

The particle-current–heat-current correlation function is
↔
χ 12(q,iωm) =

∑
K

v1v3[G(K)G(K + Q)

+ F (K)F (K + Q)]. (17)

The heat-current–particle-current correlation function is
↔
χ 21(q,iωm) =

∑
K

v3v1[G(K)G(K + Q)

− F (K)F (K + Q)]. (18)

The heat-current–heat-current correlation function is
↔
χ 22(q,iωm) =

∑
K

v3v3[G(K)G(K + Q)

+ F (K)F (K + Q)]. (19)

Our expressions in Eqs. (16)–(19) contain all possible con-
tributions to the irreducible transverse response functions
[18]. Note that the correlation functions

↔
χ 12 and

↔
χ 21 differ

in the relative sign of the contribution from the anomalous
Green’s functions. It follows that, in order to satisfy the
Onsager relation, the anomalous Green’s functions must give
no contribution to the transport coefficients L12 and L21. This
is confirmed explicitly by direct calculation.

As can be seen, the particle-current–particle-current corre-
lation function

↔
χ 11 which appears in Eq. (16), unlike all the

other
↔
χ ij , contains a term proportional to the condensate den-

sity n0. This term is purely longitudinal and of no interest here.
In order to ensure charge conservation (via the longitudinal or
f -sum rule) in the superfluid phase, the condensate requires a
consistent treatment, analogous to collective-mode effects in
fermionic superfluids.

Finally, from the definitions of the transport coefficients,
combined with the correlation functions in Eqs. (16)–(19)
and the Bogoliubov Green’s functions, the resulting transport
coefficients ηB and ReLB

ij are given by the expressions in
Eqs. (4) and (5).

Figure 1 shows a comparison between the normalized
low-temperature bosonic and fermionic transport coefficients,
corresponding to mass and thermal conductivity. It is clear
from Fig. 1 that the quasiparticle transport coefficients at these
low T differ by several orders of magnitude. This is due to
the differences in the quasiparticle excitation spectrum. From
an experimental perspective, it appears rather prohibitive to
measure very low temperature transport properties of Fermi
systems. By contrast, it appears Bose systems lend themselves
to these low-T studies.

E. Low-temperature analysis

In general, the bosonic transport coefficients exhibit power-
law behavior, whereas the fermionic transport coefficients
exhibit an exponentially suppressed response. Explicitly, in the
low-temperature limits (T � μB,TC) we find that for bosons

ReLB
ij → 2π2

45γ
m1/2(μB)i+j−9/2T 5−j , (20)
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whereas for fermions

ReLF
11 → 2g(EF )p2

F

3m2γ

(
2π�0

T

)1/2

e−�0/T , (21)

ReLF
22 → 2g(EF )p2

F

3m2γ

(
2π�3

0

T

)1/2

e−�0/T , (22)

where pF is the Fermi momentum, �0 = �(T → 0), and
g(EF ) is the density of states at EF . In BCS theory, assuming
the chemical potential is of the order of μF ∼ EF and with
exact particle-hole symmetry, ReLF

12 → 0.

III. CALCULATION OF η AND η/s

KSS [1] have made an interesting conjecture concerning the
shear viscosity. They conjecture that any relativistic quantum
field theory at finite temperature and zero chemical potential
has a ratio of shear viscosity to entropy density satisfying the
bound η/s � �/(4πkB). Despite the construction of certain
systems that violate the KSS bound [19], the KSS conjecture
has led to renewed interest in what the perfect fluids in nature
are, i.e., those that come as close as possible to minimizing
the conjectured bound. It has been shown by KSS that the
fluids that saturate this bound are those with a dual-gravity
description.

An interesting feature of the KSS bound is that it is
independent of the speed of light c. Therefore, a nonrelativistic
quantum system is a possible candidate for a perfect fluid.
Here we investigate the magnitude of η/s arising from
quasiparticle transport in the bosonic one-loop and fermionic
BCS superfluids.

A variant of the KSS conjecture extends the applicability
of the conjectured bound of η/s to the case of nonzero
chemical potential [20]. If we allow μB,μF �= 0, then the
low-temperature entropy limits for bosons and fermions are

sB → 2π2

45

(
m

μB

)3/2

T 3, (23)

sF → 2g(EF )

(
2π�3

0

T

)1/2

e−�0/T . (24)

Similarly, the low-temperature shear viscosity limits for
bosons and fermions are

ηB → 2π2

225γ

(
m

μB

)3/2

T 4, (25)

ηF → 2g(EF )p4
F

15m2γ

(
2πT

�0

)1/2

e−�0/T . (26)

Depending on the temperature dependence of the quasi-
particle lifetimes (γ −1), the bosonic shear viscosity can
exhibit an upturn for low temperatures. However, due to the
exponentially suppressed term, the fermionic shear viscosity
is not expected to exhibit an upturn, regardless of the
parameter γ (T ).

Using the low-temperature limits of s and η in Eqs. (23)–
(26), we obtain the ratio η/s for bosons and fermions:

ηB/sB → 1

5

T

γ
, (27)

ηF /sF → 4

15

(
EF

�0

)2
T

γ
. (28)

It should be noted that once the entropy density is in-
cluded, both bosons and fermions exhibit the same T/γ (T )
dependence in their η/s ratios. This derivation confirms
the arguments given earlier, namely, that systems with a
quasiparticle description have a large ratio of η/s, with the
generic form η/s ∼ T/γ (T ). An example of the temperature
dependence used for γ in 4He [11] would predict an upturn in
η/s at low T for the bosonic superfluid case.

While both bosonic and fermionic cases considered have a
similar functional form for the ratio η/s, the low-temperature
limits of the entropy and shear viscosity of bosons and fermions
are markedly different.

Figure 2 presents a plot of the normalized shear viscosity
and the ratio η/s for bosonic and fermionic BCS superfluids.
While η is highly suppressed for the fermionic case (compared
with a bosonic superfluid), in the η/s ratio the fermionic
contribution is highly enhanced. This is due to the fact that for
fermions there are two different energy scales present, EF and
�0, while for bosons μ is the only energy scale. Equation (28)
shows that there is a factor of the ratio of these two energy
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FIG. 2. (Color online) (a) The normalized shear viscosity of bosonic (dashed blue line) and fermionic (solid red line) superfluids as
functions of T/TC . The left and right axes are associated with bosonic and fermionic coefficients, respectively. The fermionic shear viscosity
is normalized by the normal-state expression ηN = η(� = 0). In the bosonic case we define T/TC = T/μB . In the Bogoliubov approximation

n0 is the particle number at T = 0. Thus, our calculations are confined to T/TC � 1, so we use the normalization η0 = (2m3μ5)1/2

15π2γ
. (b) The

low-temperature limit of the shear viscosity to entropy density ratio. Both limits are linear in T/γ (T ), so they have the same functional form.
The only difference is the associated axes.
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scales (EF /�0)2 which appears. This is, of course, a very
large number in the strict BCS limit, which reflects the fact
that the entropy in BCS theory is much smaller than the shear
viscosity.

BCS-BEC crossover

Our primary analysis has focused on the transport properties
of both bosonic and fermionic superfluids in the temperature
regime far below the critical temperature. While theories
of bosonic superfluidity are restricted to low temperatures,
fermionic superfluids can be studied up to TC . Equally
interesting is the behavior in the normal phase (T > TC) of
superfluids in the presence of stronger attractive interactions,
which are associated with the crossover from BCS to Bose-
Einstein condensation (BEC). In this normal or “pseudogap”
phase, pairing persists above TC and is expected to lead to
suppressed shear viscosity. With the discovery of the trapped
atomic gases one has access to fermionic superfluids with
variable attraction, as parameterized by the dimensionless
scattering length 1/kF a, where 1/kF a = 0 is the so-called
unitary regime.

One particular BCS-BEC scenario [4] by members of our
group (which is explicitly sum-rule consistent) has addressed
ηF (T ) theoretically over the entire range of temperatures
using as a framework the BCS wave function for the ground
state (with arbitrary attraction and a self-consistent chemical
potential). Here one finds that

ηF = ∫ ∞
0 dk k6

15π2m2

(
ξk
Ek

)2 (
1 − �2

pg

E2
k

) (
− ∂f (Ek)

∂Ek

)
1
γ
.

(29)

In this scenario there are two gap functions �sc and �pg ,
where the first represents the order parameter and the second
represents the contribution to the excitation gap associated
with noncondensed pairs. The total gap is given by �2 =
�2

sc + �2
pg , so that the excitation gap Ek takes the usual BCS

form in terms of the full gap �. The previous work [4] and
the above equation show that the effect of the noncondensed
pairs, associated with the pseudogap �pg , is to reduce the
shear viscosity. This effect occurs because when pairs are
present, there are fewer fermions to contribute to the shear
viscosity.

In Fig. 3 we show plots of the normalized shear viscosity
for this BCS-BEC crossover scenario. The plots from left to

right correspond to passing from the BCS side of unitarity
to unitarity to the BEC side. The exponential suppression
of transport in fermionic superfluids is then reflected in the
behavior of η: as the gap � increases in size from BCS to BEC,
the shear viscosity is accordingly suppressed at the lowest T .
It should be emphasized that the BEC limit still reflects the
pairing of fermions and will not coincide with Bogoliubov
descriptions of bosons, as the latter involves boson-boson
interactions. These interactions are not incorporated into the
generalized BCS wave function.

Of particular interest is the observation [2,3] that the
unitary superfluids have a shear viscosity which is close
to the KSS bound. This shear viscosity makes them very
different from the strict BCS superfluids with extremely
large η/s, which we studied earlier in this paper. There
are hints from Eq. (28) [which shows that η/s for strict
BCS fermions contains a prefactor (TF /TC)2] that as uni-
tarity is approached and TF /TC becomes order 1, η/s is
significantly reduced relative to the strict BCS case. In-
deed, the analogous prefactor ∼(TF /TC)2 is now several
orders of magnitude smaller than its counterpart for BCS
theory.

As addressed in Ref. [4] and seen explicitly in Fig. 3, the
presence of the noncondensed pairs via �pg does not affect the
exponential suppression of η at low temperatures. However,
at the same time, the entropy acquires an additional bosonic
contribution (s = sF + sB) [21], where sB dominates at low
T and is a power of T . Thus, the ratio η/s will not be a linear
function of T/γ , as was found for strict BCS superfluids;
rather, these near-unitary superfluids will exhibit near-perfect
fluidity.

We summarize this discussion by emphasizing that our
theory of BCS-BEC crossover is a theory of fermions and
the BEC limit does not include the direct effects of interboson
interactions (which give rise to the sound-mode excitations of
Bogoliubov theory). These sound-mode effects do, of course,
appear in the collective modes as the Nambu-Goldstone
bosons. Such collective modes must be included in some
transport coefficients and must not be included in others.
More precisely, the Nambu-Goldstone modes in fermionic
superfluids of this type couple to the longitudinal response.
They do not couple to the transverse response, of which
the shear viscosity is one example. Our previous work on
η for the BCS-BEC system used a theoretical approach which
analytically satisfied the transverse sum rule [4]. A failure to
satisfy the sum rules is one of the best internal checks on
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η/
η N

0 1 2 3
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η N
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FIG. 3. (Color online) The normalized shear viscosity in BCS-BEC crossover theory. The shear viscosity is normalized by the normal-state
expression ηN = η(T = T ∗). The parameters for each plot are as follows: (a) TC = 0.12TF ,T ∗ = 0.13TF ,1/kF a = −1, (b) TC = 0.26TF ,T ∗ =
0.50TF ,1/kF a = 0, and (c) TC = 0.21TF ,T ∗ = 1.28TF ,1/kF a = 1.
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whether or not, and precisely where, collective modes must be
included in a given response function.

IV. CONCLUSIONS

We have compared the ω → 0 mass conductivity, the
shear viscosity, and the thermal conductivity in bosonic and
fermionic superfluids based on a Kubo formula approach
within the one-loop Bogoliubov approximation and the closely
related BCS approximation. At this level of approximation, our
work demonstrates the formal (albeit nonquantitative) similar-
ity between the transport behaviors of both superfluid types.
The transverse response functions do not contain condensate
contributions. Similarly, for the longitudinal thermoelectric
coefficients (aside from the ω ≡ 0 mass conductivity) no
condensate contributions appear. Thus, it is appropriate to
characterize these coefficients entirely in terms of their
quasiparticle contributions, as we have done here.

Of central interest here is the fact that even though the
shear viscosities for Bogoliubov and BCS superfluids have
dramatically different temperature dependences, their ratios in
terms of the entropy density have precisely the same linear
T/γ (T ) dependence (where γ (T ) is the inverse quasiparticle
lifetime) with very different prefactors. When considering the
extension of BCS theory to BCS-BEC crossover near unitarity,

we find a very different temperature dependence. Here because
there are both bosonic and fermionic degrees of freedom, there
is no simple T/γ (T ) scaling. Indeed, due to the suppression
of the shear viscosity, it appears that unitary Fermi gases are a
candidate for nearly perfect fluids.

We stress that pure bosonic or Bogoliubov theories of
superfluidity have a structure not exhibited in the BCS-BEC
crossover; this difference arises due to the soft dispersion
relation present in the long-wavelength limit of Bogoliubov
theory. Similarly, interboson interactions are not directly
present at the level of a BCS-based theory of unitarity. Here
the dominant many-body physics is an attraction between
fermions, which is distinct from boson-boson interactions.
Recent experiments [22] seem to confirm this exponential
suppression in the low-temperature shear viscosity as unitarity
is approached.

We end by noting that essentially all reasonable models for
the temperature dependence of the transport lifetime will give
an upturn in η/s at low T but not, for the case of fermions,
in η itself. This appears to be consistent with the observed
differences between 3He and 4He superfluids [23].
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