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Rotational motion of a magnetic vortex in a circular disk induced by injection of an electric current
through an off-centered point contact
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The dynamics of a magnetic vortex in a circular disk with an off-centered point contact is theoretically studied
based on Thiele’s equation and two-vortices model. It is shown that the steady-state rotational motion of a vortex
core is induced by an electric current, and the threshold current of this rotational motion increases as the distance
between the point contact and the center of the disk increases. The increase rate of the threshold current depends
on the curling of the vortex because the Oersted field acts as an attractive or repulsive force between the vortex
core and the point contact, depending on the curling of the vortex.
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I. INTRODUCTION

A magnetic vortex is a curling magnetic structure realized
in submicrometer or micrometer-sized magnetic disks [1,2].
The magnetization curls in the disk plane to reduce the
demagnetization energy except around the vortex center called
“vortex core.” In the vortex core, the magnetization has an
out-of-plane component to reduce the exchange energy and
at the center of the vortex core the magnetization points
perpendicular to the disk plane. The magnetic configuration
across the center of a vortex core is similar to that across
the Bloch wall and the size of the vortex core is of the
order of 10 nm. The dynamics of the magnetic vortex is well
represented by the motion of the vortex core, which has been
described theoretically by Thiele’s equation [3].

In 1996 Slonczewski [4] and Berger [5] predicted that a
spin-polarized electric current passing through a ferromagnet
generates a torque on the magnetization in the ferromagnet.
This torque, which is called spin-transfer torque (STT), can
induce the steady-state rotational motion of a vortex core [6,7].
Compared with the uniform precession of magnetization in
the nanopillar spin valve [8], the microwave voltage signal
generated by the rotational motion of the vortex core has a
very narrow line width, which has attracted much attention as
a basic element of nanometer-sized microwave generators or
sensors.

Most experiments of the current-induced dynamics of
magnetic vortex have been done by using the spin-valve
structure where the reference layer acted as a spin polarizer
[9–17]. However, if the electrodes are attached so that the
current is flowing in the in-plane direction, the dynamics of
the vortex can be excited even without a spin-polarizer layer
[18–20]. It is then natural to ask whether the dynamics of
the vortex can be excited by injecting the current from the
off-centered point contact to a magnetic disk, and if it can,
how the dynamics of the vortex is affected by the curling of
the vortex as well as the position of the point contact.

In this paper, we derive Thiele’s equation for a magnetic
vortex in a circular disk with an off-centered point contact.
Solving the derived Thiele’s equation, we show that the
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steady-state rotational motion of a vortex core appears as
we expected. We also show that the threshold current of this
rotational motion increases as the distance between the point
contact and the center of the disk increases, and that it depends
on the curling of the vortex.

II. MODEL AND METHOD

The system we consider is schematically shown in Fig. 1(a).
A circular nano-pillar with radius R consists of top and bottom
nonmagnetic electrodes, a magnetic layer having a magnetic
vortex, and an insulating layer with a point contact. The origin
of our coordinate system (x1,x2,x3) is located at the center
of the nanopillar on the bottom surface of the ferromagnetic
layer. The thickness of the magnetic layer and the distance of
the contact center from the origin are represented by L and Xc,
respectively. The cross-section of the point contact is assumed
to be circular. Figure 1(b) schematically shows the direction of
the magnetization of a magnetic vortex in the magnetic layer.
The directional cosine along the x3 axis is represented by the
blue scale.

In order to describe the dynamics of a magnetic vortex, we
employ the two vortices model introduced by Guslienko et al.
[21]. The direction of the magnetization M is indicated by
the unit vector m = M/Ms = (sin θ cos ϕ, sin θ sin ϕ, cos θ ),
where Ms is the saturation magnetization. In the two-vortices
model, the azimuth angle ϕ is given by [22]

ϕ(ρ,ϑ) = Arg(ρei(ϑc−ϑ) − ρc)

+ Arg

(
ρei(ϑc−ϑ) − R2

ρc

)
+ �

π

2
+ ϑc, (1)

(ρc,ϑc) denotes the position of the vortex core, (ρ,ϑ) are
the polar coordinates in the x1x2 plane and � represents the
curling. When � = 1 (−1), the vortex has clockwise (counter
clockwise) curling in x1x2 plane. The polar coordinate is
assumed to take the bell shape as [23]

θ =
{

π/2 |x − X| > b

cos−1
(
p

b2−|x−X|2
b2+|x−X|2

) |x − X| < b
, (2)
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FIG. 1. (Color online) Schematic illustration of (a) the nanopillar
with single nano point contact and (b) the magnetic vortex in the
magnetic layer. The magnetic layer thickness is L and the radius of
the pillar is R. The distance between the origin of our coordinates and
the contact center is Xc. The directional cosine of the magnetization
along x3 axis is represented by the blue scale.

where b represents the radius of the magnetic vortex and X is
the position of the vortex core and p = ±1 which represents
the polarity of the magnetic vortex in this model.

According to Ohm’s law the electric current flowing in the
nanopillar is expressed as j = σ∇	(x) where j denotes the
electric current density, 	(x) is the electric potential and σ is
the conductivity. Assuming that the size of the point contact
is much smaller than the radius of the nanopillar, the electric
potential can be expressed as [24]

	(r,x3) = V

2

[
1 − π

2
tan−1

(
1

η

)]
, (3)

where V is a voltage applied to the electrodes and r =√
x2

1 + x2
2 . Here, η is a component of an oblate spheroidal co-

ordinate (η,ζ,φ) that is related to the Cartesian coordinates as

x1 = a
√

(1 + η2)(1 − ζ 2) cos φ, (4)

x2 = a
√

(1 + η2)(1 − ζ 2) sin φ, (5)

x3 = aηζ, (6)

where a represents the radius of the point contact. Each
component of the current density is obtained as

j1 = J
4Sc

√
(1 + η2)(1 − ζ 2)

(η2 + ζ 2)(η2 + 1)
cos φ, (7)

j2 = J
4Sc

√
(1 + η2)(1 − ζ 2)

(η2 + ζ 2)(η2 + 1)
sin φ, (8)

j3 = J
4Sc

ζ

η2 + ζ 2
, (9)

where J = 2πaσV is the total current and Sc is the cross-
section area of the point contact. The Oersted field HOe gen-
erated by j can be calculated using the Biot-Savart law [25].

The equation of motion of the magnetization M is given
by the Landau-Lifshitz-Gilbert equation with Zhang-Li’s spin

transfer torque [26],

d M
dt

= −|γ |(M × Heff) + α

Ms

M × d M
dt

− bJ

M2
s

M × (M × ( j · ∇)M) − ξ
bJ

Ms

M × ( j · ∇)M,

(10)

where t is time, Heff is the effective magnetic field, γ is the
gyromagnetic ratio, and α is the Gilbert damping constant
[20]. The coupling constant between the current and the
magnetization is given by bJ = (PμB)/[eMs(1 + ξ 2)], where
P is the spin polarization of the current, μB is the Bohr
magneton, e is the elementary charge, and ξ = τex/τsf is
the degree of nonadiabaticity, which is the ratio between the
exchange relaxation time τex and the spin-flip relaxation time
τsf . Following Ref. [27], we rewrite Eq. (10) in the following
simple form:

|γ |M × (Heff + Hg + Hα + HS1 + HS2 ) = 0, (11)

where Heff is the effective magnetic field, which originally
appeared in the LLG equation, and the other effective magnetic
fields are defined as

Hg = − 1

|γ |Ms

M × d M
dt

, (12)

Hα = − α

Ms

d M
dt

, (13)

HS1 = bJ

|γ |M2
s

M × ( j · ∇)M, (14)

HS2 = ξbJ

|γ |Ms

( j · ∇)M. (15)

Assuming that the magnetization is a function of X − x,
each component of the force density fi due to the field H is
given by

fi = H · ∂ M
∂Xi

= −H · ∂ M
∂xi

. (16)

The force densities due to the fields Hg and Hα are,
respectively, given by

f
g

i = −εijkvjgk, f α
i = dij vj , (17)

where εijk is the Levi-Civita antisymmetric tensor, vi =
dXi/dt and

gk = − 1

2|γ |M2
s

εμνkεlmnMl

∂Mm

∂xμ

∂Mn

∂xν

, (18)

dij = − α

|γ |Ms

∂Mn

∂xj

∂Mn

∂xi

. (19)

Here the Einstein convention of summation is assumed. In the
same manner, f

S1
i and f

S2
i are obtained as

f
S1
i = bJ

|γ |M2
s

εlnmMl

∂Mm

∂xi

∂Mn

∂xμ

jμ, (20)

f
S2
i = − ξbJ

|γ |Ms

∂Mn

∂xi

∂Mn

∂xμ

jμ. (21)
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Integrating the force densities of Eq. (17) over the magnetic
layer, we obtain the forces due to Hg and Hα as

Fg = G × v, Fα = Dv, (22)

where Gi = 2πLqpδi3/γ with topological charge q and D =
Dii with Dij = ∫

dxdij . The forces due to HS1 and HS2 are
also obtained as

F
S1
i = εij3

∫
d r

bJ

2|γ |M2
s

εμν3

(
∂ M
∂xμ

× ∂ M
∂xν

)
· MJj , (23)

F
S2
i = − ξbJ

|γ |Ms

∫
d r

∂Mn

∂xi

∂Mn

∂xμ

Jμ, (24)

where Ji = ∫
dx3ji and r = (x1,x2).

The remaining forces due to the effective field Heff are
obtained as follows. Introducing the potential energy of
the effective field W , the force can be expressed as Fi =
−∂W/∂Xi . Since the magnetic vortex moves in the magnetic
disk with finite radius, W consists of the potential energy
caused by a vortex shift and Oersted field. Therefore it is
convenient to separate W into two terms: one is Ws arising
from the shift of the vortex core from the center of the disk,
and the other is WOe arising from the Oersted field. According
to Refs. [28,29], the force Fs is proportional to the position
of the vortex core, X, as Fs = −kms X , and the proportional
coefficient is given by

kms = 4M2
s L2

3R

2R − 1

1 − (s/2)2
(25)

with s = |X|/R and R ∼ 0.916. The force F Oe is obtained by
numerically calculating WOe = − ∫

dx HOe · M and F Oe
i =

−∂WOe/∂Xi .
Finally, the equation of motion for analysis of the dynamics

of a magnetic vortex in a circular disk induced by the injection
of an electric current through an off-centered point contact is
obtained as

G × v + Dv − kms X + FOe + FS1 + FS2 = 0, (26)

which is the direct extension of Thiele’s equation for uniform
electric current distribution [30,31]. Note that the forces from
the electric current are functions of Xc. Equation (26) is
numerically solved by using the fourth-order Runge-Kutta
method. The following material parameters are assumed in
our calculation: α = 0.01, Ms = 6.5 × 105 A/m, L = 15 nm,
R = 100.0 nm, a = 2.0 nm, b = 5 nm, P = 1.0, ξ = 0.05,
and p = 1.0.

III. RESULTS AND DISCUSSION

Before showing the results of the dynamics let us look at the
direction and magnitude of the forces arising from the applied
electric current, FS1 , FS2 , and FOe. In Figs. 2(a) and 2(b),
we plot the x1(x2)-component of the each force against the
position of the point contact by the solid (dotted) lines. The
vortex core is located at the center of the disk, i.e., |X| = 0,
and the point contact is located at Xc = (Xc

1,0). The curling
of the vortex is counter-clockwise (CCW) in Fig. 2(a), while
it is clockwise (CW) in Fig. 2(b). Since the point contact is on
the x1 axis the x1(x2) component of the force represents the
restoring(rotational) force. At Xc

1 = 0, all forces are zero and
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FIG. 2. (Color online) The forces induced by the electric cur-
rent are plotted as a function of Xc

1 for a magnetic vortex with
(a) counterclockwise and (b) clockwise curling. The blue, red, and
green lines represent FS1 , FS2 , and FOe, respectively. The solid
(dotted) lies denote the forces in the x1 (x2) direction.

the vortex core does not move because of the axial symmetry
around the x3 axis. Even for the finite value of Xc

1, the rotational
component of FS2 and FOe, and the restoring component of
FS1 vanish because the system has reflectional symmetry about
the x1 axis. With increasing Xc

1, the magnitudes of FS1 and
FS2 decrease rapidly while the magnitude of FOe decreases
slowly. It should be noted that the force FOe changes its sign
depending on the curling as shown in Figs. 2(a) and 2(b). For
the vortex with CCW (CW) curling, FOe acts as an repulsive
(attractive) force between the vortex core and the point contact.

Let us move on to the rotational motion of the vortex core
induced by the electric current. Figure 3 shows trajectories
of the vortex core with (a) CCW curling, (b) CCW curling
under no Oersted field, and (c) CW curling. Hereafter the
abbreviation “NOF” stands for the magnetic vortex having
CCW curling under no Oersted field. In these calculations, the
point contact is located at Xc

1 = 0.4 nm and the amplitude of
the electric current is set at J = −2.0 mA. Once the electric
current is applied the vortex core starts to rotate from the
equilibrium position due to FS1 and, finally, it rotates on a
circular trajectory. The time evolution of X1 is also shown in
Fig. 3(d). The oscillation amplitude saturates after about ten
nanoseconds, and the oscillation amplitudes and frequencies
depend on the magnetic vortex curling and the Oersted field.
As mentioned before, FOe is an attractive (repulsive) force
between the point contact and the vortex core with CW (CCW)
curling, and the radius of the steady-state trajectory of the CW
curling is smaller than that of the CCW curling. The radius of
the steady-state trajectory of NOF is intermediate between
those of CW and CCW because FOe = 0. The oscillation
frequency is the smallest (largest) for CCW (CW) curling as
shown in Fig. 3(d).

Next we show how the magnetic vortex oscillation is
modified by changing the position of the point contact, Xc

1.
The steady-state trajectories for Xc

1 = 0.4 and 10.0 nm are
shown in Figs. 4(a) and 4(b), respectively. The amplitude of
the electric current is set at J = −2.0 mA. The trajectories for
CCW, NOF, and CW are represented by the red, green, and blue
curves, respectively. As shown in these figures, the steady-state
trajectories are almost circular, and their centers are indicated
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FIG. 3. (Color online) The trajectories of the magnetic vortex
core with (a) CCW curling, (b) CCW curling under no Oersted
field applied, and (c) CW curling. The gray circles indicate the point
contact. (d) The x1 component of the vortex core, X1, for CCW, NOF,
and CW is plotted as a function of t by the red-solid, green-dashed,
and blue-dotted lines, respectively. For all results, the amplitude of
the electric current is fixed at J = −2.0 mA.

by dots of the same color. For Xc
1 = 0.4 nm, it is hard to

distinguish the position of the trajectory centers. However,
for Xc

1 = 10.0 nm, the trajectory center of CW curling moves
to the contact center, while that of CCW curling moves in
the opposite direction. If the Oersted field is neglected, the
trajectory center hardly moves from the origin.

The current dependence of the oscillation amplitudes
and frequencies for CCW, NOF and CW are shown in
Figs. 5(a)–5(f). One can see that the current dependencies
of the amplitudes are almost the same for CCW, NOF, and
CW, while those of the frequencies strongly depend on the
magnetic vortex curling and Oersted field [32–34]. Because
FOe is an attractive force in the case of the CW curling,
the frequency is enhanced as the intensity of electric current
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FIG. 4. (Color online) The steady-state trajectories of the vortex
core for CCW, NOF and CW. The amplitude of the electric current is
J = −2.0 mA, and the point contact is located at (a) Xc

1 = 0.4 and
(b) 10.0 nm. The solid circles denote the position of the point contact.
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FIG. 5. (Color online) The oscillation amplitudes for CCW,
NOF, and CW are plotted as a function of J in (a), (b), and (c),
respectively. The oscillation frequencies for CCW, NOF, and CW are
plotted as a function of J in the panels (d), (e), and (f), respectively.
For all panels, the position of the point contact, Xc

1 varies from 2.0 to
10.0 nm.

increases. Even if we neglect the Oersted field, the frequency
slightly increases due to the nonlinear effects of the vortex
shift. By stark contrast, the frequency of the CCW curling
decreases as the intensity of electric current increases because
FOe weakens the restoring force. However, the shapes of the
frequency curve as a function of J are almost unchanged for
all values of Xc. The jump in Figs. 5(a)–5(f) indicates the
value of the threshold current for the rotation of the vortex
core, which depends on the vortex curling, Oersted field,
and Xc

1.
In Fig. 6, the threshold currents for CCW, NOF, and CW

are plotted as functions of Xc
1. For Xc

1 < 5 nm, the threshold
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FIG. 6. (Color online) The threshold currents for CCW, NOF,
and CW are plotted as a function of Xc

1 by the red, green, and blue
lines, respectively.
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currents are almost zero for all cases. The differences among
the threshold currents of CCW, NOF, and CW increase rapidly
for Xc

1 > 5 nm. The absolute value of the threshold current
for the magnetic vortex with CCW curling is larger than that
for the magnetic vortex with CW curling because the restoring
force is weakened (enhanced) by FOe between the center of
the disk and the point contact for CW (CCW) curling.

IV. SUMMARY

We derived Thiele’s equation for the magnetic vortex in the
circular disk with an off-centered point contact and performed
calculations of the vortex core dynamics by solving the derived
equation. All forces arising from the applied electric current
are zero when the point contact is located at the center of
the circular disk. Even if the point contact is off-centered,
the rotational component of FS2 and FOe, and the restoring
component of FS1 vanish due to the reflectional symmetry of
the system. Once the electric current is applied, the vortex
core starts to rotate from the equilibrium position due to
FS1 and the trajectories of the steady rotation are circular,

independently of the vortex curling and the Oersted field.
The oscillation amplitude of the vortex having CW (CCW)
curling is the smallest (largest) and the frequency of the vortex
with CW (CCW) curling is the largest (smallest) because the
restoring force is enhanced (weakened) due to FOe. Although
the oscillation amplitude and frequency hardly depend on the
position of the point contact, the threshold current depends on
it. The absolute value of threshold current for the rotational
motion increases as the distance between the point contact and
the center of the disk increases. In the case of CCW (CW)
curling, the rate of increase is the largest (smallest) because
the restoring force is enhanced (weakened) by FOe between
the center of the circular disk and the vortex core.
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