
PHYSICAL REVIEW B 90, 214433 (2014)

Nonmonotonic residual entropy in diluted spin ice: A comparison between Monte Carlo
simulations of diluted dipolar spin ice models and experimental results
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Spin ice materials, such as Dy2Ti2O7 and Ho2Ti2O7, are highly frustrated magnetic systems. Their low-
temperature strongly correlated state can be mapped onto the proton disordered state of common water ice. As a
result, spin ices display the same low-temperature residual Pauling entropy as water ice, at least in calorimetric
experiments that are equilibrated over moderately long-time scales. It was found in a previous study [X. Ke
et al., Phys. Rev. Lett. 99, 137203 (2007)] that, upon dilution of the magnetic rare-earth ions (Dy3+ and Ho3+)
by nonmagnetic yttrium (Y3+) ions, the residual entropy depends nonmonotonically on the concentration of Y3+

ions. A quantitative description of the magnetic specific heat of site-diluted spin ice materials can be viewed as a
further test aimed at validating the microscopic Hamiltonian description of these systems. In this work, we report
results from Monte Carlo simulations of site-diluted microscopic dipolar spin ice models (DSIM) that account
quantitatively for the experimental specific-heat measurements, and thus also for the residual entropy, as a function
of dilution, for both Dy2−xYxTi2O7 and Ho2−xYxTi2O7. The main features of the dilution physics displayed by
the magnetic specific-heat data are quantitatively captured by the diluted DSIM up to 85% of the magnetic
ions diluted (x = 1.7). The previously reported departures in the residual entropy between Dy2−xYxTi2O7 versus
Ho2−xYxTi2O7, as well as with a site-dilution variant of Pauling’s approximation, are thus rationalized through the
site-diluted DSIM. We find for 90% (x = 1.8) and 95% (x = 1.9) of the magnetic ions diluted in Dy2−xYxTi2O7

a significant discrepancy between the experimental and Monte Carlo specific-heat results. We discuss possible
reasons for this disagreement.
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I. INTRODUCTION

One of the most interactive collaborations in contemporary
condensed matter physics occurs in the theoretical and exper-
imental study of geometrically frustrated magnets [1–6]. In
these systems, the predominant microscopic interactions com-
pete with each other, inhibiting the development of long-range
magnetic order down to very low, if not zero, temperature [5].
The temperature regime where strong magnetic correlations
exist, but long-range order is absent, is commonly referred
to as spin liquid or cooperative paramagnetic state [7], where
collective excitations can give rise to exotic behavior unique
to such frustrated systems [5]. Since the connection between
theoretical predictions and experimental signatures of such
novel phenomena is still under exploration, the continuing
dialog between theory and experiment is crucial in order to
maintain the rapid pace of development in the field.

Particularly successful exchanges between theory and
experiment in geometrically frustrated magnetism are found
in the study of spin ice materials [3,4,6,8,9]. These are
realized by the canonical compounds Dy2Ti2O7 [9], Ho2Ti2O7

[8], and the less extensively studied Dy2Sn2O7 [10] and
Ho2Sn2O7 [11]. More recently, Dy2Ge2O7 and Ho2Ge2O7

have been made through high-pressure chemical synthesis,
and shown to be spin ice systems through thermodynamic
measurements [12,13], as has CdEr2Se4, in which, unusually,

Er3+ is described by an Ising spin [14]. In all of these materials,
the magnetic rare-earth Dy3+, Ho3+, and Er3+ ions sit on the
vertices of a pyrochlore lattice of corner-sharing tetrahedra;
the Ti4+, Sn4+, and Ge4+ ions are nonmagnetic. Because
of the very large single-ion anisotropy in these systems, the
moments can be described below a temperature T ∼ 50 K
as classical Ising spins pointing along their local [111]
direction at their respective pyrochlore lattice sites [8,15,16].
Below a typical temperature of order 1 K, the magnetic state
of (Dy,Ho)2(Ti,Sn,Ge)2O7 can be mapped onto the proton
disordered state of common water ice [17], hence, the name
spin ice [8]. In this low-temperature spin ice state, the magnetic
moments are highly constrained locally and obey the so-called
“ice rules”: two spins point in and two spins point out of each
tetrahedron of the pyrochlore lattice, but without displaying
long-range order [3]. This constraint leads the spin ice state to
be viewed as a cooperative paramagnet [7] or a classical spin
liquid [5], a label that stems from the very strong Ising nature
of the lowest-energy crystal-field doublet for both Dy3+ and
Ho3+ and results in a dramatically reduced level of quantum
spin dynamics [16]. At the same time, the high-energy barrier
to single spin flips causes the relaxation dynamics to become
very slow in these materials below T ∼ 1 K. Consequently,
spin ices should be viewed as extremely sluggish classical
spin liquids [18].
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Remarkably, the question of slow dynamics in frustrated
icelike systems has been previously considered in the original
context of water ice, where extensive calorimetric studies
were carried out long before [19,20] its magnetic counterparts
were discovered [8]. The nature of the proton disorder in ice
was described by Pauling who estimated the residual entropy
to be SP = R/2 ln(3/2) per mole of protons (R is the molar gas
constant) [17], matching closely with experiments [19,20].
However, as water ice is doped with alkali hydroxides, such
as KOH or RbOH, a sharp first-order transition to long-range
order occurs at a temperature near 72 K. At that transition,
a large portion of the residual Pauling entropy is released
through the latent heat [21,22]. These experiments suggest
that the proton disordered ice state is somewhat fragile against
impurities and that the frustrated disordered ice state with
residual entropy can be eliminated through the influence
of impurities and/or random disorder. Yet, despite much
theoretical work, it remains unclear as to what is the exact
mechanism via which alkali hydroxides in the water ice system
promotes the development of long-range order [23] and what
role the impurities play on slow dynamical processes.

Inspired by the impurity-driven long-range order observed
in water ice [21,22], one may ask whether the magnetic spin
ice analog could also display interesting behavior when subject
to the addition of random impurities. As discussed above, a
Pauling residual entropy is generically found in undiluted
spin ice materials [9,10,13,14,24,25]. See, however, Ref. [26]
where no residual Pauling entropy plateau is found in
Dy2Ti2O7 if extraordinary long relaxation time scales of sev-
eral days is afforded below a temperature of order of 0.4 K. We
return to this issue later in this Introduction. The most promi-
nent thermodynamic indicator that the above materials enter a
correlated spin ice state is the broad specific-heat peak at the
“peak temperature” T peak, with T peak ∼ 1.1 K for Dy2Ti2O7

[9,26,27] and T peak ∼ 1.9 K for Ho2Ti2O7 [27,28]. There is no
thermodynamic phase transition between the high-temperature
paramagnetic state and the low-temperature spin ice state as
evidenced by the absence of sharp thermodynamic features
at T peak. Theoretical studies have shown that long-range
magnetostatic dipole-dipole interactions are responsible for
the ice rule obeying spin ice state in (Ho,Dy)2(Ti,Sn,Ge)2O7

compounds [28–32]. Yet, the same dipolar interactions should
give rise to long-range order [30,31] at a critical temperature
Tc � T peak if true thermal equilibrium can be maintained,
as observed in Monte Carlo simulations of a simple dipolar
spin ice model (DSIM) [29] that employ nonlocal loop moves
[33,34]. To date, however, no experiment has found a transition
to long-range order in spin ice materials [26,35], presumably
because of a dynamical arrest in spin flips [36] and the
associated relaxation times growing exponentially fast below
a temperature of about 1 K [26,37].

Hence, it is perhaps reasonable to imagine that a slight
dilution of the magnetic Dy3+ and Ho3+ ions could lower
the kinematic barriers for spin flips, thus accelerating the
spin dynamics, and help promote a transition to long-range
order without significantly affecting the broken discrete
symmetry long-range ordered ground state of dipolar spin
ice [33,34]. Luckily, magnetic site dilution in spin ices can
be realized rather straightforwardly in the Dy2−xYxTi2O7 and
Ho2−xYxTi2O7 compounds. These form a solid solution over
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FIG. 1. (Color online) Experimental residual entropy as a func-
tion of dilution level x for the Dy2−xYxTi2O7 and Ho2−xYxTi2O7

compounds (adapted from Ke et al. [27]) . Dy denotes Dy2−xYxTi2O7,
Ho denotes Ho2−xYxTi2O7, and Gen. Pauling denotes the generalized
Pauling approximation (gPa) presented in Ref. [27]. As noted by Ke
et al., there is an obvious departure between the three curves, except
for the undiluted compounds (x = 0).

the whole x ∈ [0,2] range where the magnetic Dy3+ and Ho3+

ions are replaced by nonmagnetic Y3+ ions [27]. The close
ionic radius of Y3+ with that of Dy3+ and Ho3+ allow for
a substitution causing negligible local lattice deformation and
strain [6], similarly to the situation in the LiHo1−xYxF4 dipolar
Ising ferromagnet [38–43]. In such a situation, the substitution
of Dy3+/Ho3+ by Y3+ in Dy2−xYxTi2O7 and Ho2−xYxTi2O7

can thus be viewed as the mere removal of the Dy3+/Ho3+

magnetic species. The study of site-diluted spin ices may thus
offer a unique opportunity to investigate quantitatively the
effect of random disorder in a strongly correlated (classical)
spin-liquid state. Such an endeavor should be achievable
by noting, for example, the quantitative progress made in
describing the thermodynamic properties of the LiHo1−xYxF4

dipolar Ising system, both in the diluted-ferromagnetic regime
[39,40] as well as in the dipolar spin-glass regime [38–43].

A neutron scattering study shows no sign of long-range
ordering in Ho2−xYxTi2O7 down to 30 mK for x = 0.3 and
1.0 [44]. On the other hand, specific-heat measurements have
found that the low-temperature residual entropy Sres(x) of
diluted Dy2−xYxTi2O7 and Ho2−xYxTi2O7 spin ices display
a nonmonotonic dependence on the level of dilution x [27].
This dependence of Sres(x) on x is actually accompanied by a
nonmonotonous x dependence of the temperature T peak(x) at
which the magnetic specific heat Cm(T ) peaks and reaches the
peak value C

peak
m (x) (see Fig. 2). We return to this point in the

next paragraph. A calculation generalizing Pauling’s argument
[17] (gPa) to the case of site dilution of a nearest-neighbor
spin ice model [8] also finds a nonmonotonic behavior of
Sres(x) (see dashed curve in Fig. 1) [27]. However, the apparent
systematic departures between the gPa and the experiment
results as well as the differences between Dy- and Ho-based
materials (see Fig. 1) have so far remained unaddressed. It
was suggested in the original work [27] that the residual
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entropy may be material dependent and have a more drastic
nonmonotonic dependence on levels of dilution than the
gPa does. The reason for such differences being caused, for
example, by the extra complexities (e.g., long-range nature) of
the dipolar interactions compared with the nearest-neighbor
spin ice model. One of the main goals of this work is to
identify precisely how this difference between the gPa and
the experimental results arise.

There is, apart from wanting to rationalize the difference in
Sres(x) between Dy2−xYxTi2O7 and Ho2−xYxTi2O7 as well as
with the gPa, another important motivation for investigating
the dilution dependence of the currently available dipolar
spin ice models for Dy2Ti2O7 [45] and Ho2Ti2O7 [28].
As mentioned above, Ref. [26] finds below T ∼ 0.45 K a
dramatically different behavior compared to that found in all
prior Cm(T ) measurements on Dy2Ti2O7. These new results
may possibly be viewed as a challenge to the dipolar spin
ice model (DSIM) description of this material [29,45]. To
address this question, one may ask whether the low-energy
scale responsible for this recently reported low-temperature
behavior could be exposed in experiments where the currently
available DSIM Hamiltonian is being tested in a regime of
parameters (e.g., magnetic field, dilution, etc.) far from the
one for which it was originally designed [28,29,45]. As the
specific-heat peak features T peak(x) and C

peak
m (x) signal the

underlying condensation of the two-in/two-out ice rule defects
(i.e., “monopoles” [32]) upon cooling, the x dependence of
T peak(x) and C

peak
m (x) informs us on the evolution of the

ice-rule correlations as a function of x. Hence, an ultimately
successful quantitative description of T peak(x) and C

peak
m (x)

would provide a further and seemingly compelling demon-
stration that the microscopic spin Hamiltonian at hand [45],
including its Ising nature, is robust against a large departure
from its original design setting.

In order to investigate the microscopic origin of the relative
departure of the three curves in Fig. 1 as well as the x

dependence of T peak(x) and C
peak
m (x) in Fig. 2, we have

performed Monte Carlo simulations of a diluted variant of the
pertinent microscopic dipolar spin ice model of Ho2Ti2O7 [28]
and Dy2Ti2O7 [45]. A direct comparison of the temperature-
dependent magnetic specific heat Cm(T ) for various dilution
levels x between simulations and experiments is made in order
to validate a simple site-diluted version of the otherwise pure
(dilution-free) microscopic models. Through the simulation
data, we obtain an accurate Cm(T ) which provides for a
precise determination of the residual entropy, down to the
lowest temperature T0 ∼ 0.4 K considered in the experiments
of Ke et al. in Ref. [27] on diluted Dy2−xYxTi2O7 and
Ho2−xYxTi2O7.

The three main conclusions of our work are as follows.
First, we find that a DISM with simple site dilution is able
to describe quantitatively well Cm(T ) for Dy2−xYxTi2O7 and
Ho2−xYxTi2O7 in the temperature range T ∈ [0.5,5.0] K
without any adjustment of the Hamiltonian available for the
dilution-free variants of these two materials [28,45]. For
example, Fig. 2 illustrates this for the case of Dy2−xYxTi2O7.
Second, our simulation results confirm the previous
speculation [27] that the material-dependent residual entropy
originates from the material-specific details of the interactions.
Specifically, it is due to the fact that Dy2−xYxTi2O7 and

P
ea

k
te

m
pe

ra
tu

re
(K

)

P
ea

k
he

ig
ht

(J
/m

ol
D

y
K

)

x

FIG. 2. (Color online) Dilution x, dependence of the peak height
C

peak
m (x), and peak temperature T peak(x) of the magnetic specific heat

Cm(T ) of Dy2−xYxTi2O7. The closed symbols show experimental
data while the open symbols are from Monte Carlo simulations of
a site-diluted dipolar spin ice model (see text). The circles show
the x dependence of C

peak
m (x) (right axis) while the squares show x

dependence of T peak(x) on the left axis. A nonmonotonic dependence
of C

peak
m (x) and T peak(x) as a function of x is clearly seen in

both the experimental and Monte Carlo data. The good agreement
between experimental and Monte Carlo data for both quantities that
we establish in this work shows that the hypothesis of a simple
site-diluted dipolar spin ice model (DSIM) describing Dy2−xYxTi2O7

is reasonably well confirmed up to x = 1.8. This is one of the main
conclusions of our work.

Ho2−xYxTi2O7 have a ratio of their dipolar interaction energy
scale to the nearest-neighbor antiferromagnetic exchange
coupling that differs by a factor of about 2. Furthermore,
the failure of the gPa to describe quantitatively the residual
entropy of diluted dipolar spin ice materials and models is
inconsistent with the notion of projective equivalence [31,32]
which associates the low-temperature regime of the DISM
to an effective nearest-neighbor spin ice model. Finally, our
conclusion regarding the different residual entropy Sres of
Ho2Ti2O7 and Dy2Ti2O7 differs from the one reached in
Ref. [27] and illustrated in Fig. 1. Namely, we find that
Ho2−xYxTi2O7 has a smaller Sres(x) than Dy2−xYxTi2O7 does
for any experimental baseline temperature value T0 chosen
identical for the two sets of compounds.

The rest of the paper is organized as follows: In Sec. II, we
discuss the details of the experimental methods. In Sec. III,
we present our microscopic models and the Monte Carlo
simulation methods. In Sec. IV, we present and discuss
the results of the Monte Carlo simulations and address the
previously reported [27] material-dependent residual entropies
along with their departure from the gPa predictions. Finally,
Sec. V concludes the paper.

II. EXPERIMENTAL METHODS AND RESULTS

Specific-heat C(T ) measurements were performed on Y-
diluted spin ice materials Dy2−xYxTi2O7 and Ho2−xYxTi2O7

using a Quantum Design Physical Property Measurement
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System (PPMS) cryostat with the He3 option via a standard
semiadiabatic heat pulse technique. The Dy-based samples
were thoroughly mixed with silver (Ag) and pressed into
pellets to facilitate thermal equilibration. The scaled Ag
specific heat, measured separately, was subtracted from the
total specific heat. Generally, a few tens mg of Ag were mixed
with roughly similar amount of Dy-based powders (both were
measured with 0.1 mg error) and ground together. At the
end, pellets with a mass of 10 ∼ 20 mg were measured.
The phonon contribution was extracted by fitting the data with
the Debye formula in the temperature range T ∈ [10,20] K,
and subtracted from the total specific heat to obtain the
magnetic specific-heat contribution Cm(T ). Ho-based samples
were pressed directly into pellets and the magnetic specific
heat was obtained after subtracting both the phonon and the
large Ho nuclear Schottky anomaly contribution [24,28].
The data Cm(T )/T integrated from T̃0(x) = 0.4 ± 0.1 K,
depending on the lowest temperature T̃0(x) experimentally
accessed for a given concentration x, up to a (“high”)
temperature T � T peak(x), was used to determine the residual
low-temperature entropy Sres(T̃0), reported. As discussed in
the Introduction, this experimentally determined residual
entropy Sres(T̃0), reported in Ref. [27] and plotted in Fig. 1,
varies nonmonotonically as a function of the Y concentration
for both the Dy2−xYxTi2O7 and the Ho2−xYxTi2O7 series,
being very roughly qualitatively captured by a generalization
of Pauling approximation’s (gPa) that is represented by the
dashed curve in Fig. 1 above [27].

III. MICROSCOPIC MODELS AND MONTE
CARLO SIMULATIONS

A. Microscopic models of spin ices

In spin ices, the magnetic moments reside on a pyrochlore
lattice, which consists of a face-centered-cubic lattice of
corner-sharing tetrahedra primitive units [3,6]. Due to the large
energy scale (∼300 K) of the crystal field splitting between
the ground-state doublet and the lowest-energy excited doublet
that exist in Dy2Ti2O7 and Ho2Ti2O7 [6,15,16], the states that
form the ground doublet of the Dy3+ and Ho3+ ions can safely
be assumed to be the only thermodynamically relevant states
below a temperature T � 50 K.

As suggested originally [8], the minimal model that
describes the geometrical frustration in spin ices is

HNNSIM = Jeff

∑
〈i,j〉

σiσj , (1)

where Jeff > 0 is the effective antiferromagnetic interaction
between the σ ’s Ising variables. This model possesses a Paul-
ing residual entropy SP [46] and displays at zero temperature
an ice-rule-obeying ground state characterized by dipolarlike
spin-spin correlations that emerge from the “two-in/two-out”
ice-rule constraint [47–49].

On the other hand, in real spin ice materials, the Dy3+

and Ho3+ ions carry a large magnetic moment (∼10μB)
and the long-range dipolar interactions cannot be ignored
[29–31,50]. Given the symmetry of the crystal field ground
state [8,15,16], the magnetic moments can be well described
by vector spins constrained by the single-ion anisotropy to
point strictly parallel or antiparallel to their respective local

[111] direction (i.e., along the line from the corners to the
center of each tetrahedron) [3,8,15,16]. Taking the dipolar
interaction and the essentially infinite local Ising anisotropy
into consideration, the dipolar spin ice model (DSIM) is
defined by the Hamiltonian

HDSIM =
∑
i>j

σiσj

{
3∑

ν=1

Jν δrij ,rν
ẑi · ẑj

+ D(r1/rij )3[ẑi · ẑj − 3 (ẑi · r̂ij )(ẑj · r̂ij )]

}
. (2)

The σi = ±1 are the Ising spin variables on the pyrochlore
lattice. The ẑi is the local [111] direction of the Ising axis
at site i, which points from the corner of a tetrahedron to its
center. The first term describes the Ising exchange interaction
and the second term is the long-range magnetic dipole-dipole
interaction. Here, ν = 1, 2, or 3 refers to first-, second-, or
third-nearest neighbors, respectively, where Jν is the exchange
coupling and rν is the distance between them. There are two
types of third-nearest-neighbor interactions which we do not
differentiate [45]. D is the strength of the dipolar interactions
at nearest-neighbor distance.

Using the most up-to-date values for Jν and D, we have with
our sign convention of Jν (Jν > 0 is antiferromagnetic; Jν < 0
is ferromagnetic): J1 = 3.41 K, J2 = −0.14 K, J3 = 0.025 K,
and D = 1.32 K for Dy2−xYxTi2O7 [45] and J1 = 1.56 K and
D = 1.41 K for Ho2−xYxTi2O7 [28]. Unfortunately, because
of the complexity introduced by the large hyperfine coupling
interactions in Ho-based materials [28], much less systematic
calorimetric measurements, which provide many of the con-
straints to determine J1 and J2 [45], have not been carried out
on Ho2Ti2O7 compared to Dy2Ti2O7. Consequently, the J2 and
J3 values for Ho2Ti2O7 have not yet been determined [28] and
we therefore set J2 = J3 = 0 for this compound. As we shall
see in the following, it turns out that this (J2 = J3 = 0) model
describes well the magnetic specific heat of Ho2−xYxTi2O7

for the x = 0,0.4,0.8,and1.2 values considered in this work.
We remind the reader that a rough indicator of the energy scale
determining the temperature at which a dipolar spin ice system
enters the ice-rule-obeying spin ice regime is set by Jeff ≡
(5D − J1)/3 [29]. Here, the factors of 5 and 1

3 come from
the relative orientation of the ẑi Ising axis (ẑi · ẑj = − 1

3 ) and
the trigonometric factors (ẑi · r̂ij )(ẑj · r̂ij ) = − 5

3 for nearest
neighbors in the second (dipolar) term of Eq. (2). We thus have
Jeff = 1.06 K for Dy2Ti2O7 and Jeff = 1.83 K for Ho2Ti2O7.

For the diluted samples, we assume that the nonmagnetic
diluting Y3+ ions are introduced randomly while all other
parameters of the material, and therefore those of the model in
Eq. (2), are assumed to be unchanged. This means that, until
more accurate microscopic or ab initio modeling of the effect
of diamagnetic site dilution in spin ice compounds becomes
available, we ignore local lattice strain effects that may result
from the substitution of Dy3+ or Ho3+ by Y3+. In practice, we
thus ignore any changes that may occur in the Jν exchange
couplings, the rare-earth ion magnetic moment μ as well as
new quantum transverse spin exchange couplings [51,52] that
would all results from a variation of the single-ion crystal field
ground-state wave functions. This would seem a reasonable
first approximation given the close ionic radius of Y3+ with
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Dy3+ and Ho3+. We note in passing that such an approximation
has recently been shown to describe quantitatively quite well
the variation of the critical ferromagnetic temperature in Ho3+

substituted by Y3+ in LiHo1−xYxF4 [39–41,43]. In practice,
the microscopic Jν’s and D in Eq. (2) are kept to their pure
Dy2Ti2O7 and Ho2Ti2O7 values while the Ising variables are
redefined as σi → εiσi , with εi = 0 if site i is occupied by
nonmagnetic Y3+ ion or εi = 1 if occupied by a magnetic
rare-earth ion. Thus, for (Dy,Ho)2−xYxTi2O7, the random site
probability distribution of εi , P (εi), is P (εi) = (x/2)δ(εi) +
(1 − x/2)δ(εi − 1), where δ(u) is the Dirac delta function.

B. Monte Carlo methods

We carried out Monte Carlo simulations for the above
model for Dy2−xYxTi2O7 and Ho2−xYxTi2O7 at various Y3+
concentrations x. We used a conventional cubic unit cell
containing 16 spins, with the system of linear size L having
16L3 spins. Dilution is treated by randomly taking spins out
of the system, and a disorder average over 50 different random
dilution configurations was performed for each dilution level x.
Periodic boundary conditions are used, and we implemented
the infinite dipole interactions using the Ewald summation
technique [53]. Most of the data production was done with
L = 4 while, for higher dilutions (x � 1.5), we used L = 5
to have a reasonably large number of spins remaining in the
system. For most of the results presented in the following,
very little system size dependence for the magnetic specific
heat Cm(T ) was observed.

A conventional single spin-flip Metropolis algorithm was
employed for the Monte Carlo simulation. In addition, we
used a nonlocal “closed-loop” update [33,34] as well as a
new “open-loop” update that we now explain. The open-loop
update is a modified version of the closed-loop update with the
following amendments. In a diluted system, a fraction of the
elementary tetrahedral units will have one or three sites occu-
pied by a spin. Such “± tetrahedra” have the sum of their Ising
σi variables over the occupied sites equal to ±1 or ±3. At low
temperatures, almost all such tetrahedra become constrained to
±1 since these states are energetically lower than the ±3 ones.
In terms of the monopole description of the low-temperature
spin ice state [36], these ±1 tetrahedra can be viewed as local
impurities with fractional (± 1

2 ) monopole charge.
The open-loop update algorithm searches for an end-to-

end chain of spins connecting two of these tetrahedra with
opposite sums of the Ising variables. An open-loop update
flips all the spins along the chain when accepted. Energetically,
the nearest-neighbor part of the HDSIM is unchanged in such
an open-loop Monte Carlo update. We use the term open-
loop update to stress the similarity of the algorithm to the
original closed-loop update [33,34], but with the chains of
the updated spins ending at two “±1 tetrahedra.” In order
to further facilitate the equilibrium of the system, we found
it necessary to also employ the parallel tempering technique
which is commonly used in the study of spin-glass models
[54]. At least 200 000 Monte Carlo update steps are used with
each single-spin-flip update sweep followed by the two types
of loop moves update as well as by a parallel tempering replica
exchange sweep [54]. Another 200 000 such steps are used for
data production. The magnetic specific heat was determined

by performing a disorder average of the energy fluctuations:

Cm(T ) = [〈E2〉 − 〈E〉2]

kBT 2
, (3)

where 〈. . .〉 and [. . .] as thermal (Boltzmann) and disorder
averages, respectively.

There are two sources of errors in our simulations. One is
from the Monte Carlo statistics for each disorder realization.
The other is from the sample-to-sample fluctuations for
different realizations of sample dilution, which arise in the
simulations because we are dealing with a finite-size system.
We find the error bars from the Monte Carlo statistics to be
typically very small: less than 1% for all cases we checked.
This allows us to ignore this type of error and only consider
the error from sample-to-sample fluctuations. Therefore, our
error bars are given by

σ =
√

1

n − 1
([C2] − [C]2), (4)

where n = 50 is the number of disorder realizations. For most
data points, the error bars are smaller than the width of the solid
lines. For the most dilute samples (x = 1.8 and 1.9), we have
verified, by considering 1000 disorder realizations for L = 3,
4, and 5, that the sample-to-sample variation remains well
bounded and that there is no Griffiths-type behavior affecting
the Monte Carlo specific-heat data, and that Cm(T ) is therefore
well self-averaged.

IV. RESULTS AND DISCUSSIONS

We plot in Fig. 3 the magnetic specific heat versus
temperature Cm(T ) obtained from Monte Carlo simulations of
Eq. (2) (solid lines) for various levels of dilution in comparison
with experimental data (open black circles for Dy2−xYxTi2O7,
open red squares for Ho2−xYxTi2O7).

The agreement between our Monte Carlo simulation and the
previous experiment [27] that we report in Fig. 3 is strikingly
good for most dilution levels (up to and including x = 1.7
for Dy2−xYxTi2O7) and over a rather wide temperature range
T ∼ [0.5–5 K]. This is particularly noteworthy given that there
is no adjustment of the microscopic parameters of the dipolar
spin ice Hamiltonian of Eq. (2), except for the dilution of spins
in the system. From these results, we conclude that a simple
site-diluted version of the DSIM of Eq. (2) does capture the
dilution physics of both materials at a quantitative level. This
constitutes the first main result of this paper.

Close inspection of Fig. 3 shows that there is a discrep-
ancy in Cm(T ) between simulation and experimental results
for T � 5 K. Also, the simulation results show a rise of
Cm(T ) as T decreases below a temperature of approximately
0.4 K and 0.6 K for Dy2−xYxTi2O7 and Ho2−xYxTi2O7,
respectively, while this behavior is barely noticeable in our
experimental data. We address these two points in further
detail in Sec. IV A, mostly at the phenomenological level,
postponing the discussion of the physical implications of these
results for the determination of the residual entropy to the
following subsection. In Sec. IV B, we present the baseline
low-temperature limit T0 dependence of the residual entropy
Sres(T0) as a function of dilution level x. We comment in
Sec. IV C on the failure of our Monte Carlo simulations to
reproduce the experimental results for x = 1.8 and 1.9.
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FIG. 3. (Color online) Comparison of the magnetic specific heat Cm(T ) between Monte Carlo simulations and experiments. Black open
circles are for Dy2−xYxTi2O7 experiment, solid black curves are for Dy2−xYxTi2O7 simulations. Red open squares are for Ho2−xYxTi2O7

experiment, and solid red curves are for Ho2−xYxTi2O7 simulations. Insets show an enlargement around the Schottky peak at Tp, arising from
the formation of the spin ice state. The horizontal blue arrows indicate location of Cm(T ) minima that may be occurring in Ho2−xYxTi2O7.

A. High- and low-temperature regimes

1. High-temperature regime

In the “high-temperature regime,” typically above 4 to 5 K,
we observe that our simulation results for Cm(T ) depart from
the experimental results. Such discrepancies need clarification
since (i) a demonstration of the validity of the microscopic
models considered depends on achieving a good degree of
agreement between experimental and Monte Carlo Cm(T )
curves and since (ii) as we shall see when discussing the resid-
ual entropy in the next subsection, Cm(T ) for T � 5 K con-
tributes up to about 10% of the full R ln(2) magnetic entropy.

From a high-temperature expansion perspective, the mag-
netic specific heat is expected to follow a Cm(T ) ∼ 1/T 2 form
at temperatures large compared to the typical temperature
scale T peak(x), the temperature at which the specific heat
peaks, set by the interactions in these systems. This form was
indeed verified in all our simulation results. In contrast, all the
experimental Cm(T ) data decrease at T � 5 K significantly
faster and are obviously not in agreement with this necessary
1/T 2 high-temperature form.

We believe this fast dropoff in the experimental data is
likely due to the oversubtraction of the lattice contribution
to the total specific heat at these temperatures. The usual

method for carrying out such a subtraction relies on an
estimated Debye contribution for the acoustic phonons. For
example, by considering the temperature range of 10 K
� T � 20 K, one might try to fit the total specific heat
to the form Ctotal(T ) = A/T 2 + BT 3, where the 1/T 2 part
comes from the aforementioned magnetic contribution and
T 3 part is the Debye phonon contribution. Unfortunately, for
T � 10 K, background contributions from other components
of the experimental setup become significant (see Sec. II). In
particular, we note that in order to facilitate thermal conduction
in the measurements, Ag powder was mixed into the spin ice
powder samples. At these higher temperatures, the specific-
heat contribution from the Ag component becomes larger
than the magnetic component that we are trying to isolate.
Fitting the phonon contribution with all these high-temperature
background contributions embeds errors in the A and B fitting
parameters, which then causes an oversubtraction for the
magnetic specific heat Cm(T ) at T � 5 K.

2. Low-temperature regime

We now turn to the low-temperature regime of the Cm(T )
curves, below the prominent peak at T = T peak, with T peak ∼
1 K for Dy2−xYxTi2O7 and T peak ∼ 1.9 K for Ho2−xYxTi2O7.
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In particular, we discuss the minima found in the simulation
results for all dilution levels (including x = 0, although in
this case the minimum is more subtle [33,34]) in both the Dy
and Ho spin ices (see solid curves in insets in Fig. 3). We
note here that the value of Cm at its minimum value is not
very different with that reported in the recent measurements
of Ref. [26]. We find for Dy2−xYxTi2O7 (x = 0.2) a minimum
Cm ∼ 0.5 J/(mol K) value at T ∼ 0.5 K, which is close to the
Cm/T ∼ 1 J/(mol K2) found, also, at T ∼ 0.5 K in Ref. [26].
As discussed in Sec. IV B, the integrated entropy of the system
is highly dependent on the Cm(T ) results at low temperatures
since dS = Cm(T )

T
dT .

It is known that in simulations of the undiluted dipolar
spin ice model [33,34], a Cm(T ) minimum arises from the
development of extra correlations within the spin ice state
caused by the dipolar interactions, with the system eventually
undergoing a transition to long-range order at Tc ∼ 0.13D

(Tc ∼ 0.18 K for the D value appropriate for Ho2Ti2O7

[33,34]). For such a minimum to be found in undiluted spin
ice simulations, collective spin update algorithms (loop moves
discussed in Sec. III B) have to be included. On the other
hand, it is very difficult for experiments to display such a
Cm(T ) minimum and the long-range order transition, due to
the freezing of spins below a temperature T ∼ 0.5 K [26,35].

As discussed in Sec. III B, equilibrium in the simulations
cannot be achieved without using collective update algo-
rithms, further supplemented by parallel tempering. For
Dy2−xYxTi2O7, having used a 3He cryostat (see Sec. II B),
the experiments stop at temperatures just above the simulation-
predicted minima. For Ho2−xYxTi2O7, the Cm(T ) minima are
perhaps experimentally observed (see horizontal blue arrows
in the insets of Fig. 3 for x = 0.4, 0.8, and 1.2), although the
experimental data points below the minima do not agree very
well with the simulation results. In this case, one should be
warned that there is a large nuclear contribution at T � 0.5 K
for Ho2Ti2O7 [28]. Even though this nuclear component
has been subtracted (see Sec. II), its existence nevertheless
complicates the possible experimental observation of the
minima in the magnetic-only part Cm(T ) of the total specific
heat C(T ).

While the present experimental data do not allow for a
convincing observation of the minima in Cm(T ), we unques-
tionably find them in the Monte Carlo simulations of the
microscopic DISMs. The minima observed in the specific-heat
simulations of the diluted DSIMs acquire a significant value,
as seen in Fig. 3, as opposed to the vanishing values in the
undiluted variants (see x = 0 panel in Fig. 3) [33,34,45].
Furthermore, the broad specific-heat peak at T peak(x), which
signals the development of ice-rule correlations as in the
undiluted Dy and Ho spin ices, is less well defined in the
presence of dilution. For example, for x = 1.7, the peak is
more of a shallow hump feature resulting from a slight drop at
about 0.4 K on the rising low-temperature (T � 0.4 K) portion
of the Cm(T ) curve. Indeed, at such a high dilution, the ice
rules are marginally enforced and the C(T ) peak associated
with the development of ice rules fulfilling tetrahedra is not
very prominent. As discussed further in Sec. IV B regarding
the determination of the residual entropy Sres(T0) at a low
temperature T0, the behavior of the Cm(T ) curves suggests
that the residual entropy concept employed for undiluted spin

ices cannot be readily discussed without a specification of the
lowest temperature T0 at which (equilibrated) experimental
data are obtained.

To sum up, there exist experimental difficulties in
determining the magnetic-only contribution to the specific
heat Cm(T ) in the high-temperature regime (T � 5 K). For
the low-temperature regime (T � 0.5 K), in contrast to
the undiluted case, the Cm(T ) curves from our simulations
display clear minima with significant Cm(T ) values. On
the experimental front, these minima may be marginally
observed in Ho2−xYxTi2O7 (x = 0.4,0.8,1.2), but are not
observed in Dy2−xYxTi2O7. At the same time, the very
good agreement between the experimental and Monte
Carlo Cm(T ) for both materials (for x up to x = 1.8 for
Dy2−xYxTi2O7) and for 0.5 K � T � 5 K seemingly
vindicates the applicability of a simple site-diluted version
of the DSIM to describe Dy2−xYxTi2O7 and Ho2−xYxTi2O7.
This conclusion is best illustrated by considering the good
agreement between experimental and Monte Carlo data for
C

peak
m (x) and T peak(x) in Fig. 2. In other words, the Ising

nature of the Dy3+ and Ho3+ magnetic moment, along with
the predominant classical energy scales of the Hamiltonian
of Eq. (2), appear largely unaffected by the substitution of the
magnetic rare-earth ions by nonmagnetic Y3+.

In what follows, we thus take the following approach.
Having demonstrated good agreement between experiments
and models in the temperature range T ∼ [0.5–5 K] for
both Dy2−xYxTi2O7 and Ho2−xYxTi2O7, in order to rem-
edy the aforementioned experimental caveats, we henceforth
only consider the simulation data of Eq. (2) to expose
accurately what would be the “theoretically expected” (or,
ideally experimentally determined) x dependence of the low-
temperature residual entropy Sres(x,T0) of the Dy2−xYxTi2O7

and Ho2−xYxTi2O7 diluted dipolar spin ice materials.

B. Nonmonotonic residual entropy

1. Current analysis

Since Eq. (2) is an Ising model, the entropy at infinite
temperature per mole of spin is R ln 2. Thus, the residual
entropy Sres(T0) at a given temperature T0 can be written as

Sres(T0) = R ln 2 −
∫ ∞

T0

Cm(T )

T
dT . (5)

We compute Sres(T0) obtained from the Monte Carlo sim-
ulations Cm(T ) data for different choices of T0, where the
integration to infinite temperature is done by fitting the Cm(T )
curves at high temperatures (>10 K) to a 1/T 2 form.

The results from these Monte Carlo determinations of
the residual entropy Sres(T0) are shown in Fig. 4 for both
Dy2−xYxTi2O7 and Ho2−xYxTi2O7. We confirm the previous
observation made by Ke et al. in Ref. [27] that there does exist
(i) a nonmonotonic x dependence of Sres(T0) and (ii) that there
is a difference in Sres(T0) between the two materials.

The main new result here is, thanks to the ability of the
Monte Carlo simulations to provide accurate Cm(T ) data for
the T � 0.5 K and T � 10 K ranges, that we can now robustly
expose both the x dependence and the materials dependence
of Sres(x). Supplementing the previous paper [27], we are
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FIG. 4. (Color online) Residual entropy determined from Monte Carlo simulations for both Dy2−xYxTi2O7 and Ho2−xYxTi2O7 with
different low-temperature limits T0. The dotted black curve shows Sres given by the generalized Pauling’s argument (gPa).

now also uncovering the importance of specifying the base
temperature T0 used in the determination of Sres(x). Such a
need to specify T0 does not arise in previous works on undiluted
Dy2Ti2O7 and Ho2Ti2O7 because Cm(T ) practically drops to
zero near T ∼ 0.4 K and Sres remains close to the Pauling value
for Cm(T )/T integrated upward anywhere from 0.45+0.10

−0.15 K
(see, however, Ref. [26]). In particular, as a final and crucial
observation, we note that for all values of x and for a given T0,
Sres(x) is lower for Ho2−xYxTi2O7 than for Dy2−xYxTi2O7, in
contrast to the conclusion that was reached in Ref. [27] and
reproduced in Fig. 1.

To reiterate, as can be seen in Fig. 4, the results of the
residual entropy for the diluted (x > 0) DSIM depend strongly
on the choice of T0, in contrast to the undiluted case (x = 0),
in which the Sres(T0) for different T0’s almost collapse onto the
calculation of the Pauling’s entropy (R/2) ln( 3

2 ). For x = 0, the
collapse of the Sres(T0) for different T0’s is the manifestation
of the projective equivalence [31,32], which states that the
quasi-ground-state properties of the DSIM can be described by
an effective nearest-neighbor spin ice model up to corrections
falling off as 1/r5. But, for x > 0, the T0 dependence suggests
an inconsistency with projective equivalence when site dilution
is considered.

2. Discussion and relation with the work of Ref. [27]

At this juncture, it is perhaps useful to discuss the
relationship between the results obtained here (see Fig. 4)
and the ones reported in Ref. [27] (see Fig. 1). Considering

the results in Fig. 4 for Dy2−xYxTi2O7 and Ho2−xYxTi2O7, we
find that for a fixed T0, both materials display a nonmonotonous
dependence of Sres(x,T0) upon x. The overall nonmonotonous
trend of Sres(x,T0), being roughly captured by the gPa, suggests
some remnant of the physics of the diluted nearest-neighbor
spin ice model within the diluted DISM. Yet, the two materials,
because of their different magnetic interactions, do display
quantitatively different Sres(x,T0) from each other and from
the gPa. Specifically, the two series of compounds possess a
different energy scale for the dipolar interaction D relative
to the nearest-neighbor scale J1, reflected in the values
Jeff = 1.06 K for Dy2Ti2O7 and Jeff = 1.83 K for Ho2Ti2O7.
Consequently, Ho2−xYxTi2O7 enters the spin ice regime at
a higher temperature than Dy2−xYxTi2O7, as signaled by
the temperature location of the peak in the specific-heat
temperature T peak(x). Since Ho2−xYxTi2O7 develops spin ice
correlations at higher temperature than Dy2−xYxTi2O7, it
therefore displays a lower residual entropy Sres(x,T0) than
the latter for all x and for the same (chosen) T0 for both
compounds. For example, referring to Fig. 4, we see that for a
given x the Sres(x,T0) value is always lower for Ho2−xYxTi2O7

than for Dy2−xYxTi2O7 for a set T0 value. Here, we are
implicitly assuming that the system is cooled slowly from a
temperature T � T peak(x) down to T0 and that the determined
Sres(x,T0) is an equilibrium thermodynamic value. Being a
statement about an equilibrium measurement of Sres(x,T0),
the above assertions are therefore not concerned about what
the properties of the system are for T < T0. This would be
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the case whether the system freezes out of equilibrium in
an ice-rule-obeying state, has a spin-glass state induced by a
small amount of oxygen vacancies [55], marches towards a
phase transition to long-range order [33,34], or is beginning to
enter a coherent quantum spin ice regime [51,52], any of them
possibly suggested by the recently reported rise of Cm(T ) for
T � 0.5 K [26].

The results displayed in Fig. 4 are different from those
shown in Fig. 1 and which, as stated in the Introduction, largely
motivated this work. In particular, the vertical ordering of
Sres(x,T0) of Ho2−xYxTi2O7 versus Dy2−xYxTi2O7 is swapped
when going from Figs. 1 to 4. Let us explain the reasons for
this. First, as discussed above and as illustrated in Fig. 3,
the Monte Carlo results are in good agreement with experi-
mental data for Ho2−xYxTi2O7 and Dy2−xYxTi2O7 over the
temperature range [0.5,5.0] K. Consequently, if we were to
compute the magnetic entropy Sm from both the experimental
and Monte Carlo Cm(T ) data defined over that same temper-
ature range for both compounds (Sm = ∫ 5.0

0.5 CmT −1dT ), one
would obviously find the same entropy within experimental
uncertainty. There is therefore no mystery. One now recalls
that the results reported in Fig. 4 are from Monte Carlo
Cm results used to compute Sres(x,T0) between a fixed T0
and infinite temperature. As explained above, this procedure
was followed because of the experimental difficulties in
accurately extracting Cm(T ) for T � 5.0 K. In particular,
the experimentally estimated Cm(T ) for T > 5.0 K can fall
significantly below the required 1/T 2 dependence (e.g. see
x = 1.2 panel in Fig. 4). The results from Ref. [27], reproduced
in Fig. 1, having been obtained upon integrating the Cm(T ) data
from (i) a slightly varying baseline T0 = 0.45+0.05

−0.15 K and (ii)
up to the maximum temperature (as large as 10 K), with Cm(T )
determined after the Ag and lattice contributions having been
subtracted, lead to an underestimated Sres(x), in particular for
Ho2−xYxTi2O7 (see the experimental Cm(T ) data for x = 0.4,
0.8, and 1.2 for T � 5.0 K in Fig. 3).

We thus consider the data shown in Fig. 1 now fully
rationalized, and that these should be viewed as superseded
by those of Fig. 4 as a more accurate reflection of the
residual magnetic entropy at a baseline temperature T0 in
Ho2−xYxTi2O7 and Dy2−xYxTi2O7. This is the second main
result of this paper.

C. Large level of dilution

It is perhaps remarkable that the nice agreement found
between Monte Carlo simulations and experiments shown in
Fig. 3 for Dy2−xYxTi2O7 for 0 < x � 1.7 disappears abruptly
and essentially completely going from x = 1.7 to 1.8 and 1.9
(see Fig. 3). The only similarity left is that both Monte Carlo
and experimental Cm(T ) data show a low-temperature hump at
a temperature T ∼ 0.8 K (see insets of Fig. 3 for x = 1.8 and
1.9, which are further reproduced in Fig. 5). This figure further
illustrates that despite the large dilution of magnetic ions
for x = 1.8 and 1.9, finite-size effects remain negligible. By
considering 1000 disorder realizations for L = 3, 4, and 5, we
have also checked that the sample-to-sample variation is well
bounded and the specific-heat data are therefore self-averaged.
We are thus rather confident that the discrepancy between
simulation and experimental results does not arise from
computational pitfalls, but is a genuine physical difference.
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FIG. 5. (Color online) Comparison of Monte Carlo specific heat
with experimental results for Dy2−xYxTi2O7 for sizes L = 3,4,5
for x = 1.8 (top panel) and x = 1.9 (bottom panel). For these
simulations, 1000 disorder realizations were considered to carry out
the disorder average in Eq. (3).

Presently, we do not have a good suggestion as to what may
cause such a sudden (in terms of “just” going from x = 1.7
to 1.8) and large discrepancy between experiments and Monte
Carlo data. A possible mechanism includes the development of
a dipolar Ising spin-glass state [38–41,43] inhibiting thermal
equilibrium in the experiments. However, this should not be
at play at temperatures as high as 1 K as we would naively
expect the thermodynamic spin-glass transition temperature to
be below 200 mK or so for those two concentrations [41,43].
Another possibility includes a significant random local lattice
distortion developing upon reaching large levels of dilution.
This would affect the Jν couplings and the crystal field, hence,
the magnetic moment μ and the dipolar coupling D compared
to the values determined for x = 0. A third possibility is that
of a highly uneven distribution of the magnetic ions as x → 2.
These last two possibilities would seem rather unlikely given
the close ionic radius of Y3+ with Dy3+ and Ho3+ and the
solid solution that exists in the whole x ∈ [0,2] range. In this
context, we note that no such concern has arisen in studies
of the site-diluted LiHo1−xYxF4 dipolar Ising material, over
the whole x range spanning the diluted ferromagnetic regime
all the way to the spin-glass one [42,43]. More experiments
are definitely required to understand the x → 2 behavior of
diluted spin ice materials.

V. CONCLUSION

Spin ice is at the present time one of the best understood
highly frustrated magnetic systems, both from a microscopic
model perspective [16,28,29,45] as well as from a field
theoretic one [47–49,56]. Spin ices thus appear to be ideal
systems to investigate quantitatively the effects of random
disorder in a highly frustrated magnetic setting [49,56,57]. In
this paper, we reported results from Monte Carlo simulations
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of a site-diluted version of the dipolar spin ice model (DSIM)
given by Eq. (2) for Dy2−xYxTi2O7 and Ho2−xYxTi2O7. A
close match between simulation results and experiments for
the magnetic specific heat Cm(T ) in the temperature range
0.5 K � T � 5 K was found up to, and including, x = 1.7
(85% magnetic ions diluted) for Dy2−xYxTi2O7. This good
agreement between simulations and experiments validates
further the underlying dipolar spin ice models for these two
compounds [28,45]. Specifically, that the Dy3+ and Ho3+

magnetic moments remain well described by a classical Ising
variable and that the exchange couplings Jν and dipolar
coupling constant D that enter the spin Hamiltonian of Eq. (2)
are not significantly renormalized by the substitution of the
rare-earth ion by Y3+.

The nonmonotonicity of the residual entropy as a function
of dilution levels Sres(x,T0) is confirmed to originate from
the material-specific spin-spin interactions. Namely, it is
due to the relative strength of the dipolar interactions with
respect to the (mostly) nearest-neighbor exchange coupling
J1. Furthermore, despite the importance of specifying the base
temperature T0 from which thermodynamic integration of the
magnetic specific heat Cm(T )/T is carried out, Sres(x,T0) is
nevertheless found to be roughly qualitatively described by a
generalized version of the Pauling’s approximation (gPa) to
estimate Sres(T0). In summary, the difference in the residual
entropy Sres between Dy2−xYxTi2O7 and Ho2−xYxTi2O7, as
well as with the gPa, have been resolved in this work.

Encouraged by the robustness of the site-diluted dipolar
spin ice model to describe the experimental observations
for temperatures higher than 0.5 K or so, we hope that our
work will stimulate further experimental investigations and
theoretical studies of spin ice materials at T � 0.5 K, in
particular in the context of evincing a possible transition to
long-range order [26,33,34], a spin glass ground state [58] or
a quantum spin ice state [51,52]. It would be interesting to
explore further the highly diluted regime of Dy2−xYxTi2O7

(x � 1.8) to clarify the origin of the discrepancy between
experimental and Monte Carlo specific-heat data in that
regime. It might also be interesting to explore the possibility
of a dipolar Ising spin-glass state in the highly diluted regime
of spin ice materials [57]. Definite progress in understanding
dipolar Ising spin glasses has recently been made [38,41,43].
Other problems of disorder are relevant for spin ices, for
example, evidence [37,59] that, in image furnace grown single
crystals, there is a small level [O(1%)] of substitution of
the Ti4+ transition-metal ions by trivalent rare-earth ions, a
phenomenon referred to as “stuffing” [60]. Other examples

of disorder include the mixing of different types of ions on
the rare-earth site [61], different nonmagnetic ions at the B
site [62,63], and oxygen vacancies [55]. Thus, in comparison
with these various forms of disorder, which would all generate
random bonds [58], the problem of site dilution may be
expected to be simpler, and a necessary first step in our
broad goal of understanding the effects of random disorder
in magnetic pyrochlore oxides [6].

Generally speaking, we expect the effects of disorder
on the thermodynamic properties of other highly frus-
trated magnetic systems, such as the kagome materials
SrCrxGa12−xO19 (SCGO) [64–67] and ZnCu3(OH)6Cl2 (her-
bertsmithite) [68,69], to attract ever growing interest. This is
motivated by the necessity to understand whether the observed
experimental behavior in SCGO and the putative quantum
spin-liquid herbersmithite are intrinsic to the hypothetical
disorder-free material or are, instead, strongly affected by
disorder effects. The problem of site dilution in spin ice
materials finds a natural place within this broad topic of
random disorder in highly frustrated magnetic systems [7]
and our work is a contribution to this research theme.

Note added in proof. Recently, a study by Sen and Moessner
[57] investigates the importance of the ice rules on the dipolar
spin glass freezing in a model of site-diluted dipolar spin ice
model and refers to the underlying low-temperature state as a
“topological spin glass.”
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