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Heat-assisted recording is a promising technique to further increase the storage density in hard disks. Multilayer
recording grains with graded Curie temperature is discussed to further assist the write process. Describing the
correct magnetization dynamics of these grains, from room temperature to far above the Curie point, during a
write process is required for the calculation of bit error rates. We present a coarse-grained approach based on
the Landau-Lifshitz-Bloch (LLB) equation to model exchange-coupled grains with low computational effort.
The required temperature-dependent material properties such as the zero-field equilibrium magnetization as
well as the parallel and normal susceptibilities are obtained by atomistic Landau-Lifshitz-Gilbert simulations.
Each grain is described with one magnetization vector. In order to mimic the atomistic exchange interaction
between the grains a special treatment of the exchange field in the coarse-grained approach is presented. With the
coarse-grained LLB model the switching probability of a recording grain consisting of two layers with graded
Curie temperature is investigated in detail by calculating phase diagrams for different applied heat pulses and
external magnetic fields.
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Over the past decades the areal storage density of hard disk
drives (HDDs) continuously increased [1]. In order to keep
up this increase, many inventions on both sides the magnetic
write head and the recording medium were necessary. One
of the first improvements beyond the pure scaling of all
involved parts of a HDD was the introduction of anisotropic
magnetoresistive write heads. A significant increase in the
sensitivity of magnetic heads became possible due to the
discovery of the effect of giant magnetoresistance [2,3],
which is the basis for all modern magnetic read heads.
Concerning the recording medium, where all information is
written and stored, the invention of antiferromagnetic coupled
media and especially the transition from longitudinal to
perpendicular recording [4,5] have to be mentioned. A recent
improvement [6] uses recording grains consisting of many
different materials with graded anisotropy instead of grains
with single phases. Nevertheless, the areal storage density
increase of HDDs slowed down with the state-of-the-art
recording techniques, because with decreasing particle size,
magnetically harder recording grains have to be used in
order that the stored information remains thermally stable. In
principle, the magnetic field required to write a graded media
grain can be arbitrarily reduced with enough layers. However,
it is technically not possible to produce such grains with a
continuous change of their anisotropy constant.

Heat-assisted recording [7–11] could be the next step to
provide a further increase in the areal storage density of
HDDs. In this technique the recording medium is locally
heated near or above the Curie temperature TC to be able to
reverse the magnetic moments of recording grains with very
high coercivity, like FePt. In combination with an additional
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write assistance of grains with graded Curie temperatures [12],
the further continuous increase of the areal storage density of
HDD is trusted for the next years.

There are several ways to handle the effect of temperature
in micromagnetism. The most common way to account for
thermal fluctuations, acting on the magnetic moments of a
ferromagnetic particle is to incorporate a random thermal
field in the equation of motion. At zero temperature the
integration of the Landau-Lifshitz-Gilbert (LLG) equation is
an established method to describe magnetization dynamics.
The problem of the LLG equation is that the magnetization
length is proposed to be fixed, independent of temperature.
Once the spatial discretization of a ferromagnetic particle is
not atomistic, this restriction is wrong at high temperatures,
because the phase transition from the ferromagnetic state
to the paramagnetic state at the Curie temperature cannot
be modeled in each macroscopic simulation cell. It is well
known from molecular field theory that the length of the
total magnetization of an ensemble of magnetic moments
decreases with increasing temperature and finally ends up
with zero length at TC. Hence, a powerful high-temperature
micromagnetic equation should reproduce this behavior in
each computational cell. The Landau-Lifshitz-Bloch (LLB)
equation derived by Garanin [13] fulfills the requirement and
the absolute value of the magnetization is no longer a constant.
It links between the LLG equation at low temperatures and the
Bloch equation at high temperatures. Since in an atomistic
LLG model each atom of a magnetic particle has to be
described with one spin the simulation already becomes
computationally very expensive for small grains with lateral
dimensions of a few nanometers. In contrast, the LLB equation
makes it possible to compute large areas of a particle, or
even the whole grain, with just one magnetic moment. Hence,
LLB simulations are very fast compared to their atomistic
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LLG counterparts. As a result, the switching behavior of
realistic recording grains with graded Curie temperature can
be investigated in detail. The dependence of the switching
probability of such grains on different applied heat pulses
and external fields can be analyzed. Optimal values providing
reliable switching can be determined by calculating phase
diagrams with respect to the interesting parameters.

The structure of the paper is as follows. In Sec. I the
basic equations of motion of both used models, the atomistic
LLG model and the LLB model, are introduced. Section II
shows how temperature-dependent material functions, which
are required by the LLB model, are obtained by atomistic
LLG simulations using VAMPIRE [14]. Since the presented
coarse-grained LLB model is used to describe heat-assisted
recording for graded Curie-temperature grains we derive an
intergrain exchange expression from the Heisenberg Hamil-
tonian in Sec. III. Finally, the results of the model for a
realistic high/low TC recording grain subject to a temperature
pulse are presented in Sec. IV. Additionally, a comparison
to the according atomistic LLG results is given in this
section.

I. DYNAMIC EQUATIONS

As already mentioned, the LLB equation describes the mag-
netization dynamics of magnetic particles at high temperatures
without the restriction of a fixed magnetization length and thus
allows for its longitudinal relaxation. The validity of the LLB
was already proven in various publications [15–24]. In its most
recent formulation [21], it has the form

dm
dt

= − μ0γ
′ (m × Heff)

− α⊥μ0γ
′

m2
{m × [m × (Heff + ξ⊥)]}

+ α‖μ0γ
′

m2
m (m · Heff) + ξ ‖, (1)

where γ ′ is the reduced electron gyromagnetic ratio [γ ′ =
|γe|/(1 + λ2), with |γe| = 1.760 859 708 × 1011 (Ts)−1], μ0 is
the vacuum permeability, and m is the reduced magnetization
M/M0, with the saturation magnetization at zero temperature
M0. In addition α‖ and α⊥ are dimensionless temperature-
dependent longitudinal and transverse damping parameters
given by

α⊥ =
{
λ
(
1 − T

TC

)
T < TC,

α‖ T � TC,
α‖ = λ

2T

3TC
. (2)

The coupling of the spin to the heat bath on an atomistic
level is described by λ. TC donates the Curie temperature.
The longitudinal and perpendicular thermal fields are denoted
with η =‖ and η =⊥, respectively. ξ η consist of white-noise
random numbers with zero mean and a variance of

〈ξη,i(t,r)ξη,j (t ′,r ′)〉 = 2Dηδij δ(r − r ′)δ(t − t ′), (3)

where the diffusion constants Dη follow from the fluctuation-
dissipation theorem to

D⊥ = (α⊥ − α‖)kBT

γ ′μ2
0M0V α2

⊥
, D‖ = α‖γ ′kBT

M0V
. (4)

The effective magnetic field Heff in Eq. (1) consists of four
contributions in our model. Besides the external field Hext, it
contains the intergrain exchange field H iex, which is discussed
in more detail in Sec. III, the anisotropy field Hani, and the
internal exchange field H J,

Heff = Hext + H iex + Hani + H J. (5)

The anisotropy field has the compact form

Hani = 1

χ̃⊥
(mxex + myey), (6)

with the perpendicular susceptibility χ̃⊥. Here it is assumed
that the easy axis, arising from the uniaxial anisotropy of
the crystal structure, points along the z direction. Since the
anisotropy constant K1 and the magnetization M are both
temperature dependent, χ̃⊥ is also a function of temperature.
Two further temperature-dependent material functions appear
in the internal exchange field H J controlling the length of the
magnetization, which is defined as

H J =
{

1
2χ̃‖

(
1 − m2

m2
e

)
m, T � TC,

− 1
χ̃‖

(
1 + 3

5
TC

T −TC
m2

)
m, T � TC.

(7)

In this equation me is the zero-field-reduced equilibrium mag-
netization. The perpendicular and longitudinal susceptibilities
are specified as

χ̃η =
(

dmη

dHext,η

)
Hext,η→0

. (8)

To integrate the LLB equation at arbitrary temperatures, the
detailed temperature dependence of me, χ̃‖, and χ̃⊥ has
to be known. LLG simulations with an atomistic spatial
discretization of the underlying ferromagnetic particle as well
as a mean-field ansatz can be used for this purpose.

For the atomistic approach we use the LLG code VAM-
PIRE [14], where the dynamic equation of motion is imple-
mented as follows:

dSk

dt
= −γ ′{Sk × (Heff,k + ξ k)}

− γ ′λ{Sk × [Sk × (Heff,k + ξ k)]}. (9)

Here Sk is a unit vector denoting the direction of the spin of
lattice site k. The random thermal field again has white-noise
properties with zero mean and a variance of

〈ξi,k(t)ξj,l(t
′)〉 = 2λkBT

γμS
δij δk,lδ(t − t ′), (10)

where i,j are the Cartesian components of the thermal field
and k,l represent the lattice sites. The effective magnetic field
Heff,k acting on spin k can be expressed as the derivative of
the spin Hamiltonian with respect to Sk ,

Heff,k = − 1

μS

∂H
∂ Sk

, (11)
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with μS being the atomistic magnetic moment. VAMPIRE uses a
typical spin Hamiltonian containing exchange energy, uniaxial
anisotropy energy, and Zeeman energy as follows:

H = −
∑
k,l

Jk,l Sk Sl − K1

∑
k

S2
z,i − μS

∑
k

Hext · Sk.

(12)

Besides the geometry of the particle, the Heisenberg exchange
parameters Jk,l , the uniaxial anisotropy constant K1, and the
atomistic spin moment μS are the main input parameters in
this model.

Compared to the atomistic LLG equation [Eq. (9)], the LLB
equation has two additional contributions, namely, the last two
terms on the right-hand side of Eq. (1), describing the changes
in the length of the magnetization with temperature and
ensuring that even the magnetization of a particle, represented
with just one spin, vanishes at the Curie temperature.

II. TEMPERATURE-DEPENDENT
MATERIAL FUNCTIONS

For the solution of the LLB equation the temperature de-
pendence of the zero-field equilibrium magnetization me(T ),
the parallel susceptibility χ̃‖(T ), and the normal susceptibility
χ̃⊥(T ) are required. This information is obtained by atomistic
simulations using VAMPIRE. In this paper we use cylindrical
layers with 5 nm height and a basal plane with a diameter
of 5 nm. We model two different materials, a hard magnetic
(HM) one with strong exchange coupling and a soft magnetic
(SM) one with similar exchange coupling but higher Curie
temperature. Since it was reported [25] that high damping in
the soft magnetic part of grains with graded Curie temperature
improves their recording properties, a damping constant of 1.0
is used for the SM material. For simplicity, both materials are
assumed to have a simple cubic crystal structure. The detailed
parameters are illustrated in Table I. For any other system the
procedure works similarly.

A. Calculation of me(T )

We simulate 100 trajectories of 20 000 time steps with an
integration step of 10−15 s (after 20 000 equilibration steps)

TABLE I. Simulation input parameters of a HM and a SM
material. K1 is the anisotropy constant, Aex is the bulk exchange
interaction in the materials, μS is the atomistic magnetic moment in
units of the Bohr magneton μB, JS is the corresponding saturation
magnetization in the LLB model, a is the lattice constant of the used
simple cubic lattice, λ is the damping constant, and TC is the fitted
Curie temperature.

HM SM

K1 (J/m3) 6.6 × 106 0.0
Aex (J/m) 2.158 × 10−11 2.992 × 10−11

μS (μB) 1.7 1.7
JS (T) 1.43 1.43
a (nm) 0.24 0.24
λ 0.1 1.0
TC (K) 536.47 820.78
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FIG. 1. (Color online) Zero-field equilibrium magnetization me

versus temperature, calculated from an atomistic model of the HM
material (see Table I). The red solid line shows a fit, representing an
infinite system.

for each temperature value in the range of 0 K–800 K for the
HM material using VAMPIRE. Figure 1 illustrates the atomistic
result for me(T ) after averaging over the 100 calculated
trajectories. The plot clearly shows finite size effects. The
LLB equation requires temperature-dependent functions for
an infinite system, because the Curie point has to be properly
defined. Thus, the atomistic data are fitted with true critical
behavior near TC. A fit with f (T ) = c

√
1 − T/TC, where c

is a fitting constant, extrapolates to TC = 536.47 K. The same
procedure is used to calculate me for the SM layer.

B. Calculation of χ̃‖(T ) and χ̃⊥(T )

According to the spin fluctuation model, the transverse and
parallel susceptibilities can be obtained by the fluctuations of
the magnetization components between subsequent time steps
in the atomistic model as follows:

χ̃η = μSN

kBT

(〈
m2

η

〉 − 〈mη〉2). (13)

Transverse and parallel denote directions with respect to the
easy axis of the investigated particle. To be consistent with
Eq. (8), where the susceptibilities are defined with respect to
an external applied field, both the preferred magnetic direction
and the direction of the magnetic field are assumed to be
parallel. In Eq. (13) N is the number of spins, T is the
temperature and

mη = 1

N

N∑
i=k

Sη,k (14)

is the average magnetization along the direction of η. All
fluctuations are calculated at zero applied field. In the case
of the HM material the corresponding fluctuations, obtained
by 100 atomistic trajectories of 20 000 time steps (
t = 10−15

s, after 20 000 equilibration steps) at each temperature in
the range of 0 K–800 K, are illustrated in Fig. 2. The
expected critical behavior of χ̃‖ at the Curie point can be
clearly seen. Above TC the particle is paramagnetic, and
thus the susceptibilities in all directions become equal. As
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FIG. 2. (Color online) Transverse and parallel susceptibilities
versus temperature of a HM material (see Table I), obtained by the
fluctuations of the magnetization components in an atomistic model.
The lines show fit functions extrapolating to the critical behavior of
an infinite system. The dashed line indicates TC.

mentioned in the preceding section, the LLB equation requires
temperature-dependent functions for an infinite system. From
the spin fluctuation model it is known that the longitudinal
susceptibility is proportional to 1/(T − TC) around the Curie
temperature, which is used as fit function.

At low temperatures,

χ̃⊥ = M0m
2
e

2K1(T )
(15)

holds. If K1(T ) is expressed with a power law K1(T ) ∝ mc
e,

the final piecewise fit functions for the susceptibilities are

χ̃‖ =
{ c1

TC−T
T < TC,

c2
T −TC

T > TC,
(16)

χ̃⊥ =
{
c3m

c4
e T 
 TC,

c5
T −TC

T > TC,
(17)

where c1 − c5 are the fit parameters which have to be
determined for the investigated particle. In the intermediate
temperature range where χ̃⊥ is still undefined, a fourth-order
polynomial is used, which is continuously differentiable at the
connection points to the low- and high-temperature functions.
With the remaining degree of freedom of the polynomial the
atomistic data are then fitted. The intersection points which
delimit the parts with different fit behavior of χ̃⊥ are chosen
to minimize the mean squared displacement of the fit and
the atomistic fluctuations in the whole temperature range.
For the HM material with uniaxial anisotropy, the illustrated
procedure to compute the required temperature-dependent
susceptibilities is straightforward.

It has to be mentioned that the above-presented procedure
to determine the equilibrium magnetization and the suscepti-
bilities from atomistic simulations was already well described
by Kazantseva et al. [18]. We repeated it for completeness.
Unfortunately, the so-far-illustrated calculation of χ̃‖(T ) and
χ̃⊥(T ) just works for a hard magnetic material with strong
uniaxial anisotropy.
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χ

FIG. 3. (Color online) Susceptibilities versus temperature of the
SM material (see Table I), obtained by the fluctuations of the
magnetization components in an atomistic LLG model. The dashed
line indicates TC. The data belong to a cylindrical particle con-
sisting of the SM material (see Table I) and are simulated with
VAMPIRE.

It is different in the case of the SM material (see Table I),
which has small or no uniaxial anisotropy, but still strong
exchange. Without an external field such a particle is super-
paramagnetic. Averaging over the corresponding magnetiza-
tion fluctuations of 100 trajectories at each temperature from
0 K to 1000 K yields the susceptibilities shown in Fig. 3. All
components of the susceptibility coincide, because the particle
has no preferred magnetic direction. Hence, there does not
exist a critical behavior of χ̃‖. Above the Curie point we
again find the (T − TC)−1 dependence of all susceptibility
components. For low temperatures Fig. 3 does not reflect
the full range of the magnetization fluctuations. The thermal
field, which drives the magnetization, is small and hence
the simulated trajectories are too short to capture the full
magnitude of the susceptibilities. From a physical point of
view, χ̃⊥ should diverge at zero temperature because of
Eq. (15). If K1 is zero at zero temperature then the anisotropy
constant should still be zero at higher temperatures. Since the
anisotropy field is zero for a ferromagnetic material with zero
K1, the transverse susceptibility has to be infinite according to
Eq. (6). In the general case of a soft magnetic material with
a small but nonvanishing anisotropy constant, the mean value
of the transverse susceptibility converges to χ̃⊥ → μSN

3kBT
. This

should also be observed in the magnetization fluctuations if the
simulated trajectories are long enough. In the paramagnetic
state above TC a fit of the magnetization fluctuations with
c/(T − TC) according to Eq. (16) can be used to describe the
transverse susceptibility, independent of K1.

The construction of the parallel susceptibility for the SM
material is not that straightforward. χ̃‖ ensures the mag-
netization length in the LLB equation to remain in the
vicinity of me, according to the internal exchange field
H J [Eq. (7)]. Since χ̃‖ cannot be obtained by fluctua-
tions of the z component of the magnetization, we pro-
pose to extract it from the variance in the magnetization
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FIG. 4. (Color online) Variance of the magnetization length fitted
to the average of the Cartesian components of the susceptibility, above
TC. The resulting function of χ̃m serves as parallel susceptibility. The
dashed line indicates TC. The data belong to a cylindrical particle
consisting of the SM material (see Table I) and are simulated with
VAMPIRE.

length as

χ̃m = b
μSN

kBT
(〈|m|2〉 − 〈|m|〉2)

= b
μSN

kBT
var(|m|). (18)

Figure 4 displays that the fluctuations of the magnetization
length are smaller than the fluctuations of its components,
because the length cannot change its sign. However, var(|m|)
shows critical behavior. With the proportionality factor b in
Eq. (18) the length fluctuations are scaled to the average
fluctuations of its Cartesian components (

∑
i

1
3 χ̃i) above the

Curie point (Fig. 4). The fit functions listed in Eq. (16) are then
applied to the resulting χ̃m, yielding the parallel susceptibility
which is needed for the LLB model, as shown in Fig. 5.
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FIG. 5. (Color online) Fit of the parallel susceptibility of the SM
material according to Eq. (16). The dashed line indicates TC.
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FIG. 6. (Color online) Identical fluctuations of the z component
of the magnetization (χ̃‖) and its length (χ̃m), after scaling the latter.
The dashed line indicates TC. The data belong to a cylindrical particle
consisting of the HM material (see Table I) and are simulated with
VAMPIRE.

The above-presented procedure to obtain the parallel
susceptibility for the LLB model can, in principle, be applied
to an arbitrary particle, ranging from very soft to very hard
magnetic. Figure 6 illustrates that the scaled fluctuations of
the magnetization length correspond to the fluctuations of its
z component, also in case of the HM material.

III. INTERGRAIN EXCHANGE

Since we aim to model high/low TC grains, we have
to describe the coupling of different material layers. In
the coarse-grained model each layer is represented by one
magnetization vector, which are coupled via an intergrain
exchange interaction on the boundary surface, as shown in
Fig. 7. In this work we restrict ourselves to two layers, but
it is easy to extend the model to an arbitrary layer number.
In order to derive the intergrain exchange the Heisenberg
Hamiltonian, which gives the total exchange energy across

m1

m2

HM layer
(low TC)

SM layer
(high TC)

FIG. 7. (Color online) Grain model consisting of a stack of
two layers with high and low Curie temperatures, coupled via an
intergrain exchange interaction on the boundary surface. Each layer
is represented as a single magnetization vector (m1 and m2).
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the grains boundary surface, serves as a starting point,

H = −
∑

ss

Jkl Sk Sl . (19)

Here ss indicates the sum over all surface spins. The exchange
integrals Jkl are assumed to be independent of the lattice site.
With the unit vectors uk and ul along the spin directions the
Hamiltonian reads

H = −JS2
∑

ss

ukul . (20)

In a simple cubic lattice each spin just has one nearest neighbor
on the opposing side of an interface. In that case one can
rewrite

∑
ss as sum over all spins on the surface of layer 1,

each interacting with its neighboring spin in layer 2,

H = −2JS2
∑

k

uk,1uk,2. (21)

Now we perform the transition from the atomistic to the LLB
description where all spins in each layer are described with
just one magnetization vector. Since the magnetization length
is not conserved, the unit vectors can be written as

H = −2JS2 F

a2

m1

m1

m2

m2
, (22)

where F is the area of the interaction surface and a the lattice
constant in the atomistic model. Hence, F/a2 is the number
of spins on the boundary surface. With Eq. (22) the intergrain
exchange field of layer 1 can be derived by taking the derivative
of the exchange energy with respect to the layer’s magnetic
moment,

H iex,1 = − 1

V μ0M0

∂

∂m1
H. (23)

The intergrain exchange field calculates to

H iex,1 = 2JS2F

a2V μ0M0

(
m2m1m2 − m1m2

m1
m1

m2

m2
1m

2
2

)

= 2JS2

a2dμ0M0

(
m2

m1m2
− cos(θ12)

m1

m2
1

)
, (24)

with the angle between the magnetic moments θ12 and the
thickness d of layer 1. Introducing the temperature-dependent
intergrain exchange constant Aiex(T ) = JS2/a, the intergrain
exchange field acting on the magnetization of layer 1 becomes

H iex,1 = 2Aiex(T )

adμ0M0

(
m2

m1m2
− cos(θ12)

m1

m2
1

)
. (25)

The computation of the temperature dependence of Aiex is,
in general, less straightforward. For example, in the case of
FePt the bulk exchange stiffness was successfully computed
by determining the free energy and the width of a domain
wall in the investigated material [18,26]. There also exists
an approach where the dispersion relation of thermally excited
spin waves yields the temperature dependence of the exchange
coupling [27]. Both methods are computationally expensive
and yield the same scaling behavior of Aiex ∼ mα . We try
to keep the coarse-grained LLB model as simple as possible
and construct the temperature dependence of the intergrain
exchange analytically from the according dependencies of

the bulk exchange constants in the interacting layers. These
are described with a power law of the magnetization length
A(T ) ∝ mα

e (T ), which holds at least for low temperatures.
In many cases it is also a suitable description at high
temperatures [27].

From a physical point of view we ask for symmetric
exchange constants with equivalent A12(T ) and A21(T ).
There are two obvious possibilities for symmetric intergrain
exchange constants:

(i) an arithmetic mean of the bulk values,

Aiex(T ) = Aiex(0)
mα

e,1(T ) + m
β

e,2(T )

2
; (26)

(ii) or an the geometric mean of the bulk values,

Aiex(T ) = Aiex(0)
√

mα
e,1(T )mβ

e,2(T ). (27)

α and β are the corresponding power-law exponents for the
temperature dependence of the bulk exchange constants of the
layers. At the Curie temperature the magnetization becomes
zero; thus, also the intergrain exchange should vanish. Since
the geometric mean is zero as soon as one of the equilibrium
magnetizations vanishes, the geometric mean is the preferred
formulation. Finally, the full exchange field of layer 1 is

H iex,1 =
2Aiex(0)

√
mα

e,1(T )mβ

e,2(T )

adμ0M0m1

·
(

m2

m2
− cos(θ12)

m1

m1

)
. (28)

Atxitia et al. [27] investigated the power law of the exchange
stiffness with numerical methods and derived the exponent
of FePt analytically to 1.76. The underlying Hamiltonian in
Ref. [27] also considers the two-site anisotropy and not only
uniaxial anisotropy, as in our performed atomistic simulations.
Nevertheless, we use this exponent for the HM material,
because its material properties are very similar to those of FePt.
It turned out in the simulations that the values of the exponents
in the power laws are not crucial in a sense that deviations of
10%–20% do not change the following results significantly.
For a generic ferromagnet with localized magnetic moments
on a simple cubic lattice and in the absence of anisotropy the
exponent becomes 1.66, which is used for the SM layer.

IV. RESULTS AND DISCUSSION

We investigate the switching behavior of a high/low-TC

grain subject to a heat pulse with Gaussian profile

T (t) = (Tpeak − Tmin)e
−(

t−tpeak
tpulse

)2

+ Tmin. (29)

The initial temperature of the pulse Tmin is set to 270 K
and tpeak = 3tpulse is valid in all simulations. The grain has
a cylindrical geometry with a basal plane diameter of 5 nm
and a total height of 10 nm and it consists of 50% HM and
50% SM material, as introduced in Table I. All calculations
start with a magnetization in the positive z direction. An
external magnetic field assists the magnetization reversal and
points in the negative z direction with a tilt of 0.1 rad. In
the atomistic simulations with VAMPIRE a simple cubic crystal
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FIG. 8. (Color online) Comparison of atomistic switching prob-
ability curves (green lines with circles) with the results of the
coarse-grained LLB model (red solid lines) for different intergrain
exchange constants [Aiex,n(0) = 2.575 × 10−11/2n J/m, 0 � n � 5].
The investigated high/low TC grain is subject to a Gaussian heat pulse
with tpulse = 100 ps and an external field with 0.5 T strength.

lattice with a lattice constant of a = 0.24 nm is assumed in
all parts of the grain. We compute the switching probability
of the recording grain subject to heat pulses with different
durations tpulse and peak temperatures. Figure 8 illustrates such
switching probability curves for heat pulses with a duration of
tpulse = 100 ps and an external field with μ0Hext = 0.5 T. Each
probability value is an average of 128 independent trajectories,
computed with both the coarse-grained LLB model (red solid
lines) and with VAMPIRE (green lines with circles) for different
intergrain exchange constants Aiex(0). The accordance is
insufficient for weak intergrain exchange. Although the curves
seem to agree well for strong exchange coupling, we see in
the next section that the problem is the same for large Aiex(0).
Actually, there exists a LLB switching probability curve which
fits the VAMPIRE data much better. As long as the exchange is
strong, the switching probability curves do not change much
and thus the agreement still seems to be well in Fig. 8.
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FIG. 9. (Color online) Linear fit of the inverse correction factors
1/kcor of the intergrain exchange field in the LLB model consisting
of two HM layers (see Table I). The bulk exchange interaction within
the layers is assumed to be Aex = 2.158 × 10−11/2n J/m.

A. Intergrain exchange field correction

In order to resolve the discrepancy between LLB and
VAMPIRE simulations, we examine a simpler system, consisting
of two identical HM layers. We calculate the switching
probabilities for six intergrain exchange values (Aiex,n =
2.158 × 10−11/2n J/m, 0 � n � 5) using VAMPIRE. The ap-
plied Gaussian heat pulse has again a duration of tpulse = 100 ps
and the applied field has a strength of 0.5 T. Since the
coarse-grained LLB model is computationally less expensive,
the same probability curves for 70 values of Aiex(0) are
simulated in the same range. After that, the LLB results are
fitted to the atomistic ones, yielding correction factors kcor

for the exchange field in the LLB model as shown in Fig. 9.
For increasing intergrain exchange constant the reduction of
H iex increases linearly. This dependence can be understood as
follows: For weak coupling the exchange interaction is mainly
located at the interface between the layers, but for large Aiex

the domain wall is not restricted to the interface but extends
towards the bulk magnets. However, in the LLB approach
the grain is not discretized and the domain wall cannot be
formed except at the interface. Hence, the domain wall energy
is overestimated. For this reason the final expression of the
intergrain exchange field becomes

H iex,1 = kcor
2Aiex(T )

adμ0M0

(
m2

m1m2
− cos(θ12)

m1

m2
1

)
. (30)

If full intergrain exchange coupling between the equal layers is
assumed, a correction factor of almost kcor = 1/20 is needed in
the exchange field to reproduce the correct dynamics with the
LLB model. It is not surprising that the correction factor nearly
equals the ratio of the lattice constant and the layer thickness
kcor ∼ a/d, because after inserting the reduction factor in
Eq. (30) and considering that the magnetization lengths m1

and m2 are almost identical in the same material, the exchange
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FIG. 10. (Color online) Switching probabilities as in Fig. 8,
with a corrected intergrain exchange field at different Aiex(0). The
correction function is constructed as described in Sec. IV A.

field becomes

Hex = 2Aiex(T )

d2μ0M0m2
(m2 − cos(θ12)m1) . (31)

Under the micromagnetic assumption that neighboring mag-
netic moments just comprise small angles, cos(θ12) ≈ 1 is
valid and thus Eq. (31) becomes identical to the discretized
Laplace operator (discretization length d) in a finite difference
schema [17–19,24].

B. Results with corrected H iex

The case is similar for grains consisting of layers with
different bulk exchanges. The presented construction of a
linear correction fit function for the exchange field from
several switching probability simulations at different strengths
of the intergrain exchange works well, as Fig. 10 shows.
The figure again displays the switching probabilities of a
high/low TC grain with an applied heat pulse of tpulse =
100 ps and an applied field of 0.5 T. The coarse-grained
LLB model with two magnetic moments produces the same
switching probabilities as the atomistic model with over 14 000
spins. Qualitatively, the data demonstrate that in case of
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FIG. 11. (Color online) Same switching probabilities as pre-
sented in Fig. 8 for a Gaussian heat pulse with tpulse = 10 ps.
The exchange field in the LLB model is corrected as described in
Sec. IV A.

strong intergrain exchange the switching probability almost
everywhere reaches 100%. For weak coupling the switching
probability decreases significantly at high peak temperatures
and the edge of the probability curve shifts to higher peak
temperatures.

The same simulations with a shorter Gaussian heat pulse
with tpulse = 10 ps show again good agreement between the
LLB model and atomistic simulations (Fig. 11). It has to be
mentioned that the same correction values are used for shorter
pulses, because the pulse duration does not change anything
in the exchange properties at the interface. For a stronger
magnetic field the comparison of the switching probability
curves is shown in Fig. 12. Here new corrections of the inter-
grain exchange field are calculated, because the field strength
also influences the exchange properties at the interface. The
accordance is very well except for an intermediate intergrain
exchange constant of Aiex(0) = 3.127 × 10−12 J/m. Although
the edge of the switching probability curve is slightly shifted,
the final switching probabilities are still correctly reproduced
by the coarse-grained LLB model. As expected, under the
influence of a higher external field the switching probabilities
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FIG. 12. (Color online) Same switching probabilities as pre-
sented in Fig. 8 for a Gaussian heat pulse with tpulse = 100 ps and
an external field with 0.8 T strength. The exchange field in the LLB
model is corrected as described in Sec. IV A.

remain in the vicinity of 1 even for weak coupling in contrast
to a field of Hext = 0.5 T.

After validating the coarse-grained LLB model we can
benefit from its efficiency and calculate phase diagrams of
the switching probability of the high/low TC grain for heat
pulses with different durations as presented in Figs. 13
and 14. Different external magnetic fields are used in the
diagrams. Each of them contains a total of 4000 points. Each
point shows the switching probability computed from 128
switching trajectories for different peak temperatures and pulse
lengths. One trajectory with a pulse duration of tpulse = 100 ps
requires almost 35 min of computation time on a single core
machine with VAMPIRE, while the same simulation finishes
within 7 s with the LLB model. Hence, the phase diagrams
are difficult or even completely impossible to generate with
atomistic simulations. Figures 13 and 14 display that the
switching probability does not improve much for field pulses
tpulse > 100 ps and thus an optimal heat assistance which
guarantees fast and reliable switching has a pulse duration
of 100–150 ps and a peak temperature of about 600 K for an
applied field of 0.5 T and 500 K for Hext = 0.8 T, respectively.
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FIG. 13. (Color online) Switching probabilities of a high/low TC

recording grain subject to a Gaussian heat pulse with different lengths
tpulse and peak temperatures. The material parameters of the layers
are given in Table I and the intergrain exchange constant at zero
temperature is Aiex = 2.575 × 10−11 J/m. Additionally, an external
magnetic field of 0.5 T is applied to the grain.

This is valid if an intergrain exchange at zero temperature of
Aiex(0) = 2.575 × 10−11 J/m is assumed.

V. CONCLUSION

We investigated the influence of heat assistance in magnetic
recording. Especially the modeling of an additional write
assistance by using grains with high/low TC layers was a main
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FIG. 14. (Color online) Same as Fig. 13 with an external mag-
netic field of 0.8 T.
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concern of this work. To deal with high temperatures in the
vicinity of the Curie point we developed a computationally
very cheap coarse-grained LLB model. The LLB model
treats each magnetic grain as a single magnetization vector.
It requires detailed information about the temperature de-
pendence of the zero-field equilibrium magnetization me(T ),
the transverse and parallel susceptibilities χ̃⊥(T ) and χ̃‖(T ),
and the intergrain exchange Aiex(T ). In addition, we derived
an exact expression for the intergrain exchange field in the
context of this LLB model. We proved that the LLB switching
probabilities (under the influence of a Gaussian heat pulse and
an external homogeneous magnetic field) of the coarse-grained
model fit the atomistic simulation results, obtained by the
existing code VAMPIRE [14], remarkably well for strong as
well as for weak intergrain exchange coupling. The speed-up
of the LLB system compared to the atomistic calculations
is formidable, which makes it easy to analyze the detailed

influence of different heat pulses or other parameters with low
computational effort, even for recording grains of realistic
sizes. Additionally, it would be possible to calculate the
signal-to-noise ratio for a whole granular recording medium,
which is presently out of reach for an atomistic code.
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