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We carry out an analytical study of quantum spin ice, a U(1) quantum spin liquid close to the classical spin-ice
solution for an effective spin-% model with anisotropic exchange couplings J,,, Jx, and J,1 on the pyrochlore
lattice. Starting from the quantum rotor model introduced by Savary and Balents [Phys. Rev. Lett. 108, 037202
(2012)], we retain the dynamics of both the spinons and gauge field sectors in our treatment. The spinons are
described by a bosonic representation of quantum XY rotors, while the dynamics of the gauge field is captured
by a phenomenological Hamiltonian. By calculating the one-loop spinon self-energy, which is proportional to
Jzzi, we determine the stability region of the U(1) quantum spin-liquid phase in the J./J,, versus J,1/J,
zero-temperature phase diagram. From these results, we estimate the location of the boundaries between the

spin-liquid phase and classical long-range ordered phases.
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I. INTRODUCTION

The search for quantum spin-liquid states [1] has captured
the interest of condensed matter physicists since the pioneering
work of Anderson [2]. Once proposed [3] as a crucial element
for the physics of copper-based high-temperature supercon-
ductors, quantum spin liquids now form an independent
subfield on their own merit. In part, this is because they are pre-
dicted to possess intriguing properties such as fractionalized
excitations and topological order [1]. Conceptually novel, such
traits are also attractive for potential applications in quantum
computation and quantum information processing [4].

Recently, a new avenue toward the discovery of quantum
spin-liquid phases has been uncovered in the form of highly
anisotropic spin models on the pyrochlore lattice [5-11],
a three-dimensional network of corner-sharing tetrahedra
(Fig. 1). The initial insight in the physics of these systems starts
with Anderson’s realization [12] that the antiferromagnetic
Ising model on the pyrochlore lattice has an extensive number
of ground states. For any of the ground states, there are two
up spins and two down spins per tetrahedron.'! These spin
orientations are an exact mapping” of the proton disordered
configurations in water ice [13] where each oxygen ion forms
two strong and two weak hydrogen bonds with four protons,
the so-called “ice rule” [14].

Interest in the magnetic version of water ice,“spin ice”
[15-17], eventually intensified thanks to the discovery of two
materials Ho,Ti,O7 [18-20] and Dy, Ti,O; [21] embedding
such physics. In both compounds, the combination of spin-

'Tsing spins along the global z directions on the pyrochlore lattice are
not related to each other by point-group operations of the octahedral
group Oj,. Consequently, the antiferromagnetic Ising model with
global Ising spins is not allowed by lattice symmetries for the
pyrochlore lattice. On the other hand, local Ising spins as discussed
in the main text transform into each other under the O, point-group
symmetries.

2Strictly speaking, common water ice is the hexagonal ice I,. Spin
ice is really the exact mapping of the cubic ice (Ice VII) phase [15,16].
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orbit coupling and crystal-field effects mandates the magnetic
moment of the rare-earth ions Ho’* and Dy’* to strictly
point along the local (111) directions [16,17]. In the above
two materials, the interactions between these local Ising
spins are effectively antiferromagnetic because of the dipolar
interaction [22-24]. Treating the spins as “magnetic fluxes” of
an emergent U(1) gauge field [25-27], the low-temperature
spin-spin correlations of a spin-ice system are well de-
scribed by divergent-free spin configurations [28-30], a direct
translation of the ice rule. Moreover, the low-temperature
properties of these materials are also well accounted by a low
concentration of charges for the gauge field [28-30], referred
to as “magnetic monopoles” in Ref. [31]. In this work, we adopt
a dual perspective in which the local [111] Ising component
of the spin moment is mapped to electric flux of a gauge
theory and the charge particles are spinons carrying “electric
charge” [8,32].

The equilibrium thermodynamic properties of classical spin
ice is now well understood [16]. As discussed above, the
low-energy divergent-free spin states are mapped to electric
field configurations with no charges present and the low-energy
gapped excitations® are spinons carrying an “electric” charge.
However, inherent to such a classical system, neither the
electric field nor the spinons have a dynamics. Quantum
fluctuations of the spins are expected to endow the spinons and
the gauge field with quantum dynamics. It is thus interesting
to study theoretically the effect of quantum fluctuations in
spin ice. Moreover, such an investigation is motivated by the
exotic properties displayed by several materials in the same
family as Ho,Ti,O7 and Dy, Ti, O including Yb,Ti,O7 [7,33],
Tb2T1207 [34], PI'zSIl207 [35], and Pr22r207 [36] All these
materials are believed to have substantial interactions among
all three moments of the effective spin-% moment [5-7,37,38]
in addition to the interaction between the Ising components,
as in classical spin ice.

3Starting from a divergent-free spin-ice state, flipping a spin creates
two charged spinons costing a finite amount of exchange energy.
These excitations are thus gapped.

©2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.108.037202
http://dx.doi.org/10.1103/PhysRevLett.108.037202
http://dx.doi.org/10.1103/PhysRevLett.108.037202
http://dx.doi.org/10.1103/PhysRevLett.108.037202
http://dx.doi.org/10.1103/PhysRevB.90.214430

HAO, DAY, AND GINGRAS

FIG. 1. (Color online) The pyrochlore lattice and its medial
lattice, the diamond lattice. The red and blue spheres are the A and
B sublattices of the diamond lattice, respectively. x labels sites on
the diamond lattice. @ = 0,1,2,3 labels the four sites of the primitive
basis of the pyrochlore lattice. 2 denotes the four vectors connecting
site x on the A sublattice to its nearest neighbors on the diamond
lattice. The light-blue shaded region highlights a hexagonal plaquette
on the diamond lattice. The lowest-order quantum tunneling process
between two spin-ice configurations involves the flip of six alternating
spins around the plaquette.

The theoretical investigation of quantum fluctuations in
spin ice was engendered by the work of Hermele et al. [32].
Starting from an XXZ model on the pyrochlore lattice in the
easy-axis anisotropy (Ising) limit, the authors of Ref. [32]
used degenerate perturbation theory to construct a low-energy
effective theory of the XXZ model that incorporates the
lowest-order quantum tunneling process between two classical
spin-ice configurations. The resulting multispin motion flips
six alternating spins around a hexagonal plaquette on the
diamond lattice formed by the centers of tetrahedron (Fig. 1).*
The Ising components of one direction, +1 for example, can
be mapped as hard-core dimers living on the bonds of the
diamond lattice. By leveraging the extensive knowledge of
the properties of the quantum dimer model [11,40—42], the
effective theory can be described by a dynamical compact
U(1) gauge theory in its deconfined phase. Both the quantum
ground state and its gapless gauge fluctuations are coherent
superpositions of classical spin-ice configurations. The pre-
dicted U(1) liquid was later found in quantum Monte Carlo
studies [43,44] of the XXZ model at finite temperature. The
properties of the spin liquid have been further characterized
in detail by both analytical calculations and quantum Monte
Carlo simulations [45,46] of the dimer model at T = 0.

These works [32,45,46] focus on the ground state of the
quantum spin ice and the “photon” excitations, charge-neutral
gauge fluctuations with respect to the ground state. The first
study of “electrically charged matter,” spinons excitations, in
quantum spin ice® was performed by Savary and Balents [8].

“Interestingly, such spin-flip loops, or “worms,” are the very low-
energy excitations that facilitate effective simulations [39] to find the
ground state of the classical dipolar spin-ice model [22].

SThere have, however, been prior studies of spinon excitations on
the three-dimensional pyrochlore lattice in other contexts than the
quantum spin-ice problem studied here. For example, see Ref. [47].
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Starting from a symmetry-motivated anisotropic spin Hamil-
tonian [7,8] on the pyrochlore lattice,® they introduced a
mapping where the spinons are represented by quantum XY
rotors. These rotors interact with the dynamical compact U(1)
gauge field discussed in the previous paragraph. The authors
solved their model using a gauge mean-field approximation
(g-MFT) [8], neglecting the dynamics and correlations of
the gauge fields. They established a phase diagram with
two quantum spin-liquid states: the aforementioned U(1)
spin liquid [32] with all components of the spins disordered
quantum mechanically and a novel “hybrid” state they named
Coulomb ferromagnet (CFM). According to the g-MFT
calculations of Ref. [8], the CFM phase is characterized
by ordered Ising components of the spins coexisting with
deconfined spinons. However, we note in Appendix E that the
XY components of the spins also have static expectation values
within the g-MFT formalism. The coexistence of full long-
range magnetic order in both the Ising components and XY
comments with deconfined spinons instead of conventional
magnons highlights the peculiar and yet intriguing property of
the CFM phase. The same g-MFT approach was later applied
to systems with non-Kramers magnetic ions to propose the
possibility of a Z; spin liquid [9]. In a separate and more recent
development, Huang er al. [10] identified an XYZ model as
the minimum description of materials where the spin-wave
functions are linear combinations of |J,) in the local frame
with J, = 3n/2, n being an odd integer. Reference [10] used
g-MFT to analyze their model and proposed U(1) and Z,
spin liquids as two possible quantum spin liquids of the XYZ
model.

While these exciting developments are contributing to
our understanding of possible quantum spin-liquid phases in
the vicinity of the classical spin-ice solution, some impor-
tant questions remain. Physically, all analytical approaches
[8-10,32,46,52] describe the dynamics of either the neutral
gauge fluctuations or the charged spinons. In practice, both
types of excitations have their own dynamics while interacting
nontrivially. It is thus desirable to perform a study of quantum
spin ice with both types of excitations considered dynamical.
Moreover, for the description of spinons, the solution of the
quantum XY rotor model relies on the “large-N” approxi-
mation while N = 1 for XY rotors. The large-N approach is
not straightforwardly amenable to improvement via standard
diagrammatic many-body treatments. It is therefore desirable
to explore alternative schemes for which conventional many-
body techniques and approximation schemes can be readily
applied.

With these motivations laid out, we present here a study
of the anisotropic spin model of Eq. (1) investigated in
Ref. [8] with both gauge fluctuation and spinon dynamics
now included. Starting from the quantum rotor model [8], we
introduce the dynamics of the gauge field and separate the
gauge field into a static part and a fluctuating part. Under the
background of the static part of the gauge field, we study
the physics of the spinon sector by introducing a bosonic
representation of the XY rotors. We find that both the ground

®Previous works had investigated the role of anisotropic spin
couplings on the pyrochlore lattice [5,6,48-51].
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state and a single spinon energy reduce to the expected forms
in the classical limit. The gauge fluctuations are included by
borrowing from the work of Benton et al. [46]. To estimate the
effect of the quantum fluctuations introduced by the interaction
between the Ising and XY components of the spin, J,4, we
calculate the one-loop correction to the spinon self-energy
to second order in J,i. By identifying the boundary for
spinon condensation, we establish the perturbatively stable
region of the U(1l) liquid phase. Using a combination of
energy calculations and numerical results from a previous
study [25], we construct a zero-temperature phase diagram
in the anisotropic exchange constants.

The rest of paper is as follows. We present in Sec. II the
model and separate it into a spinon sector, a gauge fluctuation
sector, and the interaction between spinons and the gauge field.
We study the dynamics of the spinons and the gauge field in
Secs. Il and IV, respectively. The energy of the spinon modes
is modified by the self-energy contribution proportional to
Jzzi. For J,4 beyond some critical threshold value, the spinon
mode at zero momentum condenses and the U(1) liquid is
destroyed, giving way to either a splayed ferromagnetic (SFM)
phase [7,53,54] or an XY antiferromagnetic phase [54,55]. We
present the calculation of the spinon self-energy as well as the
phase diagram in Sec. V. We conclude our paper in Sec. VI by
discussing connections of our work with previous studies and
identifying directions for future studies. The reader is provided
with a number of appendices for the technical details of the
calculations.

II. GENERAL FORMALISM

To simplify the notation in what follows, the pyrochlore
lattice is represented using its medial lattice, the diamond
lattice (Fig. 1). The sites of the diamond lattice are labeled by x.
Each diamond lattice site is connected to four nearest-neighbor
sites by vectors i (u = 0,1,2,3). The explicit expressions for
the (nonunit) vectors /i are given in Appendix A. Each spin
resides at the middle point of the diamond lattice bonds. Using
the fact that the diamond lattice can be separated into two
interpenetrating face-centered-cubic sublattices, labeled as A
and B sublattices, a bond connecting the A sublattice site x
and B sublattice site x + [ is labeled as (xu). A spin at the
center of the bond (x 1) is written as S ,. With these notations
in place, the spin Hamiltonian [8] that we study reads in terms
of the local spin components as

JZZ
M=) Z0: (12)

— Z Ty (S8,Se + 84, Sris o, +He) (1b)

n<v

—Jx Y (SL(SE 4+ S e +Hel) |, (To)
WwF#YV

where yo1 = y23 =0, yoo = y13 = —27/3, and yp3 = y12 =
27 /3 (Refs. [7,8]). (A) and (B) denote the collection of sites
on the A and B sublattices, respectively. The charge Q, is
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related to S, by

Sz for x e (A),
Oy = ZM xﬂw 2
-2 Se_p for x e (B).

In Hamiltonian Eq. (1), we have shifted the energy by J,,/4
per spin so that the energy of the classical spin ice state is zero.
We note that Eq. (1) is not the most general nearest-neighbor
Hamiltonian on the pyrochlore lattice since the interaction
between Sx and S, (Refs. [7-10]), with coupling Joy, is
omitted. Our main goal in this paper is to explore a many-body
formulation of quantum spin ice in a simple yet nontrivial
context. The anisotropic J44 exchange coupling leads to four
spinons interaction [9,10] whose treatment is beyond such a
scope. The study of its effect is left for the future.

Following Ref. [8], we introduce a rotor representation of
Eq. (1). On each site of the diamond lattice, a pair of conjugate
operators O, and 6, are introduced satisfying the following
commutation relation:

By, 001 = idgy. 3)
Starting from Eq. (3) and using ¥, = e~
relation can be derived:

[1/fx, Qx’] = wxaxx“ (€]

Taking integer eigenvalues, Q, represents the charge on site

x. Y, decreases the charge on site x by one while W,i increases
it by one.

The transverse components of the spins S ;tﬂ are represented

using the rotor operators in addition with pseudospin operators
sfﬂ [8]:

, the following

S;rﬂ = xTS;;LWX-‘rﬂ’ 1//x+u xul// (5)
For the Ising component of the pseudospln Sxu, we have
Sy = S5, We henceforth omit distinguishing s, and S .
The mapping in Eq. (5) preserves the correct commutation
relations of the spin components of the physical spin Sy, in
‘H. The transverse components of the pseudospin are mapped
to an exponential function of the vector gauge field Ay ,:

+ 1 +iA
S —> 3€ 6)

S5, is then represented as the electric flux of the gauge field:
S5 = Exu. Wenote that the mapping of pseudospin operators
in terms of gauge field operators Ay, and E,, adopted here is
inspired by their expectation values in a spin-coherent state
|cos6,¢) where 6 and ¢ are polar and azimuthal angles,
respectively. The % prefactor in Eq. (6) is just the spin length.
The electric flux E,, and the gauge field A, satisfy the
following commutation relation:

[Ax;uEx’v] = inx"su.v- (7)

While Eq. (7) is expected from the standard Hamiltonian
formulation of quantum electrodynamics [56], it also captures
the physics that s;tu, proportional to exp(£i Ay, ), increases or
decreases Sy, directly translated into Ey,, by 1. Physically,
St ,, Creates a positive spinon at site x and a negative spinon at
site x + fi. e!4x« changes the electric flux on bond (x i) so that
the “Gauss law” (2) is preserved. The temporal components
of the gauge field, which we define as ¢,, are Lagrange
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multipliers introduced to enforce Eq. (2). Setting J., = 1 as the overall energy scale, we write j. = Ji/J,; and j.o = J,./J...
Using the Ay, Ex,, and . fields, the Hamiltonian (1) is rewritten as

1 A j:l: + o — - —i _
M= 2301 = 3 | LD wle iy g gl e ety He) (82)
x xe(A) n<v
Jot iAgy iAgips i
= 2 Bl s + Ul i s ™ g e + He) (8b)
HFEV
U N
+5 D Eierat ) x(0r— 00 (8¢)
xe(A),pu x
[
Comparing with the Hamiltonian studied in Ref. [8], we have the spinon Hamiltonian is
added Eq. (8c). The term proportional to U controls the dy- | .
namics of gauge field as in standard quantum electrodynamics H, = — Z 0% — Jx Z Z[wi Yetps
E ~ —0A/0t. In Refs. [32,46], this term was introduced to 24 4 xe(A) ey
enforce the constraint E, = 1. This term can reproduce the i
dynamical structure factor computed using quantum Monte + Vi Vx+o + Hell (12)

Carlo simulations [46]. The second term in Eq. (8c) is the
aforementioned Lagrange multiplier term enforcing the lattice
Gauss law. The Hamiltonian (8) represents the starting point
of our work. The theory (8) is invariant under the following
local U(1) gauge transformation:

Yy — wxeiax» (9a)
Ay = Agy o — deyp. (9b)

From now on, we shall work in the temporal gauge where
¢ =0.

To make progress, we separate the gauge field Ay, into a
static part A, and a fluctuating part A,

Avp = Axy + Ay (10)

Following Refs. [8,32], we assume that the background gauge
field A leads to zero magnetic fluxes through all hexagonal
plaquettes. We are free to choose a gauge such that A,, = 0
for all bonds (xu). To demonstrate that this is possible,
we consider a pyrochlore lattice of 4V sites. There are 4V
Ay, fields. As for any vector fields, Ay, can be separated
into a longitudinal part and a transverse part. The transverse
contributions are set to zero by the magnetic fluxes through
4V hexagonal plaquettes related to Ay, by the lattice version
of Stokes’ theorem. Out of the 4V equations, we note that
there are only 2V linearly independent constraints. The
corresponding 2V transverse components are zero since all
magnetic fluxes are assumed to be zero. The remaining 2V
longitudinal components can be fixed to be zero by tuning 2V
a, values. We split the Hamiltonian (8) into three terms:

H = Hy(Qx,¥x) + Hy(Exp, Axy) + Hid(Expis Ay V)
(11)

The explicit forms of the spinon Hamiltonian H;, the gauge
field Hamiltonian H,, and the interaction Hamiltonian Hjy are
individually discussed in the following three sections.

III. SPINONS

In this section, we focus on the spinon fields i,. With a
background of zero magnetic fluxes per hexagonal plaquette,

In Eq. (12), spinons of opposite charges can be created on
neighboring sites on one diamond sublattice, sublattice A
for example. Moreover, a spinon at a site on either the A
or B sublattice can only hop to adjacent sites on the same
sublattice. The two sublattices support two independent but
identical copies of the spinon Hamiltonian. Consequentially,
we focus only on the dynamics within the A sublattice, a
face-centered-cubic (fcc) lattice which is the primitive space
lattice of the diamond lattice. We note that under the fixed
background gauge field, the constraints of the spinon motion,
which has been shown to affect the diffusive motion of
spinons (a.k.a. “magnetic monopoles” [31]) in classical spin
ice [57], are ignored here. For the fcc lattice, the spinon
Hamiltonian H; [Eq. (11)] is written as

1. :
Hs = Z |:§ 07 - % Z(W;‘ﬁxﬂl—ﬁ + H-C-):| - (13)

n<v

In previous works [8—10], the rotor model (13) was solved
by relaxing the local constraint |, | = 1 to a global constraint
> . (I¥[*> — 1) = 0 enforced by a Lagrange multiplier. The
approximation can be regarded as a large-N approximation
for an O(N) rotor where the local fluctuations of the |1, | are
suppressed by 1/N. On the other hand,the XY rotor used here
has N = 1. The large-N approach makes the theory amenable
to an analytical treatment that leads to a qualitative insight
on the possible phases of the rotor model. The corrections to
the approximation can be calculated by accounting for 1/N
contributions order by order.

In this work, we adopt an alternative approximation scheme
to that of Refs. [8—10]. Here, we introduce a bosonic repre-
sentation of a quantum XY rotor similar to the well-known
Holstein-Primakoff boson representation [58] of spins:

1
= —————(d+b), (14a)
v J1+did +bib
0 =d'd - b'b. (14b)

The d and b bosons carry positive and negative charge,
respectively. To enforce the |{| = 1 constraint, we demand
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that the two type of bosons cannot appear simultaneously.
Defining n, = b'b and n; = d'd, the constraint translates into

npng = 0. (15)

As a result, products bd and b'd' are identically zero for all
basis states satisfying the constraint. The two types of bosons
are mutually exclusive: we thus name the representation
“exclusive bosons.” This requirement can also be understood
by examining the Hilbert space of a single quantum XY
rotor. In the “charge” representation, the basis states are
discrete states | Q) with Q| Q) = Q|0). In the boson language,
states with positive or negative charges are represented by
(d*)2|0) and (b*)~2|0) where |0) is the vacuum state with
no bosons and zero charge. However, a rotor state with
charge Q has infinite more bosonic incarnations (d*)"(b™)"|0)
as long as n —m = Q where n and m are both integers.
By demanding that b and d bosons do not appear at the
same time, i.e., nm = 0, we recover a one-to-one mapping
between the rotor and the boson Hilbert space. Formally,
the exclusiveness [Eq. (15)] of the b and d bosons could
be enforced by a large repulsion between the bosons, or
by Lagrange multipliers. Under the representation (14), the
commutation relation [y, O] = ¥ [Eq. (4)] is also preserved.
We conclude that a pair of exclusive bosons is a faithful
representation of a quantum XY rotor.

We rewrite the spinon Hamiltonian (13) using pairs of
exclusive bosons defined separately on every site x. We note
that the exclusiveness applies only onsite: dy, boson and b,
boson do not appear simultaneously only if x = x’. We normal
order ch with respect to the classical vacuum, or classical
spin-ice states, with no spinons:

Q2 =dld, +blby +dldidcd; +blblb,b,. (16)

Assuming the boson densities are low for small j, in the
quantum spin ice or U(1) spin liquid, we neglect interactions
among bosons as well as their exclusiveness. We assess below
the validity of this approximation. To keep the level of notation
minimal, we hereafter use v, to imply its lowest-order (low-
density) bosonic approximation:

Ve ~ dy + bl 17)

The original spinon Hamiltonian (13) then becomes

1 J
H =~ Z [E(d;dx + bjcbx) - Zi(l/fxwfwrﬂfa + H.C.)] .

(18)

We write the bosons in terms of their Bloch modes and

obtain the dispersion for the quasiparticles by a Bogoliubov
transformation (see Appendix B):

1 ko k
‘“":E I—ZjiZcosEcos?ﬁ, (19)
ap

where o, 8 = x,y,z are the three global cubic directions [100],
[010], and [001] (Fig. 2). The linear size agp =1 of the
conventional cubic unit cell for the pyrochlore lattice is used
as the elementary unit length.
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FIG. 2. (Color online) The spinon dispersion wy along high-
symmetry directions in the fcc Brillouin zone [59] for j+ = 0.08.

Considering first the limit of small j, the dispersion is then
approximately

1 j ky k
wk%——%;cos?cos?ﬁ. (20)

We observe that in the limit of j — 0, a single spinon cost
energy J,./2, which agrees with the classical result [16].
Moreover, Eq. (20) agrees with a simple variational estimate of
the single-spinon dispersion using Hamiltonian (13) without
creating or annihilating pairs of spinons (see Appendix D).

From Eq. (19), one finds that wy vanishes at k = 0 for
Jjtr = %: the spinons condense, leading to a Higgs phase. In
terms of the physical spins, the state corresponds to long-range
order of their transverse local XY moments [54].

The ground-state energy of the spinons per fcc unit cell is

2 1
EOZV;(“’“E) Q21

Here, V is the number of unit cells and the extra prefactor of
2 comes from the two identical contributions from spinons on
the A and B diamond sublattices. In the limit of small j., E,
is found to be approximately given by

Y 4

Ey~ 5 3ji+ 001 (22)
The ground-state energy vanishes at j. = 0, agreeing with the
energy of the ground state for the spinon Hamiltonian (12) in
the same limit.

We now proceed to check the internal consistency of our
low-boson-density approximation by calculating the boson
density n = (n, + ny) (see Appendix B). n is a monotonic
increasing function of ji which reaches its maximum value of
approximately 0.029 when the boson condenses at j = 11—2
more than a factor 25 smaller than the density of bosons, n = %,
in the high-temperature paramagnetic phase of the classical
spin ice.” We thus conclude that the dilute approximation is

reasonable for 0 < ji < é

7At very high temperature, all spin configurations are equivalent.
For a single tetrahedron, there are 2* = 16 spin configurations. There
are two “doubly charged” configurations, all in or all out, with 2
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Once interactions induced by Hiy ~ j.+ in Eq. (11)
between spinons and gauge fields are taken into account,
the spinon dispersion (19) gets corrected by a self-energy
contribution. In particular, the j,; interaction between the
Ising and XY components of spins couples electric field E,
and two powers of the spinon fields together. For j,, larger
than some threshold values, the energy to create pairs of
spinons may vanish, leading to the condensation of spinons
and a destruction of the spin-liquid state. To determine this
stability boundary, we need to calculate the spinon self-energy
arising from the j,. term [Eq. (8b)]. As in the starting point of
many-body calculations, we define the noninteracting spinon
Green’s function

GOt,k) = —i (T[Yr(O)¥) O)]). (23)

Here, T(...) denotes the time-ordered product. Its Fourier
transformation takes on the usual form [60]

1
©) -
e.k) = w?— o} +i8’ @4)
where 0 < § < 1.

Even without considering the interactions with the gauge
fluctuations, the spinons do interact among themselves, which
we neglected in Eq. (18) as an approximation for Eq. (13)
assuming that the boson density is low. Our results could
certainly be improved by treating these interactions as well as
the exclusive nature of the bosons using standard many-body
techniques. However, this is beyond the scope of this study
and will be addressed elsewhere.

IV. GAUGE FLUCTUATIONS

Having discussed the spinon dynamics, we proceed to
consider the dynamics of the gauge field. Our description
of gauge fluctuations largely follows that of Ref. [46]. For
completeness and notational consistency, we first reproduce
some of their results here. We neglect the effect of magnetic
monopoles® and assume the gauge theory is in its deconfined
phase. Physically, the deconfined phase corresponds to the
U(1) spin-liquid state where it costs a finite energy to create
a pair of spinons. The existence of this spin-liquid state
was demonstrated in Ref. [43] using quantum Monte Carlo
simulations. Under these assumptions, the Hamiltonian for
the gauge sector is

Hy= Y

xe(A),pu

U g
|:EE§M + EB;M} . (25)

The magnetic fluxes By, are the lattice curl of the gauge
field Ay,. U and g are two energy scales proportional to j3 if
only the XXZ parts of the anisotropic Hamiltonian, Eqs. (1a)

bosons. There are 8 “3-in-1-out” configurations with one boson. The
average number of bosons is thus (2 x 2 4 8)/16 = %.

8The magnetic monopoles here are not the same as those in classical
spin ice. They arise due to the compactness of the gauge fields A,,,.
The interested readers are referred to Ref. [56] for details.
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and (1b), are considered. We assume’

g =24¢j3 = go¢ (26)

with go as the microscopic value [32,46] from the third-order
degenerate perturbation theory. ¢ is a phenomenological factor
of order 1 which can only be determined by properly taking
into account lattice scale fluctuations in a derivation starting
from a microscopic model. To the best of our knowledge,
such a complete microscopic construction has not yet been
achieved, and is not attempted here. For simplicity, we take
¢ = 1 from now on.

We follow Ref. [46] to quantize Eq. (25). We write both By,
and E, in terms of Bloch modes By, and Ej,,. By, is further
expressed in terms of Ay,. The magnetic energy, the second
term in Eq. (25), is written as the bilinear form Ay, M,,A_4,
where M (k) is a Hermitian matrix, whose explicit form is
given in Appendix C. We perform a unitary transformation to
diagonalize M (k), which results in two transverse modes a i
(j=L2):

Ak =Y mujk)ajx. 27
Jj

Here, ny is a four-by-two matrix. The same unitary transfor-
mation is used to obtain the two transverse electric modes
ejk. After performing all these manipulations (see Ref. [46]),
one finally obtains the Hamiltonian for the transverse gauge
fluctuations:

Y g
H=2 5 [Seners+ Sfanaa]. @9
ko

where
1 ky k
g=4(3- EZcos?cos?ﬁ ~ K+ 0kY. (29
aFp
Here, k is the magnitude of momentum k. The Hamilto-

nian (29) is a collection of noninteracting harmonic oscillators
and the “photon” energies of the gauge fluctuations are

ex = VUgEk = cé. (30)

The speed of light ¢ has been measured using quantum Monte
Carlo simulations [46] to be ¢ ~ 0.3gy. The photon dispersion
& is illustrated in Fig. 3. Using Egs. (26) and (30), we can
extract the value of U to be

0.09 2.163

U= 8o _ Jx
¢ ¢

We observe that photon energy € is proportional to the spinon
energy wy at the condensation point of spinons, j. = 1/12.

Asin Sec. I1I, we define the following Green’s function [60]
for the transverse electric fluxes:

8ij(t.k) = —i(Teix(t)e; 1 (0)]) = 8;;8(t.k). (32)

. 31)

°In Ref. [46], the lowest-order quantum tunneling process in

quantum spin ice is translated into 2 x 127 cos B ~ 243 — 1 x

24j3 B2. We identify gy = 243 here.
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JZZ
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0.008

0.004} / S
I : oo \

r X WKL T

FIG. 3. (Color online) Photon energy €, along the high-
symmetry directions in the fcc Brillouin zone [59] for j. = 0.08.

The Fourier transform of g(z,k) is

2
€k

U(w?—ep+i8)
Having discussed the dynamics of both spinon fields and gauge
fields separately, we now move on to consider their interaction.

g(w.k) = (33)

V. SPINON SELF-ENERGY AND THE PHASE DIAGRAM

Our main goal now is to estimate the stability of the U(1)
liquid phase with a finite j 1. In Sec. III, we showed that the
spinon energy wy vanishes at k = 0 when j, = ﬁ The U(1)
liquid then becomes unstable toward the formation of an XY
antiferromagnetic phase. Since j,+ couples electric field flux
E,,, with two spinon fields, it changes the spinon dispersion
through a self-energy contribution. For j, larger than a thresh-
old value, which defines a stability boundary, the renormalized
spinon energy vanishes, leading to their condensation. To
expose this stability phase diagram of the Hamiltonian (1)
in the ji versus j,. plane, we calculate the lowest-order
self-energy contribution from the interaction between spinons
and transverse gauge fluctuations. Neglecting all higher-order
terms involving A, > the lowest-order coupling from Eq. (8b)
reads as

Jt
2

Hine ~ = Z Z[Exﬂ(w;wﬁﬁ + ‘/fim—a‘/fxw)ei%“

X puFv

+H.c.]. (34)

Using the standard operator formulation of many-body the-
ory [60], the lowest-order correction to the spinon Green’s
function is

GV(t,k) = i<T (wka)x/f,i(m / dndt H,-m(n)&m(zz)»,
35)

where all operators are written in the interaction picture. The
simplest scheme to take into account the coupled dynamics of
two interacting quantum fields is the random phase approxi-
mation (RPA) [60]. Here, we use the RPA approximation to
describe the effect of the gauge field on the spinons. Under the
RPA, the full Green’s function is

[G(w,0)]" = [GC%w,0)] " — Z(w,k). (36)
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0.03} !
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-0.03}
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FIG. 4. (Color online) The stability region of the U(1) liquid
phase (top) and the estimated phase diagram (bottom). The phase
boundary between the U(1) liquid phase and the XY antiferro-
magnetic phase (vertical red dotted line), labeled as XY AFM, is
determined based on the results of quantum Monte Carlo simulation
in Ref. [43]. The blue dashed oval in the bottom panel is the
perturbative stability region (shown in the top panel) of the U(1) liquid
phase. The phase boundaries between the splayed ferromagnetic [53]
(SFM) phase and the XY antiferromagnetic phase have not been
determined in this work. Consequently, we do not draw a boundary
between these phases in the top panel. See Refs. [8,54,61] for
estimations of the phase boundaries between the SFM phase and
the XY antiferromagnet long-range ordered phases.

To compute the self-energy X(w,k), we use Wick’s theo-
rem [60] to write Eq. (35) as a convolution of noninteracting
spinon Green’s function G©(z,k) [Eq. (23)] and electric flux
Green'’s function g(z,k) [Eq. (32)]. The convolution becomes
a product as we transform all Green’s functions into the
frequency space. After these standard procedures [60], the
self-energy contribution X(w,k), proportional to jzzi, is

1)
B@d) = 32 3 Y 0@ @) fk — g.k)

wv,j k

x / 2 o )G~k —g). (T)
2
We note that only the lowest-order approximation in j, of
the self-energy is included here. The approximation is only
valid for small j,1. The explicit form of f(k,k;) is given in
Appendix C. Expanding X(w,k) around @ = wy, the energy of
coherent spinons wy, is corrected by the ¥ (w, k), approximated
by X(wg,k), to order jzzi:

@r ~ wp + S(wy,k). (38)
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All corrections to Eq. (38) are of fourth power of j,. or
higher. Since all known long-range ordered phases beyond the
stability region of the U(1) spin liquid, including the splayed
ferromagnetic (SFM) phase [53,54] and the antiferromagnetic
XY order [54,55], are translationally invariant, we focus on
the spinon energy @(k) at k = 0.

We calculate 6)12(:0 for different ji and j,+ by computing
3 (wg,k) numerically. For sufficiently small j,., the energy
of the zero-momentum spinon is reduced but remains finite.
At a threshold value j,+ = j.(j1), @xr—o become zero and the
k = 0 spinon condenses. Since the correction to self-energies
only comes in as even powers of j,i, the stability boundary
of the U(1) liquid is symmetric under j,+ — —j,+ (Fig. 4).
For |j.+| > j., the system is expected to order in one of the
adjacent long-range ordered phases: either the SFM phase or
the antiferromagnetic XY order (Fig. 4). Note that we did
not determine the classical phase boundary between the SFM
phase and the antiferromagnetic XY order here. The reader
can refer to Refs. [8,54,61] for a determination, within a
classical approximation, of the phase boundaries between
these conventional long-range ordered phases.

Let us comment on the asymptotic behavior of the stability
boundary for small j; and for jy close to %, the critical value
for spinon to condense for j.+ = 0, found in Sec. I1I. For j+ <«
1, the correction to the k = 0 spinon gap is expected to scale
as jzzi /j+ from simple second-order Rayleigh-Schrodinger
perturbation theory. Since the gap in the limit of j. — 0 is
of the order J,., the stability boundary is thus expected to be
of the form j.4+ ~ £/j3 as j. — 0. On the other hand, w}_,
vanishes as |]—12 — j+| while X(wg,k) approaches cg jzzi, co
being a constant, as ji — é We thus expect the stability

boundary to behave as j,+ ~ ++v é — j+ for ji close to
%. Both expectations are explicitly verified in our numerical
results for j.(ji) (Fig. 5).

The above results rely on a stability analysis to determine
the phase boundary between the U(1) liquid phase and semi-
classically ordered phases. In practice, such phase transitions
may be preempted by a first-order transition [62]. In fact,
a quantum Monte Carlo study [43,44] of the XXZ model
on the pyrochlore lattice finds that the U(1l) liquid phase
undergoes a first-order phase transition [43,44] at jL = 0.05,
smaller than our estimate of spinon condensation threshold
Jjtr = 1]—2 ~ (0.083. The phase boundary between the U(1)
liquid phase and the SFM phase can be roughly estimated
by comparing the energies of the two phases to lowest order
in j,4 and ji. To lowest order in j,1, the energy per fcc unit
cell for the SFM phase is

ESFM =—4x3x 3S2172i = _9j32i’ (39)

where § = % is the spin length. Here, the factor 4 counts the
number of sites in the unit cell on the pyrochlore lattice, one
factor of 3 is the number of third-nearest neighbor of the “a
type” for a site 6 divided by 2. We note that there are two
types of third-nearest neighbors on the pyrochlore lattice [17].
The bond connecting a site and its third-nearest neighbor of “a
type” goes through another pyrochlore site. Finally, —3 jzzi is
the lowest-order perturbative contribution [7,37] to exchange
interaction between a site and its third-nearest neighbor of “a
type.” For the U(1) liquid, the lowest-order energy in ji per
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FIG. 5. (Color online) The limiting behavior of the stability
boundary j.(j+) for j+ — O (top) and ji — % (bottom). j. =
11—2 — j+. The numerical data are plotted against fitted forms 0.167 ji/ :

and 0.169]1/ %, respectively.

unit cell comes from the zero point energy in the spinon sector
[Eq. 2D)]:
33
Ey~ —Ti.

Using these estimates, the phase boundary between the U(1)
liquid and the SF phase is determined by j.+ ~ % j. /+/6. Both
the stability region of the U(1) liquid phase and the estimated
phase diagram determined above are displayed in Fig. 4.

VI. DISCUSSION

In this work, we developed a formalism to study quan-
tum spin liquids in highly anisotropic spin models on the
pyrochlore lattice. Building on previous works, we considered
the dynamics in both spinons and gauge sectors. By applying
our formalism to a particular anisotropic model (1), we mapped
out the stability region of the U(1) liquid phase in the ji
versus j,4+ plane and estimated the phase boundaries between
the spin-liquid phase and close-by conventional long-range
magnetically ordered phases. Our formalism can be readily
applied to the study of other possible spin-liquid phases as long
as they are the descendants of the classical spin-ice solution.

Itis interesting to discuss the general merit of the formalism
we developed in this work. As stated in Sec. IV, our description
of the transverse gauge fluctuations is not ideal since it
is not derived from a full microscopic theory. However, it
was demonstrated, using large-scale quantum Monte Carlo
simulation [46], that the theory describes the simulation data
quantitatively. While it is well known [32,46,52] that g in the
Hamiltonian (25) is of the order j3 for the XXZ model, it is
perhaps a bit surprising that U acquires almost the full scale
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of 24 ji [Eq. (31)]. In the conventional presentation of the
theory [32,46,52], U is supposed to be very large such that
Eyp = :I:%, consistent with the spin length, is enforced. That
U ~ 24j3 can be understood physically by accepting that the
U(1) compact gauge theory is an inexact mapping of the spin
model. Within the spin-ice manifold, the lowest-order quantum
tunneling operator, which flips six alternating spins around
a hexagonal plaquette, does not commute if two hexagonal
plaquettes share spins. On the contrary, such operators translate
into cos(B) to lowest order on each plaquette within the gauge
theory formulation, which commute with each other. The
U E?/2 term has to be present in order to preserve the quantum
nature of the theory. From this perspective, since the amplitude
g ~ j3i of the quantum tunneling operator is the only energy
scale within the classical spin-ice manifold, it is perhaps natu-
ral to expect that U is dynamically generated such that U ~ g.

As the gauge field and its associated emergent photon is
one of the key features of the U(1) theory description of
the quantum spin-ice state, it is useful to ascribe a physical
meaning to the gauge fluctuations. The photon, as in standard
quantum electrodynamics, contains both electric and magnetic
parts. In quantum spin ice, electric fluxes are the Ising
components of the spins. This implies that the electric parts
of the emerging photon are fluctuations of the local Ising spin
components. The collective excitation has a vector amplitude
whose direction is perpendicular to its propagating direction
defined by its momentum ¢q. In other words, it is “transverse”
just like real photons. The interpretation is supported by the
connection of quantum spin ice to a quantum dimer model
where emergent photons are known to be fluctuations of
dimer densities [40—42]. The hard-core dimers correspond to,
for example, S;, = % in spin ice. Transverse dimer density
fluctuations are thus transverse fluctuations of local Ising
components of the spins, or transverse magnetization waves.

We would like to comment on the similarity and differ-
ences between the large-N approach of Ref. [8] and our
approximation based on the exclusive boson representation
of an XY quantum rotor. In both formalisms, the spinons
are represented by bosonic degrees of freedom moving under
a static background gauge field. The ground-state wave
functions obtained in both approximations contain basis states
that violate the Gauss law (2). Proper projectors would need
to be applied to address this issue. There are also a couple
of differences. In the large-N approximation, the constraint
|| = 1 is enforced only on average. The real and imaginary
parts of v, can be interpreted as the coordinates (x,y) of a two-
dimensional particle. The large-N approximation [8] frees the
particle to move on the entire two-dimensional plane instead of
the unit circle \/x% + y? = 1. As aresult, the momentum of the
particle, which translates to the charge O (Ref. [8]), can take
on continuous value. In our approximation, O = ng — ny, takes
only discrete values. Most of the quantitative differences about
spinon dynamics between our work and Ref. [8] stem from this
distinction. Furthermore, in the large-N approximation, the
Lagrange multiplier A needed to enforce the global constraint
Zx[|1//x|2 — 1] needs to be computed self-consistently for a
given set of exchange parameters. No such computations are
needed in the lowest-order approximation of the exclusive
boson formulation.
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While we applied the exclusive boson formalism to the
quantum spin-ice problem, we stress that it is a general
representation of the XY quantum rotor. Starting from the
formalism, standard diagrammatic techniques could be applied
to XY quantum rotor models. As the boson density 7 increases,
interactions among bosons as well as their exclusiveness
become important. The naive approximation where only oper-
ators quadratic in bosons are kept is bound to fail under such
circumstances. However, even in such cases, the applicability
of the formalism could perhaps be greatly enhanced if used
in combination with sophisticated numerical methods such as
variational quantum Monte Carlo. We also note that the XY
quantum rotors are used to represent the charge degrees of
freedom in weak Mott insulators [63]. Perhaps the exclusive
boson formalism could prove useful in such a context as well.

In the future, one could apply the present formalism to study
the zero-temperature phase diagram of the frustrated XXZ
model on the pyrochlore lattice, i.e., Egs. (1a) and (1b) in the
case where J1 < 0. It would also be interesting to study the
phase diagram of systems with both Kramers and non-Kramers
magnetic ions and taking into account a finite J14 coupling.
Moreover, one could extend the present formalism to consider
finite-temperature properties of quantum spin ice with the aim
of exploring the physics of quantum spin-ice candidates such
as szTi207, szTi207, PI'QZI'207, and Przsl’l207.
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APPENDIX A: LOCAL COORDINATE SYSTEMS

For completeness, we list the local coordinates for the four
sublattices of the pyrochlore lattice. We use X, J,, and Z, for
the local axes with @ = 0,1,2,3. The global Cartesian axes are
labeled as %, $, and Z. We follow the convention of Ref. [7]:

1

)30:—6(—2)?4-)74‘2)

R L.
Yo = —2(—y +32) (Ala)
. L. ..
zo=—3(x+y+z),

. 1( 2W—5—3)
X2=—C28—-9—-2

1 % y

g I(A Z) (Alb)

=—0@ -z

Y1 ﬁy

. 1(A 52
Hi=—=F—-3—-2),

1 ﬁ y
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1
X = %(2)2-1-)7—2)
1
M= ﬁ(—ﬁ —-2) (Alc)
% ! (=X +39—-2)
= —(—X — 2z ,
2 Ve y
. P
X3 = %(Zx—y‘FZ)
R 1
V3 %()’ +32) (Ald)
1
= %(—f -Jy+2)
We also give explicitly i’s
0=1E+5+2), (A2a)
[=3G-9-2. (A2b)
2=30-%-2), (A2¢)
3=1¢-%-9 (A2d)

APPENDIX B: BOGOLIUBOV TRANSFORMATION

In this Appendix, we give the explicit form of the Bogoli-
ubov transformation that leads to Eq. (19). In terms of Bloch
modes di and by, Eq. (18) can be written as

1 ko kg s .
H = Z 3 cos > cos > (d,idk + b,kd‘_k)
k a#p
ko k 4 1
_% Zcos — cos ?ﬂ(d};b'_k +Hc)— 51 (B1)
aFp

To diagonalize the Hamiltonian, we perform a Bogoliubov
transformation:

dy = dy cosh yy, + Eik sinh yg, (B2a)
by = by coshy + Jik sinh y. (B2b)
Yk satisfies
cosh 2y = aTk % — Ji Z os - cos 7’3 , (B3a)
a;éﬁ
sinh 2y, = — Z cos — cos — (B3b)

2a)k

with wy, given in Eq. (19). In terms of quasiparticles 5 and d,
Eq. (B1) reads as

R 1
H=Y" [wk(d;dk +bybx + 1) — E] : (B4)
k
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The average number of spinons per site n can be computed

as
1 . 2 1 1
_ T _
n= v Ek (bybi + didi) = v Ek |:§ cosh 2y — 5] ,
(BS)

where V is the number of fcc unit cells. Using Eq. (BS), n can
be computed numerically for any given j.

APPENDIX C: EXPLICIT FORM FOR M (k) AND f, &,

Here, we give the explicit form for M (k) and f, &, used in
Secs. IV and V, respectively. M is a Hermitian matrix so that
we list only M, (k) with & > v

Moo(k) =6 —2 COSkx_ky +coskx_kz —f-cosky;kZ )
My(k) =6-2 —COS bk + cos a ;kz + cos £ ;kz_ ,
Mzz(k)=6—2_cos@+c()s ky — ¢ 1 cos ky‘;kz_’
Ms3(k) =6 —2 —cos ke —ky + cos ky +k: 1+ cos k -zl-kz_ 7

[ iy k, ike k iky+hy) |

My (k) =2 eTcos§+e?cos?x—l—e P ,

iky k iky k. ity :-
Moy (k) =2 e%cos§+e%cosé—1_ew ,

[ i k iky k i thy) ]

My(k) =2|e> cos§+eTcos§—l—e 2 ,

x k —iky k. thfk:)_
M(k) =2 echosé+e 2 cosE—l—e( |,

iky k —ikz k i'x*:'_
Miz(k) =2 echos—y+echos—y— —e(kzk) ,
L 2 2 i
- ity kx ik kx i(ky—kz)-
My(k) =2 eTcos?+eTcos?—l—e 2

f(ky,k,) is also a 4 x 4 matrix. Its matrix elements are
WH#W V' FEY
Ffuvlky k) = Z Zet<¢,l,,r—¢‘,vf>[e—zkl-u
W

+ei[kz-(ﬂ—/l')—kl-ﬂ]][eikrﬁ’ + e_i[kZ'(ﬁ_ﬁ/)_kl'ﬁ]]'

APPENDIX D: DISPERSION OF A SINGLE SPINON:
A VARIATIONAL ESTIMATION

Projecting onto the states with two spinons of opposite
charges, Eq. (13) describes only the hopping dynamics of a
spinon if the other spinon’s position is fixed and the scattering
between the two spinons is neglected. Without losing any
generality, we assume the spinon with negative charge is
fixed while the positive spinon on sublattice A is mobile. By
applying H on a state |x) with a monopole on site x, the
equation of motion for the positive spinon is

|x ——Z|x o= ).

HFY

H|x) = (D1
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The normal modes of the mobile spinon can be obtained by
a simple Fourier transformation:

1 k
Hk) = | 5 == Zcos % cos 2| k). (D2)

2 2

The energy agrees with Eq. (20). It does not agree with Eq. (19)
since we neglect the creation and annihilation processes of
spinons which are captured by the Bogoliubov transformation
leading to Eq. (19).

APPENDIX E: CFM PHASE WITHIN THE g-MFT
FORMALISM

We expect the XY components of the spins to have a static
expectation value in the CFM phase. To first see this, we step
back from the gauge theory picture and consider the original
spin model. Consider a state with ordered Ising moments S3,
with static expectation value m, ~ (S7 ) but with fluctuating
transverse (XY) components. The (free) energy of the system
can be expanded as a function of small m :

F:rmsz—i—bmi—i—

Here, b is positive as we assume that the transverse moments do
not spontaneously order. We stress that both m, and m should
be understood as linear combination of (S3 ) and (S ) | with
proper symmetry properties. The qualitative argument is clear,
we believe, without constructing the exact Landau functional.
The linear coupling between m, and m , r, is proportional to
Jex. Clearly, for m, # 0, F is minimized for a nonzero m |,
inevitably.

We now demonstrate that the CFM phase, with properties
such as defined in Ref. [8], has both ordered Ising and
transverse components even within the gauge mean-field
formalism [8]. We recall that in the gauge mean-field theory,
the expectation value of the transverse component S PRE

(S5) = (s )W ivein). (E1)

X

The second bracket of (E1) is the average of intersublattice cor-
relation of spinons. Per its self-consistent mean-field solution,
the CFM phase is defined by the following properties [8]:

(sy,) # 0. (S5,) #0. (E2)

The product of the two expectation values leads to nonzero
amplitude for spinons to tunnel from one sublattice to the
other, as is implicit in Eq. (E10b). In general, the system
takes advantage of the tunneling process by developing finite
intersublattice correlations:

(Wivesa) #0O. (E3)

Combining Egs. (E1)—-(E3), we conclude that the transverse
components ST of the spin also develop a finite expectation
value in the CFM phase. We note that the intersublattice
correlations [Eq. (E3)] were indeed found to be nonzero in the

J

1 A
=52.0i- ) [Ji > WsiiSeipoYsen—s + Vi pSeuSty e + He)
P

xe(A) n<v

_J’i Z S)ZC/L(

HFY

Vs aro + WiJrﬂfaS;ﬂ—ﬁ,uWHﬂ)gl%” + HC):|
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gauge mean-field treatment [Eqs. (11) and (B1) of Ref. [8].
We now demonstrate this with an explicit calculation.

We start our calculation by reviewing some basic properties
of the rotor model within the large-N approximation. We
consider the rotor Hamiltonian (13). We follow Ref. [8] by
relaxing the local constraint || = 1 to a global one by adding
the following Lagrange multiplier to Eq. (13):

) [Z Vi — V} : (E4)

where V is the number of fcc unit cells. ¥, = q1x + igox Where
qix (i = 1,2) are the generalized coordinates. As demonstrated
in Ref. [8], Ox = pix + ipax, Pix 1s the conjugate momentum
of gix. Transforming into momentum space, the Hamilto-
nian (13) is reduced to a collection of noninteracting harmonic
oscillators:

ke k
H = ZZ plk—i— A—JiZcos?cos; —AV.
aFp
(ES)
The dispersion of a single-particle excitation is
ke k
wr = |22 — jx Z cos > cos 7’3 (E6)
a#p
and the ground-state energy per unit cell is
1
Ey(A) = — —A. E7
o) = ij wx (E7)
A is tuned to satisfy
o _y (E8)
a

We perform some simple checks against known results. In
the limit of j. — 0, Eq. (E8) can be solved exactly with A = %
We can put this back into Eq. (E7) to obtain

1
Eo=1.

For comparison, starting from the original rotor model (13)
in the limit j. = 0, the ground-state energy is found to be
zero. In the same limit, the single-particle excitation energy is
approximately

wr ~ 1+ 0(j1), (E9)

which does not agree with the energy cost of value % [Eq. (20)]
for Hamiltonian (13) as ji — O limit.

We now demonstrate that, within the framework of gauge
mean-field theory, the CFM phase has ordered XY moment.
For this purpose, we focus on demonstrating that the intersub-
lattice correlation (Y1) are nonzero. We write Eq. (8) the
same way as in Ref. [8]:

(E10a)

(E10b)
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In this section, we only consider j. = 0.1 and j,.+ = 0.1.
This set of parameters would lead to the CFM phase in a
self-consistent gauge mean-field calculation, as shown in Fig. 3
of Ref. [8]. We use the following ansatz [8]:

+

o = €080,

Sy =&usin®, s (E11)
where §, = 1,1, —1, —1 for © = 0,1,2,3. We relax the local
constraint | |> = 1 to a global one by adding the Lagrange
multiplier (E4) for both the A and B sublattices. We represent
the two sublattices using subscript i = 1,2 hereafter. Simi-
larly, O, becomes (i.e. Q, — Il,) the complex-conjugate
momentum [T, of ¥,. In terms of the Bloch modes, the
Hamiltonian (E10) can be written as

1
H= ZZ [gnfknjk&j + Y M ()Y — 2&] . (E12)
ki

The elements of the quadratic kernel M (k) are

i ko k
My (k) = 1 — % cos> 6 ;cos TCOS 7’3

P % cos? 0ok,

Mys(k) = _’jTi 5in26 Y g0 el = —’jTi sin 20k,
nFV
Mo (k) = M, (k),
My (k) = My (k).
Diagonalizing M (k) by a unitary transformation, (E12)

becomes a collection of noninteracting harmonic oscillators.
Their frequencies are

w2(k) = \/2k — jrcos2Opr F ]ZTi sin 20 |hy| (E14)
and the ground-state energy of the spinon sector is

Eg=Y[wi(k)+ wy(k) — 21] . (E15)
k

A is determined by solving the following self-consistent
equation:

IE,

=0. El16
o (E16)

The proper procedure is to solve 6 self-consistently [8].
However, for our purpose, we only need to show (V5 yyys)
is finite for 0 < 6 < 7/2 since the self-consistent solution 6
will fall in this range. x, = [{(¥ ¥x4.)| is determined by the
following equation:

1 1 1 o
* O\ — _ —igx —ik-
(VyVxsn) = N Ek [wl(k) wz(k)]e ek (E17)
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FIG. 6. (Color online) xo = [{¥;¥, )| is shown for 0 < 0 <
/2. j+ =0.1and j,. =0.1.

where hy = |hg|e'* 7. X, 1s finite for 0 < 6 < 7 /2 (Fig. 6).
This demonstrates that the (S;'EM) ~ X, 1s nonzero in general
whenever (Y4 ) is nonzero due to (S3 ) # 0.

We note that the CFM self-consistent solution [Egs. (E1)—
(E3)] exists within the gauge mean-field formalism [8]. Within
the solution, it costs a finite amount of energy A to create
a pair of deconfined spinons. A vanishes beyond a second
phase boundary, which the authors of Ref. [8] identified as
the phase boundary between the CFM phase and the SFM
phase. While the phase has implicit long-range magnetic
order, two perspectives can be taken for the nature of such
a phase. An “optimistic” perspective would assert that the
modern definition of an exotic spin phase lies in the long-range
entanglement structure of the wave function [64], or “quantum
order.” While the long-range magnetic order in the CFM phase
breaks all spin and space symmetries, it is still possible, in
principle, that the state has nontrivial quantum order and is thus
an exotic phase. One can find a supportive argument for this by
following a gauge theory reasoning: the expectation value of
the correlator (wi Yx+4) can not gap out the “photons” through
the Higgs mechanism since it does not carry any charge. The
potential demonstration of the CFM phase being a state with
quantum order and long-range magnetic order would be a
truly remarkable discovery and provides a concrete example
of a three-dimensional gapless state with quantum order, which
could be realized in real materials. While this is an exciting
perspective, there is no concrete numerical or experimental
evidence for it yet.

We thus adopt a conservative perspective and expect that
the implicit magnetic long-range order in all spin components
in the CFM phase would confine the spinons, contrary to the
claim of Ref. [8]. From this perspective, the CFM/U(1) liquid
phase boundary should likely be reinterpreted as the phase
boundary between some magnetically long-ranged ordered
phase, likely the SFM phase, and the U(1) liquid phase within
the gauge mean-field formalism. One may speculate that in
an “exact treatment” of the model, other types of singularities
could still exist upon crossing the phase boundary between
the CFM phase and SFM phase identified in Ref. [8], such
as a first order jump in the confining string tension between
spinons, for example.
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