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Transport measurements of the spin-wave parameters of thin Mn films
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Temperature-dependent transport measurements on ultrathin antiferromagnetic Mn films reveal a heretofore
unknown nonuniversal weak-localization correction to the conductivity which extends to disorder strengths
greater than 100 k� per square. The inelastic scattering of electrons off of gapped antiferromagnetic spin waves
gives rise to an inelastic scattering length which is short enough to place the system in the three-dimensional
regime. The extracted fitting parameters provide estimates of the energy gap (� ≈ 16 K) and Heisenberg exchange
constant (J ≈ 1000 K).
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I. INTRODUCTION

Thin-film transition metal ferromagnets (Fe, Co, Ni, Gd)
and antiferromagnets (Mn, Cr) and their alloys are not
only ubiquitous in present day technologies but are also
expected to play an important role in future developments
[1]. Understanding magnetism in these materials, especially
when the films are thin enough so that disorder plays an
important role, is complicated by the longstanding controversy
about the relative importance of itinerant and local moments
[2–4]. For the itinerant transition metal magnets, a related
fundamental issue centers on the question of how itinerancy
is compromised by disorder. Clearly with sufficient disorder
the charge carriers become localized, but questions arise as
to what happens to the spins and associated spin waves and
whether the outcome depends on the ferro/antiferro alignment
of spins in the itinerant parent.

Ferromagnets, which have magnetization as the order
parameter, are fundamentally different than antiferromagnets,
which have staggered magnetization (i.e., difference between
the magnetization on each sublattice) as the order parame-
ter [5]. Ferromagnetism thus distinguishes itself by having
soft modes at zero wave number, whereas antiferromagnets
have soft modes at finite wave number [6]. Accordingly,
the respective spin-wave spectrums are radically different.
These distinctions are particularly important when comparing
quantum corrections to the conductivity near quantum critical
points for ferromagnets [7] and antiferromagnets [8].

Surprisingly, although there have been systematic studies
of the effect of disorder on the longitudinal σxx and transverse
σxy conductivity of ferromagnetic films [9–13], there have
been few if any such studies on antiferromagnetic films. In this
paper we remedy this situation by presenting transport data on
systematically disordered Mn films, finding an unexpected
three-dimensional (3D) weak-localization correction to the
conductivity extending to disorder strengths greater than
100 k�. In contrast, the localization corrections are always
in two dimensions (2D) for thin ferromagnetic films.

II. EXPERIMENTAL METHODS AND BACKGROUND

Our Mn films with square shapes 0.9 mm on a side are
sputter deposited through a Hall cross shadow mask onto

*Corresponding author: afh@phys.ufl.edu

polished sapphire substrates in a custom-designed vacuum
chamber and then transferred without exposure to air into
an adjacent cryostat for transport studies to low temperature.
The experimental procedures are similar to those reported
previously: disorder, characterized by the sheet resistance R0

measured at T = 5 K using dc techniques, can be changed
either by growing separate samples or by gentle annealing of
a given sample through incremental stages of disorder [14].

In this study we focus on a single in situ prepared Mn
film with initial disorder strength R0 ≈ 6 k�. The temperature
dependence of the resistance was measured in the temperature
range 5–50 K. Upon heating the sample for short periods to
above 150 K, we observed irreversible incremental increases of
resistance which remained stable for temperatures below 50–
100 K. Higher disorder strengths required higher temperature
anneals. This annealing procedure thus allowed us to increase
the disorder strength R0 for a single film in a controllable way
and in small steps. Subsequent to each anneal, the temperature
dependence of the resistance was again measured in the
temperature range 5–50 K.

We suspect that at each annealing temperature there is
a transfer of a small amount of material from the thinner
to the thicker portions of the film. In the limit where a
film can be considered as granular, annealing would cause
individual grains to incrementally pucker up and increase
their height while simultaneously increasing their separation,
thereby increasing the intergranular resistance. In addition,
quench cooling from the higher temperature anneals might
freeze in higher degrees of disorder. To check the results
for reproducibility, we prepared two additional films with
intermediate disorder (about 10 and 20 k�). These films,
measured as grown without annealing, gave the same tem-
perature dependence as the annealed sample. Similar checks
were performed in our earlier work on ferromagnetic Gd films,
where we found that films with a given sheet resistance R0,
obtained either by annealing or by a single deposition, had
very similar temperature dependencies [14]. Accordingly, R0

provides a robust and reproducible characterization of disorder.
Using these same experimental procedures as described for

ferromagnetic Gd films [14], our results for antiferromagnetic
Mn, however, are decidedly different. The data are well
described over a large range of disorder strengths by a nonuni-
versal 3D quantum correction that applies only to spin-wave
gapped antiferromagnets. This finding implies the presence
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of strong inelastic electron scattering off of antiferromagnetic
spin waves. The theory is validated not only by good fits to
the data, but also by extraction from the fitting parameters of
values for the spin-wave gap � and the exchange constant J̄

that are in agreement with the values expected for Mn.
In previous work the inelastic scattering of electrons off of

spin waves has been an essential ingredient in understanding
disordered ferromagnets. For example, to explain the occur-
rence of weak-localization corrections to the anomalous Hall
effect in polycrystalline Fe films [11], it was necessary to
invoke a contribution to the inelastic phase breaking rate
τ−1
ϕ due to spin-conserving inelastic scattering off spin-

wave excitations. This phase breaking rate, anticipated by
theory [15] and seen experimentally in spin-polarized electron
energy loss spectroscopy (SPEELS) measurements of ultrathin
Fe films [16,17], is linear in temperature and significantly
larger than the phase breaking rate due to electron-electron
interactions, thus allowing a wide temperature range to observe
weak-localization corrections [11]. The effect of a high τ−1

ϕ

due to inelastic scattering off spin-wave excitations is also
seen in Gd films, where in addition to a localizing log(T )
quantum correction to the conductance, a localizing linear-
in-T quantum correction is present and is interpreted as a
spin-wave-mediated Altshuler-Aronov type correction to the
conductivity [12].

Interestingly, this high rate of inelastic spin-rate scattering
becomes even more important for the thinnest films, as
shown in theoretical calculations on Fe and Ni which point
to extremely short spin-dependent inelastic mean free paths
[18] and in SPEELS measurements on a-few-monolayers-
thick Fe/W(110) films in which a strong nonmonotonic
enhancement of localized spin-wave energies is found on the
thinnest films [17].

Inelastic spin-wave scattering in highly disordered fer-
romagnetic films can be strong enough to assure that the
associated T -dependent dephasing length Lϕ(T ) = √

Dτϕ

(with D the diffusion constant) [19] is less than the film
thickness t , thus putting thin films into the 3D limit where
a metal-insulator transition is observed [14]. Recognizing that
similarly high inelastic scattering rates must apply to highly
disordered antiferromagnetic films, we first proceed with a
theoretical approach that takes into account the scattering
of antiferromagnetic spin waves on the phase relaxation
rate and find a heretofore unrecognized nonuniversal 3D
weak-localization correction to the conductivity that allows
an interpretation of our experimental results.

We mention in passing that the 3D interaction-induced
quantum correction found to be dominant in the case of
strongly disordered ferromagnetic Gd films, which undergo
a metal-insulator transition [14], is found to be much smaller
in the present case and will not be considered further. (For an
estimate of this contribution, see Ref. [20].)

III. THEORY—WEAK LOCALIZATION IN 3D
ANTIFERROMAGNETS

As discussed in detail in Ref. [21], the phase relaxation time
τϕ limits the phase coherence in a particle-particle diffusion

propagator C(q,ω) (Cooperon) in the form

C(q,ωn) = 1

2πN0τ 2

1

Dq2 + |ωn| + 1/τϕ

, (1)

where N0 is the density of states at the Fermi level, τ is
the elastic scattering time, and ωn = 2πnT is the Matsubara
frequency. Labeling the Cooperon propagator in the absence
of interactions as C0, we can write

1

τϕ

= 1

2πN0τ 2

[
C−1 − C−1

0

]
. (2)

In general, C(q,ω) can be evaluated diagrammatically in the
presence of interactions and disorder in a ladder approximation
[22] that can be symbolically written as C = C0 + C0KC,
where the interaction vertex K contains self-energy as well as
vertex corrections due to both interactions and disorder. It then
follows that 1/τϕ is given by

1

τϕ

= − 1

2πN0τ 2
K. (3)

In Ref. [21], the leading temperature and disorder de-
pendence of the inelastic diffusion propagator was evaluated
diagrammatically, in the presence of ferromagnetic spin-wave-
mediated electron-electron interactions. Here we consider the
antiferromagnetic case. We only consider the large spin-
wave gap where the damping can be ignored. Using the
antiferromagnetic dispersion relation ωq = � + Asq, where
As is the spin stiffness, the inelastic lifetime is given by

�

τϕ

= 4J̄ 2

π�n

∫ 1/l

0

qd−1dq

sinh βωq

Dq2 + 1/τϕ

(Dq2 + 1/τϕ)2 + ω2
q

, (4)

where n = k3
F /3π2 is the 3D carrier density, J̄ is an exchange

constant, and β = 1/kBT . Here we will consider the limit
�/τϕ � �, relevant for our experiment on Mn. In this limit we
can neglect the 1/τϕ terms inside the integral. The upper limit
should be restricted to �/As in the limit �/As < 1/l, where
l is the elastic mean free path. For large disorder, we expect
the parameter x ≡ �Dk2

F �/J̄ 2 � 1, where the spin-exchange
energy is related to the spin stiffness by J̄ = AskF . In this limit,
Lϕ can be simplified as

kF Lϕ ≈
(

J̄

�

)3/2(5 sinh �
T

12π

)1/2

, x � 1, (5)

which is independent of x, and therefore, independent of
disorder.

Given the inelastic lifetime, the weak-localization correc-
tion in 3D is usually given by [19] δσ3d = e2/�π3Lϕ, where
the prefactor to the inverse inelastic length is a universal
number, independent of disorder. However, at large enough
disorder, we show that there exists a disorder-dependent
correction, due to the scale-dependent diffusion coefficient
near the Anderson metal-insulator transition. In fact, the
diffusion coefficient obeys the self-consistent equation [23]

D0

D(ω)
= 1 + k2−d

F

πm

∫ 1/l

0
dQ

Qd−1

−iω + D(ω)Q2
, (6)

where D0 = vF l/d is the diffusion coefficient at weak
disorder. While the significance of the prefactor to the integral
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is not clear, the above equation remains qualitatively accurate
over a wide range near the Anderson transition. Setting
ω = i/τϕ and doing the Q integral in 3D,

D0

D
≈ 1 + 1

πmkF

∫ 1/l

1/Lφ

dQ
Q2

DQ2

= 1 + D0

D

3

πk2
F l2

− δ

(
D0

D

)
, (7)

where

δ ≡ D0

D

3

πk2
F l2

l

Lϕ

(8)

is assumed to be a small correction, and Eq. (7) should not
be solved self-consistently. This follows from the fact that the
diffusion coefficient of electrons at fixed energy entering the
Cooperon expression is that of noninteracting electrons and
is given by the limit T → 0, Lϕ → ∞ and therefore δ → 0.
Then the correction at finite T is given by

D

D0
= 1(

D0
D

)
0 − δ

(
D0
D

)

≈
(

D

D0

)
0

+
(

D

D0

)
0

3

πk2
F l2

l

Lϕ

, (9)

where

lim
T →0

D

D0
≡

(
D

D0

)
0

. (10)

Using the relation σ3d = e2N0D where the longitudinal sheet
conductance σ� = σ3d t , with t being the film thickness,
we finally get the temperature-dependent weak-localization
correction term

δσ�
L00

=
(

D

D0

)
0

2

π

t

Lϕ(
D

D0

)
0

≈ 2

1 +
√

1 + 4R2
0/a

2
, (11)

where R0 = L00/σ�(T = 0), L00 = e2/πh, a = 3π/2kF tb0,
b0 is a number of order unity, and we have solved the
self-consistent equation for D in order to express D0 in terms
of D and finally R0. Thus in this case, the weak-localization
correction has a prefactor which is not universal. While this
reduces to the well-known universal result at weak disorder
R0 � a, it becomes dependent on disorder characterized by
the sheet resistance R0 at strong disorder and at the same time
substantially extends the 3D regime near the transition. A
weak-localization correction at strong disorder has not been
identified before. Here it is observable due to the extremely
small thickness of the films, boosting the parameter a. For
thicker films the weak-localization correction is unobservably
small, except at weak disorder.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Using the expression for Lϕ [Eq. (5)] into Eq. (11), we
finally obtain the total conductivity, including the quantum
correction to the conductivity due to weak localization in 3D

arising from scattering of electrons off antiferromagnetic spin
waves in Mn,

σ�
L00

= A + B√
sinh[�/T ]

, (12)

where phenomenological parameters A and B are temperature
independent but show a strong dependence on disorder. While
the parameter A is the sheet conductance extrapolated to zero
temperature, the disorder dependence of parameter B may be
expressed in terms of the two microscopic parameters c and a:

B ≡
(

D

D0

)
0

2

π

(
12π

5

)1/2(4�

J

)3/2

tkF

= 2c

1 +
√

1 + 4R2
0/a

2
, (13)

where

c ≡
(

�

J̄

)3/2(48t2k2
F

5π

)1/2

. (14)

The data presented here is for a single film prepared with an
initial R0 ≈ 6 k�. Disorder was consequently increased in
incremental stages up to 180 k� by annealing to tempera-
tures above 150 K [14]. Additional samples were grown at
intermediate disorder and measured to check reproducibility.

Figure 1 shows the conductivity data for the same sample
at two different stages of anneal with corresponding disorder
parameters R0 = 17 573 � and 63 903 �. The solid lines are
regression fits to the expression (12), where A and B are taken
as fitting parameters and � = 16 K is the spin-wave gap.
The fits are sensitive to the parameters A and B but relatively
insensitive to �. We find that � = 16 ± 4 K provides good
fittings in the whole range of disorder (from 6 to 180 k�).

Figure 2 shows the dependence of the parameter B on the
disorder strength R0 (open squares) and a theoretical fit (solid
line) using Eq. (13), where c and a are fitting parameters. The

FIG. 1. (Color online) The temperature-dependent normalized
conductivity (open squares) for two samples with the indicated disor-
der strengths of R0 = 17 573 � and 63 903 � show good agreement
with theory (solid lines). The fitting parameters A and B are indicated
for each curve, with the error in the least significant digit indicated in
parentheses.
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BUVAEV, GHOSH, MUTTALIB, WÖLFLE, AND HEBARD PHYSICAL REVIEW B 90, 214429 (2014)

FIG. 2. (Color online) Dependence of the fitting parameters B

and A (inset) on disorder R0 for � = 16 K. The fitting parameters are
indicated for each curve, with the error in the least significant digit
indicated in parentheses. Each of the 26 points in the main panel and in
the inset represents a two-parameter fit (A and B) to 26 temperature
sweeps at different stages of disorder, two of which are shown in
Fig. 1.

solid line for this two-parameter fit is drawn for the best-fit
values c = 0.67 ± 0.04 and a = 28 ± 3 k�. We note that the
fit is of reasonable quality over most of the disorder range,
except for the film with the least disorder (R0 = 6 k�) where
B = 0.77, somewhat above the saturated value B = c = 0.67
evaluated from Eq. (13) at R0 = 0. Using higher values of
c (e.g., c = 0.8) and lower values of a (e.g., a = 22 k�)
improves the fit at low disorder strengths but increases the
discrepancy at higher disorder strengths.

Each of the 26 data points in Fig. 2 corresponds to a
temperature sweep for 26 different stages of disorder as
measured by R0. Each sweep, two of which are shown in
Fig. 1, gives two values for the A and B parameters.
Accordingly, there are 26 values for A and B which are used
in Fig. 2 to determine the two parameters a and c.

By substituting the Fermi energy for bulk Mn [24], a
thickness t = 2 nm, known to 20% accuracy, together with
the best-fit value for c into Eq. (14), we calculate the value
J̄ = 320 ± 93 K. Gao et al. [25] performed inelastic scanning
tunneling spectroscopy (ISTS) on thin Mn films and reported
� in the range from 25 to 55 K (in satisfactory agreement with
our value � = 16 ± 4 K mentioned above) and spin-wave
velocity As = 160 ± 10 meV Å.

To make a closer connection between our transport mea-
surements and the tunneling measurement results of Gao et al.
[25], we note first that our J̄ , describing coupling of spin
waves to particle-hole pairs written in terms of Pauli matrices,
is smaller by a factor of 4 than the exchange interaction
J in a Heisenberg Hamiltonian H = −(1/2)

∑
i,j J SiSj . In

addition, a more accurate dispersion relation that takes into
account the lattice structure relates the spin-wave velocity
As to the Heisenberg J by As/a0 = csJ , where a0 is the

lattice spacing (a0 ≈ 1.8 Å for our samples) and cs is a
dimensionless lattice parameter of order unity [26]. Thus the
experimentally measured As of Gao et al. [25] corresponds
to J = 1031 ± 70 K, while the theoretical fit corresponds to
J = 4J̄ = 1280 ± 360 K. The results of the two experiments
for the spin-wave gap and the exchange constant thus agree
quite well.

Since the temperature-dependent correction B/√
sinh(�/T ) of Eq. (12) is small compared to the parameter

A, we can write σ� ≈ 1/R0 so that Eq. (12) reduces to the
expression A ≈ 1/L00R0. The logarithmic plot derived by
taking the logarithm of both sides of this approximation is
shown in the inset of Fig. 2. The slope of –1 confirms the
linear dependence of A on 1/R0, and the intercept of 5.01
(105.01 ≈ 102 k�) is within 20% of the expected theoretical
value L00 = e2/πh = 81 k� for the normalization constant.
Accordingly, the conductivity corrections in Eq. (12) are
small compared to the zero temperature conductivity, and the
normalization constant L00 for the conductivity is close to the
expected theoretical value.

Using Eq. (11) and the obtained value for a ≈ 28 k� we
can compare the dephasing length (Lϕ) with the thickness (t ≈
2 nm) at 16 K. For the sample with R0 = 63 903 � the ratio
Lϕ/t ≈ 0.5, and for the sample with R0 = 17 573 �, Lϕ/t ≈
2. The latter estimate assumes no spin polarization, while a full
polarization would imply Lϕ/t ≈ 1. Thus Lϕ is smaller than
or close to the thickness of the film, which keeps the film in
the three-dimensional regime for almost all temperatures and
disorder strengths considered.

V. CONCLUSION

We have performed in situ transport measurements on
ultrathin Mn films, systematically varying the disorder [R0 =
Rxx(T = 5 K)]. The obtained data are analyzed within a
weak-localization theory in 3D generalized to strong disorder.
In the temperature range considered, inelastic scattering off
antiferromagnetic spin waves is found to be strong, giving rise
to a dephasing length shorter than the film thickness, which
places these systems into the 3D regime. The obtained values
for the spin-wave parameters in our transport measurements
are close to the ones measured by Gao et al. [25] using ISTS.
This good agreement further corroborates our finding of a 3D
weak-localization correction at strong disorder that has not
been previously identified.
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