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Symmetry and magnetoelectric effects in garnet crystals and films
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The magnetoelectricity of garnets is considered by means of a symmetry and quantum mechanical combined
analysis. It is shown that the magnetoelectric effect is not realized in most garnets although the necessary condition
of the crystal magnetic structure antisymmetry in them is held at low temperatures. Nevertheless, the effect can be
observed in some garnets as well as other odd effects, namely, the piezomagnetic effect, the magnetic field evoked
piezoelectric one, etc. It is also discovered that magnetic fields can induce specific antiferroelectric structures in
garnet crystals and produce electric polarization in epitaxial films. The polarization can also be caused in a bulk
crystal by an inhomogeneous magnetic field.
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I. INTRODUCTION

Continued expansion in research on physical properties of
magnetically ordered crystals and films requires exploring a
wide spectrum of magnetic phenomena, including magneto-
electric ones. Such cross-correlated phenomena have attracted
considerable attention in recent years because of novel physics
and great potential for practical applications [1–3].

The polarization, induced by an external magnetic field
and/or magnetic ordering in conventional magnetoelectric
materials and multiferroics, is usually attributed to structural
changes, e.g., displacements of sublattices. Along with the
classic magnetoelectric mechanism caused by the direct
interaction of the ferroelectric and magnetic order parame-
ters [2–4], the mechanism of inhomogeneous magnetoelectric
interactions [5–7] is also actively discussed. The interaction
leads to new physical effects: the appearance of improper
polarization in multiferroics, the flexomagnetoelectric surface
effect [6], and the electrical control of magnetic domain walls
in films of iron garnets [8], etc.

It is well known that the space-time inversion symmetry
breakdown is a necessary condition for the existence of the
linear magnetoelectric effect in a material. Among many
magnetoelectric materials are particularly interesting those
with crystal structures which have a center of inversion
(i.e., even with respect to the spatial inversion) and with
magnetic structures which are odd with respect to the space
and time. There exist quite a lot of such magnetic materials
with the antiferromagnetic ordering, for example, the classical
magnetoelectric Cr2O3.

In this context, very interesting are rare-earth orthofer-
rites ReFeO3 in which there are two magnetic subsystems
constituted by iron and rare-earth ions. The magnetic struc-
ture of the iron subsystem is even relative to the spatial
inversion [9], thus the linear magnetoelectric effect in it
is forbidden by the symmetry. Indeed, in YFeO3, LaFeO3,
and LuFeO3, in which there is the only iron sublattice, the
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linear magnetoelectric effect is not observed. It is also not
observed in other rare-earth orthoferrites at high temperatures
when the rare-earth subsystem is disordered, being actually
paramagnetic, and therefore spatially even. But, magnetically
driven ferroelectricity was observed recently in electropoled
orthochromites and is possible in isostructural orthoferrites as
well [10,11].

The situation changes drastically when the temperature
is lowered to the critical point of the rare-earth subsystem
magnetic ordering and below it (Tc ∼ 1–5 K). In this case,
the magnetic symmetry allows the existence of the linear
magnetoelectric effect. The exchange interaction between the
rare-earth and iron sublattices results in the crystal sponta-
neous electric polarization, i.e., at low temperatures these
materials are multiferroics [12]. The phenomenon and other
attendant effects were observed in DyFeO3 [13], GdFeO3 [14],
SmFeO3 [15], etc. The key factor for such a behavior is
the presence of an antisymmetric (odd with respect to the
space inversion) magnetic sublattice. From this point of view,
very interesting are crystals of garnet structure with rare-earth
sublattices.

A family of garnets provides a fascinating field of science
and technology because of versatile functions that could
be attained by introducing different ions [16]. Studies of
several years show [17–19] that doping, creation of thin films,
multilayer structures, and composites based on the yttrium
iron garnet lead to strengthening a number of effects, as well
as to the discovery of fundamentally new phenomena in these
materials [20,21].

It is reported [20] on the finding of the large magneto-
capacitance effect in the yttrium iron garnet, characterized
by magnetically tunable quantum paraelectricity. The electric
dipole can be hosted by the impurity like Fe2+ site, where
the spin-orbit interaction governs the quantum-mechanical
relaxation process in response to the external magnetic field
or the magnetization vector.

Despite the significant value of the magnetoelectric effect
in garnets [17,22], these materials are nontraditional mate-
rials towards magnetoelectricity. Still unsolved remains the
question on the nature of the first-order effect in the yttrium
iron garnet, observed [23] by applying an electric field during
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TABLE I. The coordinates and the symmetry axes of the c positions.

k 1 2 3 4 5 6 7 8 9 10 11 12

r(k) 0 3
4

3
8 0 1

4
1
8

3
8 0 3

4
1
8 0 1

4
3
4

3
8 0 1

4
1
8 0 0 1

4
5
8 0 3

4
7
8

5
8 0 1

4
7
8 0 3

4
1
4

5
8 0 3

4
7
8 0

e(k)
x 110 11̄0 011 011̄ 101 1̄01 110 11̄0 011 011̄ 101 1̄01

e(k)
y 1̄10 110 01̄1 011 101̄ 101 11̄0 1̄1̄0 011̄ 01̄1̄ 1̄01 1̄01̄

e(k)
z 001 001 100 100 010 010 001 001 100 100 010 010

cooling. Such emergence of the first-order magnetoelectric
effect conflicts with the crystal symmetry of the yttrium
iron garnet. Meanwhile, there are known several garnets of
odd magnetic structures with respect to spatial inversion, for
example, the most investigated dysprosium-aluminium garnet.

In this work, we investigate single-crystal garnets and
garnet films as well by means of the symmetry and quantum-
mechanical combined analysis, which allows one to reduce
some of the uncertainties inherent in purely point symmetry
analysis. We show that despite the antisymmetric magnetic
structures in garnet crystals the linear magnetoelectric effect
in most of them is not realized, therefore the condition of the
magnetic subsystem antisymmetry is only a necessary condi-
tion for the effect to exist, not a sufficient one. Nevertheless,
in some garnets, for example, in Mn3Al2Si3O12, the existence
of the linear magnetic effect is possible. We also show, that
other new odd effects can be observed in garnets, namely, a
piezoelectric effect induced by a magnetic field in Nd3Ga5O12,
a piezomagnetic effect in Dy3Al5O12, etc.

We have also revealed an interesting feature of some garnets
such as Dy3Al5O12 or HoxY3−xFe5O12 with rare-earth ions of
the Ising type. We show that magnetic fields induce electric
dipole moments directly in the 4f -electronic shell of a rare-
earth ion and form in the materials fascinating antiferroelectric
structures, although the polarization of the materials is zero
on a macroscopic scale. But for all that, the magnetic
structure of the garnets remains antisymmetrical. A strong
enough magnetic field destroys the antisymmetric structures,
converting them to ferromagnetic ones. In this case all of the
above mentioned magnetoelectric effects disappear. This also
applies to the dysprosium iron garnet (Hexch ∼ 100 kOe).

An interesting situation takes place in epitaxial films of
mixed garnets R(1)

3−xR(2)
x M5O12, where R(1) and R(2) stand for

different rare-earth ions and M denotes Al or Fe. The uniform
distribution of the rare-earth ions by their nonequivalent
positions in the unit cell of the crystal in this case is disturbed,
which results in the electric polarization occurrence in them.
Another possible source for the linear magnetoelectric effect
to arise in a bulk crystal is a spatial inhomogeneity of an
external magnetic field or internal magnetic fields on domain
boundaries. The latter inhomogeneity can be a source of
magnetoelectricity for nanostructures and domain boundaries
of both the Neel and even Bloch types, not requiring the
Dzyaloshinskii-Moria mechanism.

The present paper is organized as follows. Section II
describes the structure of garnet crystals. The magnetoelectric
Hamiltonian and the expression for the effective electric-
dipole moment operator of rare-earth ions in garnets are
obtained in Sec. III. Section IV deals with the symmetry
analysis of the possible magnetic modes in garnets. On the

basis of the analysis we discuss the possibility of the linear
magnetoelectric and other odd effects existing in a single
crystal (Sec. IV), describe the antiferroelectricity induced
by magnetic field (Sec. V), and demonstrate the possibility
of the linear magnetoelectric effect in an inhomogeneous
magnetic field in bulk crystals (Sec. VI). Finally, we depict
the magnetoelectric effect in epitaxial garnet thin films owed
to the nonequal occupancies of the ion c positions in a primitive
crystal cell by rare-earth ion (Sec. VII).

II. RARE-EARTH GARNETS

Garnet crystals R3M5O12, where R stands for a rare-earth
or yttrium ion and M stands for a metal ion (such as Fe3+,
Al3+, Ga3+, etc.), have a complicated cubic crystallographic
structure, described by the O10

h space group. While a primitive
cell contains four R3M5O12 units, a unit crystal cell contains
eight of them.

Rare-earth ions are located in the positions with a dodec-
ahedral environment of oxygen ions with no inversion center
(the so-called c positions of the D2 symmetry). Obviously,
there are 12 c positions in each primitive cell, differing from
each other by symmetry axis orientations. The coordinates of
the nonequivalent c positions (expressed in the units of the cell
edge lengths) and their symmetry axes are given in Table I. We
should note, that positions 7–12 are connected with positions
1–6 by the I and C2 operations, where symbols I and C2 stand
for the inversion and the rotation by 180◦ about a local axis,
relatively. In so doing, e(k+6)

x,z = e(k)
x,z and e(k+6)

y = −e(k)
y , i.e.,

e(7) = C2(y)I · e(1).
There is no space inversion I in the symmetry group of the

rare-earth ion environment, therefore the crystal field operator
of rare-earth ions includes not only I -even terms, but also odd
terms. The operator can be expressed as

Hcr = Heven
cr + Hodd

cr , (1)

where

Heven
cr = B2

0C2
0 + B4

0C4
0 + B6

0C6
0 + B2

2

(
C2

−2 + C2
2

)
+B4

2

(
C4

−2 + C4
2

) + B6
2

(
C6

−2 + C6
2

)
,

and

Hodd
cr = iB3

2

(
C3

−2 − C3
2

) + iB5
2

(
C5

−2 − C5
2

) + iB5
4

(
C5

−4 − C5
4

)
.

Here B
p
q are the crystal field parameters andCp

q = ∑n
k=1 C

p
q (k),

where n is the number of electrons in the 4f shell and
Cp

q (k) are the single-electron irreducible tensor operators,
which are defined by the reduced matrix elements 〈l′||Cp||l〉 =√

2l + 1 Cl′0
l0p0. Here Clm

l1m1l2m2
are the Clebsch-Gordan

coefficients.
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The odd crystal field mixes the states of the ground 4f n

configuration with the states of the 4f n−15d1 and 4f n−14g1

configurations, which are of different evenness compared with
4f n states. This results in the possibility of inducing the
electric-dipole moment in the rare-earth ions by a magnetic
field. In this work, we calculate the induced polarization in
terms of an ion response to external electric field E.

III. THE MAGNETOELECTRIC HAMILTONIAN

The actual perturbation Hamiltonian V of a rare-earth ion
in an external electric field reads

V = −dE + Hodd
cr , (2)

where E is the strength of the external electric field and d =
−e

∑n
k=1 rk is the dipole moment operator of the ion with n

electrons in the unfilled 4f shell.
The linear on the strength of the applied electric field

corrections to the ion energy levels arises in the second-order
perturbation theory with small parameter ||V||/W , where ||V||
is the norm of the V operator and W is the energy difference
between the ground states and the weight center of excited
ion electronic configurations (typically, W ∼ 105 cm−1 for
rare-earth ions). For the sake of simplicity, we will take into
account only the lowest excited 4f n−15d1 configuration.

Making use of the wave-function genealogical scheme con-
struction and the quantum theory of angular momentum [24],
we derived the expression for the magnetoelectric operator of
garnets. The details of the calculations are given in Ref. [25].
The final expression for the magnetoelectric Hamiltonian is

Hme = −
(

erf d

W

)
· ED

= −
(

erf d

W

)
· (E+D− + E−D+ + EzDz), (3)

where rf d is the radial integral and Dα (α = x,y,z) are the
effective operators of the rare-earth ion electric-dipole moment
components. For the sake of brevity, we use the notation of
so-called cyclic operators E± = (Ex ± iEy)/

√
2 and D± =

(Dx ± iDy)/
√

2, where

D± =2i

⎛
⎝ ∑

p=2,4,6

b
p

1 C
p

∓1 +
∑

p=4,6

(
b

p

31C
p

±3 + b
p

32C
p

∓3

) + b6
5C6

±5

⎞
⎠,

Dz =2i

⎛
⎝ ∑

p=2,4,6

b
p

2

(
Cp

−2 − Cp

2

) +
∑

p=4,6

b
p

4

(
Cp

−4 − Cp

4

)
⎞
⎠ . (4)

Coefficients b
p
q in Eq. (4) can be expressed in the terms of the

crystal field parameters,

b2
1 = 2

√
2

7
B3

2 , b4
1 =

√
15

7
B5

2 − 11

14
√

42
B3

2 ,

b6
1 = −

√
65

7
√

22
B5

2 , b4
31 = 11

14
√

6
B3

2 −
√

15

7
√

7
B5

2 ,

b4
32 = 6

√
5

7
√

7
B5

4 , b6
31 = 3

√
13

7
√

11
B5

2 ,

b6
32 = −

√
39

14
√

11
B5

4 , b6
5 =

√
65

14
B5

4 ,

b2
2 = 2

7
√

7
B3

2 , b4
2 = 11

7
√

42
B3

2 +
√

15

7
B5

2 ,

b6
2 = 2

√
26

7
√

11
B5

2 , b4
4 = 3

√
5

7
√

7
B5

4 ,

b6
4 =

√
65

7
√

11
B5

4 .

In the second-order approximation, the magnetoelectric
Hamiltonian in Eq. (3) reads

H(2)
me = −

(
erf d

W

)
(√

2iExb
2
1

(
C2

−1 + C2
1

)

+
√

2Eyb
2
1

(
C2

−1 − C2
1

) + iEzb
2
2

(
C2

−2 − C2
2

))
.

Now we have to average the obtained expression for the
magnetoelectric Hamiltonian in Eq. (3) with the equilibrium
density matrix defined by the nonperturbed Hamiltonian,

H0 = Hz + Heven
cr ,

where Hz is the Hamiltonian of interionic exchange interac-
tions and interactions of the ions with an external magnetic
field. The crystal field Hamiltonian Heven

cr is defined in Eq. (1).
As a result, we obtain the operator of the magnetoelectric
interaction per one primitive cell,

Hme = −
(

erf d

W

)
E

12∑
k=1

〈Dk〉, (5)

where Dk is the effective dipole moment of an ion located in the
kth c position. Making use of Eq. (5), we find the expressions
for the effective dipole moment components of the kth ion (in
the local axes),

P (k)
α = −∂Eme

∂E
(k)
α

= −
(

erf d

W

)
〈Dkα〉. (6)

As it follows from Eq. (4), 〈Dkα〉 = 0 and P (k)
α = 0 if a

magnetic field or a magnetic ordering is not present, because
the eigenfunctions of theHeven

cr operator at H = 0 are the set of
spherical harmonics different from each other in the magnetic
quantum number by ±2 and 〈C−2〉 = 〈C2〉.

The role of the Heven
cr crystal field is to split the multiplets

of rare-earth ions with L 	= 0 into doublets, quasidoublets, or
singlets. If the doublets and quasidoublets are of the Kramers
type, then

〈Dα〉 =
∑
ij

CαijHiMj , (7)

in the presence of a magnetic field at low temperatures [25–28].
Cαij are certain numerical coefficients, determined by the wave
functions and the energy levels of a rare-earth ion in the crystal
field. The coefficients are of the order of several unities [25].
Components Mj (H,T ) of the mean ion magnetic moment are
owed to the splitting of the ground doublet (or quasidoublet)
levels in the magnetic field. In this case the dipole moment
linearly depends on the strong field (μJH > kT ), in which
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the ion magnetic moment is nearly saturated. The ion effective
dipole moment is then estimated to be 10−22 esu cm per kOe.

As for singlets,

〈Dα〉 =
∑
ij

qαijHiHj .

Here and in Eq. (7) as well, H is an effective magnetic field,
comprising an external H0 and an exchange (dipole) Hexch

magnetic fields.

IV. LINEAR MAGNETOELECTRIC AND OTHER
ODD EFFECTS

The most interesting are garnet crystals with rare-earth ions
of doublet or quasidoublet ground states. In order to determine
the electric dipole structure of the rare-earth ions in the garnets
it is convenient to use symmetry analysis. The contributions
of a single rare-earth ion into the magnetoelectric energy of
the crystal are the invariants under the transformations of
the D2 group. These invariants are composed from vectors
E, H, and M; see Eqs. (5) and (7). In the general case,
the invariant combination reads (in local axes of the kth
position),

E(k)
me = C1E

(k)
x H (k)

y M (k)
z + C2E

(k)
y H (k)

x M (k)
z + C3E

(k)
x H (k)

z M (k)
y

+C4E
(k)
z H (k)

x M (k)
y + C5E

(k)
y H (k)

z M (k)
x

+C6E
(k)
z H (k)

y M (k)
x . (8)

As follows from Eq. (8), the configuration of the rare-earth
ion electric-dipole moments is determined by the orientation
of the magnetic field and the magnetic structure of the garnet
crystal, which is meant as a distribution of the rare-earth
ion magnetic moments over the 12 c positions in a primitive
cell.

The existence of a linear magnetoelectric effect (then∑
k E(k)

me 	= 0) is possible only for the I -odd magnetic struc-
tures, for which M(k+6) = −M(k). This obviously follows
from Eq. (8) if one takes into account that e(k+6)

x,z = e(k)
x,z

and e(k+6)
y = −e(k)

y ; see Table I. The mentioned requirement
for the magnetic structure of rare-earth ions is a necessary
condition, but, as will be shown below, is not a sufficient
one.

The magnetic moments of rare-earth ions form magnetic
structures, which can be described by the certain modes. The
magnetic modes of rare-earth crystals with the garnet structure
were described in Ref. [29] using the notation of the Kovalev’s
handbook [30]. To construct the modes it is enough to know the
irreducible representations of the Oh point group (denoted as
τν) and the nontrivial (accompanying) translations of the O10

h

space group. The Oh group includes four one-dimensional
(ν = 1,2,3,4), two two-dimensional (ν = 5,6) and four three-
dimensional (ν = 7,8,9,10) irreducible representations. It was
shown in Ref. [29] that the magnetic representation is reducible
and has the following composition: n1,2 = 0, n3,4,5,6 = 1,
n7,8 = 2, and n9,10 = 3.

As a magnetic mode of the rare-earth subsystem we will
mean below certain linear combinations of the magnetic mo-
ment components of the 12 rare-earth ions, being transformed
according to the τν irreducible representations of the Oh group.

The magnetic modes will be denoted as η
ν,μ
λ , where index λ

stands for a row of the τν representation with the dimension
greater than one (μ = 1,2 for τ7,8 and μ = 1,2,3 for τ9,10).
The η

ν,μ
λ modes can be expressed as

η
ν,μ
λ = η

ν,μ
λ (M (k)) − (−1)νην,μ

λ (M (k+6)), (9)

where term η
ν,μ
λ (M (k)) represents the contribution from the

magnetic moments of the first six ions (k = 1, . . . ,6). The
contribution from the other six ions (k = 7, . . . ,12) is deter-
mined by the second term in Eq. (9). The η

ν,μ
λ (M (k)) modes

are given in Table II (the magnetic moment components of
the rare-earth ions are given in the crystallographic coordinate
system). The I -even magnetic structures are described by the
magnetic modes with odd ν and vice versa.

As above mentioned, the linear magnetoelectric effect
in rare-earth garnets can exist only in the I -odd magnetic
structures. The magnetoelectric energy of a crystal

∑12
k=1 E(k)

me,
where E(k)

me are given by Eq. (8), is the invariant (relative to the
transformations of the O10

h symmetry group, which includes
only nontrivial translations) combination constructed from
some products of the odd η

ν,μ
λ magnetic mode components and

basis functions ϕ
ν,μ
λ ({E,H }), which are bilinear combinations

over E and H .
Only two odd magnetic structures are known to exist in

garnets. One of them is described by the η4(M) mode, which
corresponds to the τ4 irreducible representation (see Table II),
and exists in Nd3Ga5O12 [31] at low temperatures T < T ∗. In
this structure,

M(4) = −M(3) = −M(10) = M(9) = [100],

M(6) = −M(5) = −M(12) = M(11) = [010],

M(2) = −M(1) = −M(8) = M(7) = [001].

Nevertheless, there is no linear magnetoelectric effect in such
a structure, as shows the direct summing over the k index in
Eq. (8). The reason is that there are no bilinear over E and
H functions transformed as the τ4 representation. At the same
time, the given structure admits the invariant,

I = [ExHx(εyy − εzz) + EyHy(εzz − εxx)

+EzHz(εxx − εyy)]η4,

where εαβ are the components of the deformation tensor. The
invariant describes the appearance of a magnetic-field-induced
piezoelectric effect in the τ4 antiferromagnetic phase realized
in the Nd3Ga5O12 garnet. The effect is magnetic field odd.

The other odd magnetic structure exists at low temperatures
in Mn3Al2Si3O12 [31],

M(4) = M(3) = −M(10) = −M(9) = [ū v v],

M(6) = M(5) = −M(12) = −M(11) = [v ū v],

M(2) = M(1) = −M(8) = −M(7) = [v v ū],

where v = 1 − √
3 and u = 2 − √

3. This magnetic structure
is transformed according to the τ10 representation and de-
scribed by the set of the η

10,1
λ and η

10,2
λ modes; see Table II.

η
10,1
λ = −2u and η

10,2
λ = 4v.

The magnetoelectric energy of the crystal for the structure
differs from zero and can be made up of the two following
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TABLE II. The magnetic modes of the rare-earth subsystem.

τν η
ν,μ

λ (M (k)), k = 1, . . . ,6

τ3, τ4 ην(M (k)) = M (4)
x − M (3)

x + M (6)
y − M (5)

y + M (2)
z − M (1)

z (ν = 3,4)

τ3 : HxHyHz; τ4 : ExHyHz + EyHxHz + EzHxHy ;

HxEx(εyy − εzz) + HyEy(εzz − εxx) + HzEz(εxx − εyy)

τ5, τ6 ην
1(M (k)) = 1

2

(
M (4)

x − M (3)
x − M (6)

y + M (5)
y

)
(ν = 5,6)

ην
2(M (k)) =

√
3

2

(
M (2)

z − M (1)
z − 1

3 ην−2(M (k))
)

ε5
1 = 1

2 (εxx − εyy), ε5
2 =

√
3

2

(
εzz − 1

3 (εxx + εyy + εzz)
)

τ7, τ8 η
ν,1
1 (M (k)) = M (1)

x + M (2)
x − M (5)

x − M (6)
x ,

η
ν,1
2 (M (k)) = −M (1)

y − M (2)
y + M (3)

y + M (4)
y ,

η
ν,1
3 (M (k)) = −M (3)

z − M (4)
z + M (5)

z + M (6)
z ,

η
ν,2
1 (M (k)) = −M (1)

y + M (2)
y + M (5)

z − M (6)
z ,

η
ν,2
2 (M (k)) = M (1)

x − M (2)
x − M (3)

z + M (4)
z ,

η
ν,2
3 (M (k)) = M (3)

y − M (4)
y − M (5)

x + M (6)
x , (ν = 7,8)

τ9, τ10 η
ν,1
1 (M (k)) = M (3)

x + M (4)
x , η

ν,1
2 (M (k)) = M (5)

y + M (6)
y , η

ν,1
3 (M (k)) = M (1)

z + M (2)
z ,

η
ν,2
1 (M (k)) = M (1)

x + M (2)
x + M (5)

x + M (6)
x ,

η
ν,2
2 (M (k)) = M (1)

y + M (2)
y + M (3)

y + M (4)
y ,

η
ν,2
3 (M (k)) = M (3)

z + M (4)
z + M (5)

z + M (6)
z ,

η
ν,3
1 (M (k)) = −M (1)

y + M (2)
y − M (5)

z + M (6)
z ,

η
ν,3
2 (M (k)) = −M (1)

x + M (2)
x − M (3)

z + M (4)
z ,

η
ν,3
3 (M (k)) = −M (3)

y + M (4)
y − M (5)

x + M (6)
x , (ν = 9,10)

ϕ9
1 = Ex(KyHy + KzHz), ϕ9

2 = Ey(KxHx + KzHz), ϕ9
3 = Ez(KxHx + KyHy),

ϕ10
1 = [E × H]x , ϕ10

2 = [E × H]y , ϕ10
3 = [E × H]z

invariants:

Iμ =
3∑

λ=1

η
10,μ
λ ϕ10

λ (E,H ), (10)

where μ = 1,2. The ϕ10
λ quantities are given in Table II,

ϕ10
1 = [E × H]x , ϕ10

2 = [E × H]y , and ϕ10
3 = [E × H]z. The

bilinearity of the invariants indicates the possibility of a linear
magnetoelectric effect in the Mn3Al2Si3O12 garnet at low
temperatures.

V. ANTIFERROELECTRICITY INDUCED
BY MAGNETIC FIELD

As already mentioned, a linear magnetoelectric effect does
not occur in most of the garnets because of spatial evenness.
However, a magnetic field can make up various antiferroelec-
tric structures in garnet crystals. The most interesting to study
is the electric-dipole moments induced by magnetic fields in
strongly anisotropic rare-earth Ising ions of rare-earth iron
garnets, for example, Sm3+ ions in Sm3Fe5O12 and Ho3+ ions
in HoxY3−xFe5O12.

We start our consideration with the dysprosium aluminium
garnet Dy3Al5O12, which is the most investigated cubic
magnet with Ising ions. The ground state of a dysprosium
ion in the crystal field is the Kramers doublet, separated

from excited states by the energy of roughly 100 K. The
g-tensor components of this state in the local coordinate system
are gz ≈ 18 and gx ∼ gy < 0,5 [32]. Such strong anisotropy
makes it possible that the dysprosium ions be treated as Ising
ions with the magnetization axes coinciding with the zk local
axes given in Table I.

The exchange interaction between the dysprosium ions
in the dysprosium aluminium garnet is antiferromagnetic.
This compound is a multisublattice antiferromagnet with the
TN = 2.54 K ordering temperature. Below the Neel point the
magnetic structure of the crystal in magnetic field H||[111]
can be formed by two different configurations of the magnetic
moments,

M2 = −M1 = −M7 = M8 = [001],

M4 = −M3 = −M9 = M10 = [100], (11)

M6 = −M5 = −M11 = M12 = [010],

and

M2 = M1 = M7 = M8 = [001],

M4 = M3 = M9 = M10 = [100], (12)

M6 = M5 = M11 = M12 = [010].

The magnetic structure in Eq. (11) is described by the η3(M)
mode, which corresponds to the τ3 irreducible representation
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(see Table II). The η3(M) coefficient is the antiferromagnetic
order parameter.

The structure determined by Eq. (12) is described in its turn
by the irreducible representation τ 1

9 with the η
9,1
λ modes; see

Table II,

η
9,1
1 (M) = M4

x + M3
x + M9

x + M10
x ,

η
9,1
2 (M) = M6

y + M5
y + M11

y + M12
y ,

η
9,1
3 (M) = M2

z + M1
z + M8

z + M7
z .

The η
9,1
λ coefficients are the ferromagnetic order parameter,

usually denoted as M .
Below the tricritical temperature (T < Tk = 1,66 K), pa-

rameters η
9,1
λ ≈ 0 if H < H0 and η3 ≈ 0 if H > H0. Here

H0 ≈ 4 kOe stands for the metamagnetic transition field.
The interaction of the antiferromagnetic order parameter with
an external magnetic field is described by invariant HS · η3,
where HS is the induced staggered field (HS = Hx,Hy,Hz).
This interaction results in the energy difference of the two
antiferromagnetic phases, namely, A+ with η3 > 0 and A−
with η3 < 0. The A+ phase is stabilized by external field
H||[111] at T = 1.35 K [33]. The transition from the A+
phase to the A− phase is likely to occur while the temperature
decreases below 1.3 K [34].

Besides the interaction with the induced staggered field,
the antiferromagnetic order parameter η3 also interacts with a
crystal deformation in the presence of a magnetic field. This
interaction is described by the invariant,

I (ε,H ) = Aη3(εxyHz + εxzHy + εyzHx),

where A is the coupling constant and εαβ are the components
of the deformation tensor. The existence of such an invariant
results in a piezomagnetic effect in the considered Dy3Al5O12

garnet crystal, namely, in the initiation of a magnetization in
the antiferromagnetic phase owed to the deformation,

Mx = −Aη3εyz, My = −Aη3εxz, Mz = −Aη3εxy.

The magnetization can be detected in a magnetooptical
experiment, for example, by means of the Faraday effect. Of
course, there can also exist the inverse effect, the occurrence
of a linear in field H and odd deformation ε ∼ η3H in
the antiferromagnetic phase. This phenomenon resembles the
behavior of the features discovered by Dillon et al. [35]
in the magnetic linear birefringence of Dy3Al5O12 at low
temperatures.

Now we proceed to the discussion of the electric-dipole
moments in Dy3Al5O12. Making use of Eq. (8) we find

P (k)
x = −C1H

k
y Mk

z , P (k)
y = −C2H

k
x Mk

z , P (k)
z = 0. (13)

For the stabilized A+ phase in the field H||[111],

P(k) =
√

2/3C2Hμe(k)
y and P(k) =

√
2/3C1Hμe(k)

x ,

for odd and even k, relatively. Here μ stands for the magnetic
moment of a dysprosium ion, μ = 10μB . The magnetic
structure and the concomitant antiferroelectric structure for
the A+ magnetic phase (η3 > 0) are shown in Fig. 1.

Another example of a cubic magnet with Ising ions
is the holmium-yttrium iron garnet HoxY3−xFe5O12, where

X

Y

Z

H

1

2

3

4

5

6

7

89

10

11

12

FIG. 1. (Color online) The magnetic structure of dysprosium
aluminium garnet Dy3Al5O12 [39] and the corresponding structure
of the electric-dipole moments. The red arrow shows the direction of
the external magnetic field. The blue arrows stand for the dysprosium
ion magnetic moments and the green ones stand for the electric-dipole
moments induced by the external magnetic field.

0 < x � 3. As shown in Ref. [36], the ground state of a
holmium ion in Ho3Ga5O12 and Ho3Al5O12 is a quasidoublet,
well separated from excited states. The doublet responds only
to the external magnetic field projection on the local z axis.
Under the assumption that the same spectrum of holmium
ions is realized in iron garnets, it is possible to explain quite a
number of unique properties of holmium-yttrium iron garnets,
in particular, the peculiarities of the field-induced orientational
phase transitions [27], the peculiarities of resonance proper-
ties [37,38], etc.

It is easy to show, that the f -d exchange interaction
can induce an antiferroelectric structure in HoxY3−xFe5O12.
Rare-earth ions in the iron garnet are magnetized by effective
magnetic field,

Heff = H − λMd,

therefore the structure of the holmium ion magnetic moments
in holmium-yttrium iron garnets takes the form (at T = 0 K),

M(k) = μze(k)
z sgn

(
Heffe(k)

z

)
, (14)

where μz ∼ 10μB is the matrix element value of the magnetic
moment operator in the quasidoublet state of the holmium
ion [32]. The components of the holmium ion electric-dipole
moments P(k) in HoxY3−xFe5O12 are given by Eq. (13) with
M (k)

z defined by Eq. (14). Because positions 7–12 are related
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with positions 1–6 by the inversion and rotation operations,
P(k+6) = −P(k), k = 1, . . . ,6 and thus P = ∑

k Pk = 0.

VI. THE LINEAR MAGNETOELECTRIC EFFECT IN A
SPATIALLY INHOMOGENEOUS MAGNETIC FIELD

The polarization in the above mentioned highly anisotropic
monocrystal garnets is possible at low temperatures in the
case of an inhomogeneous magnetic field. We consider the
following simple model. For the purpose of certainty, it is
assumed that an external magnetic field is in the first octant
of the chosen coordinate system. The direction of the field is
supposed to be the same throughout the volume of a sample
and thus can be specified by unit vector n = {nx,ny,nz} with
all nα > 0 (α = x,y,z). If the field linearly increases along
this direction, then H = n(nr)h in the point with radius vector
r. Here h = ∂Hn/∂rn is the gradient of the field. The kth
rare-earth ion in the cell is under the action of the field,

H(k) = n(nr(k))h, (15)

where r(k) is the ion radius vector; see Table I.
It should be noted that the rare-earth ions in iron garnets are

also influenced by the exchange field Hexch ∼ λMd . Because of
the magnetic anisotropy, the field is not collinear to the external
H field and thus can contribute into the nonuniformity of the
resulting magnetic field. However, the vector Md deviates from
the H vector in sufficiently strong external fields only slightly,
thus it is possible to consider the actual inhomogeneous
component of the magnetic field to be described by Eq. (15)
in the first approximation.

The components of the H(k) field in Eq. (15) can be
expressed in the form,

H (k)
α = (ha/8) · nα · β(k)(n), (16)

where a is the edge length of the cell,

β(1)(n) = 6ny + 3nz,

β(2)(n) = 2ny + nz,

β(3)(n) = 3nx + 6nz,

β(4)(n) = nx + 2nz,

β(5)(n) = 6nx + 3ny,

β(6)(n) = 2nx + ny,
(17)

β(7)(n) = 2ny + 5nz,

β(8)(n) = 6ny + 7nz,

β(9)(n) = 5nx + 2nz,

β(10)(n) = 7nx + 6nz,

β(11)(n) = 2nx + 5ny,

β(12)(n) = 6nx + 7ny.

From Eq. (8), we find the expression for the dipole moment of
the kth ion,

P(k) = −M (k)
z

(
C1H

(k)
y e(k)

x + C2H
(k)
x e(k)

y

)
. (18)

For the ferromagnetic phase (all the M (k)
z components are equal

to M), the resulting dipole moment,

P =
∑

k

P(k). (19)

From Eqs. (18) and (19) we finally obtain for dysprosium
aluminium and holmium-yttrium iron garnets,

Px = − 1
4Mah(C1 + C2)

(
2n2

x − nxny − nxnz

)
,

Py = − 1
4Mah(C1 + C2)

(
2n2

y − nynx − nynz

)
, (20)

Pz = − 1
4Mah(C1 + C2)

(
2n2

z − nznx − nzny

)
.

The polarization is estimated to be 102 μC/m2 if the magnetic
field gradient reaches values of 103 Oe/μm, which are actual
for magnetic nanostructures.

To conclude, the inhomogeneous magnetic field results in
the garnet crystal polarization depending on the field direction.
It is interesting that if n||[111], then Px = Py = Pz = 0,
because nx = ny = nz = 1√

3
.

It should also be noted, that the influence of an inhomo-
geneous magnetic field on magnetoelectric properties is very
important for nanostructures and domain boundaries, for ex-
ample, of the Neel type. In such systems, a field of 103–104 Oe
can be realized on a 10-nm scale, thus yielding enormous
gradients up to 1010 Oe/cm and P ∼ 104–105 μC/m2.

Magnetoelectricity of rare-earth garnets can also be influ-
enced by the flexomagnetism, (see Refs. [6] and [40]), but the
realization of the effects is owed to the inhomogeneity of the
effective magnetic field to which a rare-earth ion is subjected.
The inhomogeneity is caused by the existence of domain
boundaries in the subsystem of the iron ion magnetic moments.

VII. LINEAR MAGNETOELECTRIC EFFECTS
IN EPITAXIAL MAGNETIC GARNET FILMS

The zero polarization of bulk rare-earth iron garnet single
crystals is owed to the equiprobable occupancy of the dodec-
ahedral c positions by rare-earth ions, P = ∑12

k=1 P(k) = 0. In
the case of garnet films, the situation changes dramatically.
For example, in the growth process of (111) films there occurs
a difference between the occupancies of the 1–6 and 7–12
positions (according to Eschenfelder [41], the X1 and X2

positions, relatively). This is the reason for uniaxial anisotropy
in iron garnet films, which must result in the polarization
occurrence in them.

In order to treat the phenomenon in a clear and simple
way, we consider a so-called free-standing film approach and
choose the (x̃, ỹ, z̃) coordinate system with the z̃ axis directed
along [111], ex̃ = [112̄], eỹ = [11̄0], and ez̃ = [111]. It is easy
to show the magnetoelectric energy of a primitive cell,

Eme =
12∑

k=1

E(k)
me = εμz(C1 − C2)

√
3[Heff × E]z̃, (21)

where the E(k)
me energies are given by Eq. (8). Hence, for the

(111) film, the polarization is

P = −∂Eme

∂E
= εμz(C1 − C2)

√
3(Heff,ỹ · ex̃ − Heff,x̃ · eỹ),

(22)
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where ε is the difference between the occupation probabilities
of the 1–6 and 7–12 positions. Note, that the P vector lies in
the plane of the film and is perpendicular to the Heff vector of
the effective field.

It should also be noted that there exists one more possibility
of a polarization occurrence in iron garnet films. Because
the structures of a film and a substrate are not completely
coinciding and because there is inhomogeneity in the crystal
structure of a film (as a film grows, the rare-earth ions occupy
the crystallographic positions that are slightly different from
equilibrium positions), there occurs a mechanical tension
gradient, which will be characterized by vector K. This results
in the new energy invariants such as

I ∼
12∑

k=1

E(k)
z K (k)

x H (k)
x M (k)

z ,

and others like this, which can be obtained by replacements
x � y and E � K. From these invariants we infer for
paramagnetic structures that polarization P

(k)
i ∼ (K(k)H(k) −

K
(k)
i H

(k)
i )η9,1

i . Here i = 1,2,3 stands for x,y,z, relatively. The
η

9,1
i modes are given in Table II.

It should also be mentioned that there exists another
mechanism of the electric polarization occurrence in the films
due to the mismatch between the structures of a film and
substrate. The mechanism is considered in Ref. [40].

VIII. CONCLUSION

During the last decade, the revival of a magnetoelectric
effect has passed before our eyes the stage of renaissance and
now turned into the very real boom. Garnets, as nontraditional
materials towards magnetoelectricity, have been beyond the
mainstream of the intensive research. However, our analysis

shows that these materials can be promising candidates to
observe a wide range of remarkable effects, namely, the
traditional linear magnetoelectric effect (in Mn3Al2Si3O12),
the piezoelectric effect induced by magnetic fields (in
Nd3Ga5O12), the piezomagnetic effect (in Dy3Al5O12), etc. All
the linear effects are magnetic field odd. It is also noteworthy
that external and internal effective f -d exchange magnetic
fields can form antiferroelectric structures, which coexist with
odd magnetic structures, for example, in Dy3Al5O12 and
HoxY3−xFe5O12, relatively.

Another fascinating aspect in the magnetoelectricity of
garnets is the possibility of realizing the magnetoelectric
effects in epitaxial thin films of those crystals in which the
effects are forbidden by the symmetry and also in bulk garnets
influenced by an inhomogeneous magnetic field. The latter
aspect is especially important because it can launch new
investigations on magnetoelectric properties of domain bound-
aries, which are underlain by inhomogeneities of internal
magnetic fields caused by the boundaries themselves, without
the implementation of the Dzyaloshinskii-Moriya mechanism.

Of course, all these issues require further detailed analysis
and careful systematic study to overcome the limits of the
symmetry considerations. It is impossible to cover all points
in the magnetoelectricity of the vast family of garnets in a
single journal paper. Our main aim is to draw attention to
the magnetoelectricity of garnets because the results obtained
in this work give grounds to believe that there will be new
advances and new discoveries in the way of further research.
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