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Understanding the influence of dipolar interactions in magnetic hyperthermia experiments is of crucial
importance for fine optimization of nanoparticle (NP) heating power. In this study we use a kinetic Monte
Carlo algorithm to calculate hysteresis loops that correctly account for both time and temperature. This algorithm
is shown to correctly reproduce the high-frequency hysteresis loop of both superparamagnetic and ferromagnetic
NPs without any ad hoc or artificial parameters. The algorithm is easily parallelizable with a good speed-up
behavior, which considerably decreases the calculation time on several processors and enables the study of
assemblies of several thousands of NPs. The specific absorption rate (SAR) of magnetic NPs dispersed inside
spherical lysosomes is studied as a function of several key parameters: volume concentration, applied magnetic
field, lysosome size, NP diameter, and anisotropy. The influence of these parameters is illustrated and comprehen-
sively explained. In summary, magnetic interactions increase the coercive field, saturation field, and hysteresis
area of major loops. However, for small amplitude magnetic fields such as those used in magnetic hyperthermia,
the heating power as a function of concentration can increase, decrease, or display a bell shape, depending on the
relationship between the applied magnetic field and the coercive/saturation fields of the NPs. The hysteresis area
is found to be well correlated with the parallel or antiparallel nature of the dipolar field acting on each particle. The
heating power of a given NP is strongly influenced by a local concentration involving approximately 20 neighbors.
Because this local concentration strongly decreases upon approaching the surface, the heating power increases
or decreases in the vicinity of the lysosome membrane. The amplitude of variation reaches more than one order
of magnitude in certain conditions. This transition occurs on a thickness corresponding to approximately 1.3
times the mean distance between two neighbors. The amplitude and sign of this variation is explained. Finally,
implications of these various findings are discussed in the framework of magnetic hyperthermia optimization. It
is concluded that feedback on two specific points from biology experiments is required for further advancement
of the optimization of magnetic NPs for magnetic hyperthermia. The present simulations will be an advantageous
tool to optimize magnetic NPs heating power and interpret experimental results.
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I. INTRODUCTION

Studying the properties of interacting magnetic nanopar-
ticles (MNPs) is an old topic in magnetism, driven not
only by the challenge to understand the properties of a
complex many-body system but also by the will to model
ferrofluids, magnetic recording media, or magnetotransport
properties [1–7]. More recently, a renewed interest on this
topic has been motivated by the application of MNPs in
magnetic hyperthermia (MH). MH properties of magnetically
independent MNPs are now well understood [8,9]. However,
when MH properties of colloidal solutions are studied, MNPs
aggregate under the influence of the magnetic field, which
modifies their heating power compared with independent
MNPs [10–12]. Moreover, in in vitro conditions, MNPs
accumulate in lysosomes, where they are highly concentrated
and are thus in strong magnetic interaction [13,14]. These
considerations have motivated several studies on the influence
of magnetic interactions on MH properties [15–21].

Until recently, a study of the average modification of
the MNP heating power due to the presence of magnetic
interactions in lysosomes could have been sufficient to op-
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timize MNPs in biological conditions. However, a series of
puzzling in vitro results have shown that, at least in some
experiments, cell death was due to a very local energy release
inside the lysosomes rather than to an average global heating
of the cells [13,14,22–27]. As a consequence, optimizing
MNPs to maximize cell death requires an understanding of the
spatial repartition of their heating properties inside lysosomes.
Indeed, if cell death is, for instance, triggered by the local
activation of transmembrane receptors at the surface of the
lysosomes, only the energy released by the MNPs near the
lysosome surface should be maximized. In contrast, if MNPs
activate a biological process occurring in the lysosome core,
the heating power of the MNPs inside it should be maximized.
Thus far, this spatial repartition of the heating power inside
lysosomes has never been studied, and we will demonstrate
that this is an important parameter to take into account.

Because the heating power of MNPs is directly given
by their hysteresis loop area [8], dynamic hysteresis loop
calculations using numerical simulations is the preferred
method to estimate the heating power. Thus far, the main
approach to perform these calculations has been Metropolis
Monte Carlo simulations [16–18]. In this algorithm, the
relationship between real time and Monte Carlo steps is not
well defined [28]. This poorly defined relationship is a problem
when describing MH experiments, which are conducted at a
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high frequency and thus require a good dynamic description.
Another approach consists of using kinetic Monte Carlo
simulations, in which the dynamic is more accurately taken
in consideration. Hovorka et al. have used this algorithm
to describe magnetic recording media [29]. The advantage
of this algorithm is the accurate description of MNPs in
the superparamagnetic or ferromagnetic regime without any
artificial or abrupt separation between them. This characteristic
is important because these two classes of MNPs should be stud-
ied in MH applications: ferromagnetic MNPs display a larger
specific absorption rate (SAR); however, superparamagnetic
MNPs are more easily stabilized and synthesized; therefore,
they are widely used in vitro and in vivo. Here we report
the use of kinetic Monte Carlo simulations to study the MH
properties of MNPs inside lysosomes. We show the drastic
influence of the volume concentration on the heating properties
and present a comprehensive study on the influence of key
parameters, modifying the amplitude and sign of this influence.
We also show that the heating power is not homogeneous inside
lysosomes and drastically depends on the position inside them.

II. KINETIC MONTE CARLO SIMULATIONS

A. Algorithm

In our program, perfectly monodisperse MNPs of diameter
d and volume V , with a uniaxial anisotropy Keff and displaying
a magnetization per unit of volume MS , are considered. The
main approximation of our numerical model is that we remain
in the two-level approximation such that the excited states into
a potential well are not taken into consideration. The MNPs
have a volume concentration c inside a sphere that models
the lysosome. The MNPs can be either placed randomly or
placed on a cubic lattice and then randomly moved a given
distance to introduce disorder. A sinusoidal magnetic field of
maximum amplitude μ0Hmax and frequency f is applied to
the MNP assembly. At a given time, the total magnetic field−−−→
μ0Htot acting on a NP is the sum of the external magnetic field−−−→
μ0Hext and the dipolar field created by the other NPs

−−−−→
μ0Hdip.

The latter is given by

−−−−→
μ0Hdip = μ0MSV

4π

∑
i �=j

3(−→mj · −→
eij )−→eij − −→

mj

r3
ij

, (1)

where −→
eij is the unitary vector joining two NPs, −→

mj is the
unitary vector linked to the magnetization orientation, and r ij

is the distance between two NPs. This sum is calculated exactly
without Ewald summation or a cutoff radius. The energy of a
NP is given by

E(θ,φ) = KeffV sin2(θ ) − μ0MSV Htot cos(θ − φ), (2)

where θ is the angle between the easy axis and the magneti-
zation and φ is the angle between the easy axis and the total
magnetic field [see Fig. 1(a)].

To calculate the hysteresis loop, time is divided into time
steps t step during which the magnetic field is assumed constant.
As a typical value, the hysteresis is divided in 2000 equal time
steps. The algorithm inside the main loop of the program is
the following:

(i) At the beginning of a simulation step, the orientation
of the magnetization in a 3D space is known for every NP
because it has been calculated at the previous step.

(ii) The total magnetic field acting on each particle
−−−→
μ0Htot

is calculated.
(iii) For each NP, a 2D working plane is defined: it is the

plane simultaneously containing the total magnetic field and
the NP easy axis. This working plane varies at each step for
each NP. The previous magnetization vector is projected onto
this new plane and renormalized, permitting the calculation of
the initial angle of the magnetization in this plane.

(iv) The positions of the minima and maxima of the energy
potentials for each NP are found. For this purpose, the E(θ )
profile is discretized into 200 points. At each point, the first
derivatives of the energy are calculated using the derivative of
Eq. (2). If an extremum is found between two points, its precise
value is determined using Newton’s method. Let θ1, θ2, and θ3

be the angles of the two minima and the angle of the lower
energy maximum with energies E1, E2, and E3, respectively.

(v) The initial magnetization “falls” directly into one of
the two minima, following the profile of the E(θ ) function.
At the end of this step, one has to deal with a familiar 2D
Stoner-Wohlfarth problem with thermal activation.

(vi) The probability for the NP to change wells (if there
are two) is calculated. The magnetization switches from the θ1

to the θ2 direction at a rate ν1 given by

v1 = v0
1 exp

(
−E3 − E1

kT

)
. (3)

Similarly, the switching rate ν2 from the θ2 to the θ1 direction
is given by

v2 = v0
2 exp

(
−E3 − E2

kT

)
. (4)

In Eqs. (3) and (4) k is the Boltzmann constant, T is the
temperature, and v0

1 = v0
2 are jump attempt frequencies. If the

magnetization is initially in the minimum θ2, the probability of
finding it in the minimum θ1 after a time t step is given by [30]

P (tstep) = ν2

ν1 + ν2
{1 − exp[−(ν1 + ν2)tstep]}. (5)

(vii) A random number between 0 and 1 is drawn. Whether
the magnetization jumps depends on if the random number is
greater or lower than P (tstep). In the remainder of this article,
some results labeled “T = 0” will be shown. In these cases,
the magnetization did not have the possibility to jump: this
step and the previous one were skipped.

(viii) Return to step i.
Figure 1(b) illustrates a few features of interest of Eqs. (3)–

(5): (i) the relaxation time of the magnetization (equaling
1

ν1+ν2
) is similar for the two minima, as illustrated by the

tangents at the origins of the curves. When no external
magnetic field is applied such that ν1 = ν2, the relaxation time
of the magnetization is the well-known Néel relaxation time
and is half of the mean time between two jumps. This point has
already been discussed and illustrated in Ref. [8]. (ii) For times
much longer than this relaxation time, the probability of finding
the magnetization in one of the two minima is independent
from the initial state and tends toward ν2

ν1+ν2
; this is the
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FIG. 1. (Color online) (a) Schematic of a NP illustrating the angles used in the main text. (b) Illustration of the algorithm used in the
simulations. The probability of finding the magnetization into the first minimum is plotted. It is assumed that, at t = 0, the magnetization is in
the first (dashed line) or second (plain line) minimum. The jumping rate from the first to the second minimum ν1 = 1 Hz. The reciprocal jump
rate ν2 = 0.2 Hz. The horizontal dotted line represents the probability at infinite time, here equaling 0.166. The two thin plain lines represent the
initial slopes of the curves. (c) and (d) Comparison between the numerical calculation in Ref. [8] and the present program. For this comparison,
magnetic interactions have been switched off in the present program. Magnetic field and NP parameters have been chosen in order to obtain
hysteresis loops typical of (c) the superparamagnetic regime and (d) the ferromagnetic regime. In all cases, the hysteresis loops obtained by
the two programs are almost perfectly superimposed. (c) Results from a case where the NP anisotropy axes are randomly oriented in space
(labeled 3D) and randomly oriented in a 2D plane containing the applied magnetic field (labeled 2D). For the present program, 6000 point
hysteresis loops were run 10 times in the raw on 4000 NPs (2D case) or 2000 NPs (3D case) and then averaged. Keff = 104 J/m3, d = 20 nm,
μ0Hmax = 1 mT. (d) Three hysteresis loops performed at T = 5, 520, and 2000 K are shown. The NP anisotropy axes were randomly oriented
in space. For the present program, 10 000 step hysteresis loops were run on 400 NPs. Keff = 106 J/m3, d = 12 nm, μ0Hmax = 2.5 T.

superparamagnetic regime. Using the present algorithm, the
magnetization of a superparamagnetic NP switches between
the two minima very often and displays a very noisy hysteresis
loop. However, when several hysteresis loops are averaged,
this noisy curve provides the correct magnetization for the
superparamagnetic NP (see below). (iii) For times much
shorter than the relaxation time, the magnetization remains
in its initial minimum; this is the ferromagnetic regime.
(iv) Consequently, Eq. (5) permits the simulation of both
ferromagnetic and superparamagnetic NPs without any special
assumption or arbitrary separation between them. This latter
point will be illustrated further below.

B. Parallelization, calculation time, and typical parameters

It should be noted that steps i to viii can be executed
in parallel because the total magnetic field acting on each
particle is not calculated after each MNP magnetization
movement but only once at the beginning of each step. The
parallelization of the code uses an OpenMP parallelization
command at the beginning of the main calculation loop to
dispatch the calculation of the MNP magnetization move on

several processors. The calculation time of a single hysteresis
loop and the speedup due to parallelization are shown in Fig. 2.
For a large number of NPs, the calculation time approximately
scales with the square of the number of NPs [see Fig. 2(a)].
The results presented in this article were typically run on 32
processors and comprised 5000 MNPs with a hysteresis loop
divided in 2000 steps. Using these conditions, the calculation
of a single hysteresis loop lasts approximately 1 min 30 s.

Finally, most of the studies in this article were
performed with the following parameters: T = 300 K,
Keff = 13 000 J m−3, MS = 106 A m−1, μ0Hmax = 40 mT,
f = 100 kHz, and v0

1 = v0
2 = 1010 Hz. These parameters

were used in the remainder of this article when not otherwise
specified. The anisotropy value corresponds to that of bulk
magnetite. The magnetization value is intermediate between
that of iron oxides and that of 3d magnetic metals.

C. Validity of the program

To assess the validity of our simulations and of the present
algorithm, hysteresis loops obtained with the present program
and ones obtained using the program described in Ref. [8]
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FIG. 2. (a) Calculation time of a single hysteresis loop as a
function of the number of NPs. Each hysteresis loop was composed
of 2000 steps. The program was run on 32 processors in parallel. For a
large number of NPs, a power exponent of 2.1 is found, as illustrated
by the dashed line. (b) Speed-up as a function of the number of
processors on which the program is run. A 2500 step hysteresis loop
of 1000 NPs was computed. The dashed line represents the perfect
speed-up, equaling the number of processors.

are compared. In Ref. [8] the basic equations describing the
time evolution of the system are the same as in the present
program; however, the computation of the hysteresis loop is
different. In Ref [8], the mean magnetization of a particle is
computed: the probability of locating the magnetization in
the two minima is calculated, and then the corresponding
mean magnetization is calculated accordingly (see Eq. (18)
in Ref. [8]). Specifically, the computed hysteresis loop is
the one that would be obtained if an infinite number of NPs
were measured. The present program differs because the NP
magnetization of a given NP is only in one of the two minima
and is not weighted by the probability of being in one of the
two. Due to this difference, computation on a large number of
NPs and/or an average of a large number of hysteresis loops
must be performed to obtain results similar to those obtained
in Ref. [8] using the present program. An additional difference
is that the program in Ref. [8] did not take into account
magnetic interactions between NPs; therefore, the magnetic
interactions were switched off in the present program, only for
the purpose of comparison. The results of this comparison are
shown in Figs. 1(c) and 1(d) for NPs in the superparamagnetic
and ferromagnetic regimes. A perfect agreement between the

two programs is evidenced. Notably, a large anisotropy value
was used in Fig. 1(d) (Keff = 106 J/m3), explaining the weak
temperature dependence of the coercive field. Because the
program in Ref. [8] also showed a perfect agreement with
analytical results issued from the linear response theory and
Stoner-Wohlfarth model-based theories, the present program
is considered able to accurately calculate hysteresis loops of
both superparamagnetic and ferromagnetic NPs without any
special ad hoc parameter or additional hypothesis.

III. RESULTS

A. Technical details

In this subsection several technical details regarding the
method of placing particles, computing the hysteresis loops,
and averaging the data are presented. Some of these details are
important to completely understand the main results of this
article.

First, details on methods to address minor cycles are
provided. When a typical hysteresis loop is calculated, the
magnetic field switches from +μ0Hmax to −μ0Hmax and then
back to +μ0Hmax. For NPs that are not perfectly saturated
by +μ0Hmax, the hysteresis loop does not return to its initial
value and is not well closed. To solve this problem, in all of
our simulations, two hysteresis loops are computed one after
the other. The second one is correct and is well closed. Only
the second one is recorded and treated. In the remainder of this
article, when it is specified that 50 hysteresis loops were run,
100 were run and 50 of them were taken into account for the
data treatment.

Then, some details on the method of placing the parti-
cles inside a sphere, randomizing the hysteresis loops, and
averaging data are provided. To illustrate this part, a typical
example in which the hysteresis area of a MNP is plotted
as a function of the position inside a lysosome is shown in
Fig. 3. Two different methods of placing the MNPs inside a
sphere have been tested: placing them at random positions
with no overlapping or placing them on a cubic lattice and
then adding disorder by displacing them a random distance
between 0 and a maximum disorder value. Some difference
existed between the results obtained on a cubic lattice with
disorder and a cubic lattice without disorder, and the disorder
amplitude influenced the results (not shown). However, only
minor differences existed between the results obtained with
NPs placed at random positions and NPs placed on a strongly
disordered cubic lattice. Experimentally, MNPs in lysosomes
are strongly disordered; therefore, we have chosen to study
disordered systems only. We have also arbitrarily chosen
to generate the particles using the cubic lattice + disorder
approach. The disorder amplitude was chosen to be as large
as possible with no possible overlap between two neighboring
MNPs.

In the results presented in this article, the hysteresis loops
were always computed several times (typically 50) and then
averaged. This permits to obtain smooth hysteresis loops. Two
methods of obtaining average hysteresis loops were tested.
The first method consists of changing the anisotropy axis
direction between each loop without moving the NP position.
The second method consists in changing the anisotropy axis
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FIG. 3. (Color online) Illustration of the different methods of
averaging. The example shown is a calculation of the hysteresis
area as a function of the position inside a 5000 NP lysosome,
with d = 20 nm, c = 0.01, and μ0Hmax = 40 mT. For all of the data
shown, 50 hysteresis loops were calculated and averaged. The dashed
line represents a calculation in which the NPs were randomly placed.
For the other data, NPs were placed on a cubic lattice, and then
disorder was added. In the dashed and dotted lines, the anisotropy
axis direction was changed between each loop. For the other data,
the anisotropy axis orientation and the NP position was changed
between each loop. The dots represent raw data, whereas the other
curves represent 200 smoothed points.

orientation and the NP position between each loop. In the latter,
a given NP moves between each loop around mean positions,
which are the nodes of the cubic lattice. It should first be
specified that, even when the hysteresis loops are averaged on
several runs, the raw data extracted from such simulations are
scattered, indicating that the heating power varies considerably
from one MNP to another. A typical example of this scattering
is shown in Fig. 3, in which the hysteresis area as a function
of the position is plotted. Extracting interpretable results in
this case requires smoothing the data with a moving average
of 200 points, the result of which is also shown in Fig. 3
alongside the raw data. From this figure, it is also clear that
averaging hysteresis loops on the anisotropy axis orientation
and NP position leads to less noisy curves compared with
averaging on the anisotropy axis orientation only. The reason
for this result will be clarified later in the article (see Sec.
III D), but can be summarized in a few words: The hysteresis
area of a given particle is extremely sensitive to the exact
spatial configuration of its neighbors. Therefore, varying the
geometrical configuration is an efficient method to smooth the
data.

B. Influence of the average volume concentration
on the heating power

1. Influence of the diameter and temperature

Here results of the average heating power of lysosomes as
a function of their volume concentration φ, with φ varying
between φ = 0.01% and φ = 30%, are shown. For these
simulations, the number of MNPs inside the lysosome was
kept constant at 3000 MNPs; therefore, the lysosome size
varied in the series. The hysteresis loops were averaged on the
anisotropy axis direction and NP position. Four conditions of

interest were computed: (i) d = 20 nm with a null temperature
(T = 0), which also corresponds to the conditions obtained
when studying very large diameter NPs at a finite temperature;
therefore, the exact value of the diameter does not matter for
this condition. In the remainder of the article and in the figure
legends, this condition will be referred to as the d → ∞ case.
(ii) d = 20 nm, T = 300 K. (iii) d = 9 nm, T = 300 K. (iv)
9 nm NPs with a null anisotropy (Keff = 0) at T = 0. Again,
identical results are obtained for NPs with different diameters;
therefore, the exact value of the diameter does not matter and
will be omitted in the legends and in the discussion.

The hysteresis area as a function of φ for these four
conditions is shown in Fig. 4(a), and corresponding hysteresis
loops are shown in Fig. 5. In Fig. 4(a) the hysteresis area
is given in J/m3. To calculate the corresponding SAR, the
density ρ of the material (for magnetite, ρ ≈ 5200 kg/m3)
and frequency should be taken into account. For instance,
10 000 J/m3 corresponds to a SAR of 192 W/g.

The case of φ = 0.01%, when the NPs are almost mag-
netically independent, is first described. The d → ∞ result
confirms that the magnetic parameters of the MNPs (Keff

and MS) are well adapted to the magnetic field amplitude,
i.e., the hysteresis loop is well opened and saturated by the
applied magnetic field [see Fig. 5(a)], leading to a large
hysteresis area [see Fig. 4(a)]. As shown in Ref [8], ideal
NPs for magnetic hyperthermia are large, single-domain NPs
with a low anisotropy, and the hysteresis curve for φ = 0.01%
displayed in Fig. 5(a) is typical for these NPs. NPs 20 nm
in size have a reduced coercive field and heating power
compared with the d → ∞ case due to the finite temperature
and diameter [see Figs. 4(a) and 5(b)]. However, their heating
power remains rather large. In contrast, NPs 9 nm in size are
clearly superparamagnetic in these conditions and display a
negligibly small heating power [see Figs. 4(a) and 5(c)].

Next, the effect of increasing φ on the heating power of 9
and 20 nm NPs is described. Figures 5(b) and 5(c) show that the
effect on the hysteresis loop is rather similar in the two cases:
The magnetic interactions make the saturation of the NPs more
difficult; therefore, the magnetization value at 40 mT shows
a monotonic decrease with increasing φ. Simultaneously, the
coercive field first increases with φ and then decreases. The
global effect is an increase in the heating power followed by a
decrease. The maximum heating power occurs in the range of
0.6%–2% for φ. Interestingly, the 9 nm NPs, which were not
heated at all at low concentrations, show a very large heating
power for φ = 1%, which is similar to the 20 nm NPs. In the
d → ∞ case, the behavior is similar except for the heating
power increases very weakly at small concentrations (only a
few percent). A deeper insight on the origin of these behaviors
will be provided in Sec. III B 2.

For φ values larger than approximately 3%, the hysteresis
loops all converge toward a common shape, which is
independent of the NP volume and is the same as NPs
without any anisotropy [see Figs. 4(a) and 5(a)–5(d)]. This
regime is characterized by the fact that the NP properties are
completely dominated by magnetic interactions; therefore,
it is termed the “dipolar regime.” In Figs. 4(a) and 5(d) the
hysteresis loops and hysteresis area value of this dipolar
regime (Keff = T = 0) as a function of φ are shown. This
regime is characterized by a moderate heating power due to
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FIG. 4. (Color online) (a) Hysteresis area of 3000 NP lysosomes
as a function of their volume concentration φ. Unless otherwise spec-
ified, the parameters were T = 300 K, Keff = 13 000 Jm−3, MS =
106 A m−1, μ0Hmax = 40 mT, f = 100 kHz, v0

1 = v0
2 = 1010 Hz. The

hysteresis was composed of 2000 steps and averaged over 50 cycles
with a change in anisotropy direction and NP position between each
cycle. (�) d → ∞ (T = 0). (�) d = 20 nm. (•) d = 9 nm. (�)
Keff = T = 0. (b) �−

Hdip as a function of the volume concentration.
The parameters are identical to the previous graph. (c) Correlation
between �−

Hdip and the hysteresis area in a lysosome with d = 20 nm
and φ = 3%. Each dot represents a NP. The plain line represents a
200 point average of the data.

a rather small coercive field. NPs have a maximal heating
power when φ equals approximately 1%.

Interestingly, a magnetic parameter that correlates well
with the increase or decrease of SAR in the lysosome has
been found. When the hysteresis loops were computed, the
evolution of the dipolar field acting on each particle, projected
in the direction of the external magnetic field, was also
computed and termed μ0H

x
dip(μ0H ). These computations were

performed to investigate if the dipolar field was locally

increasing or decreasing the external magnetic field. From
each dipolar field hysteresis loop, the following parameter was
extracted:

�−
Hdip = μ0H

x
dip(+μ0Hmax) − μ0H

x
dip(−μ0Hmax), (6)

where �−
Hdip is positive (negative) if the projected dipolar field

is parallel (antiparallel) to the external magnetic field. A strong
correlation between the amplitude/sign of �−

Hdip and the effect
of the dipolar interactions on the A value has been found.
To illustrate this point, Fig. 4(b) shows the evolution of the
�−

Hdip value averaged for all of the lysosomes and for the same
parameters as those used in Fig. 4(a). Comparing Figs. 4(a)
and 4(b) illustrates the similarity between the evolution of A

and �−
Hdip: the ferromagnetic (antiferromagnetic) nature of the

magnetic interactions correlates with an increase (decrease) in
area. This correlation is also found at the level of individual
particles inside a lysosome. To illustrate this point, in Fig. 4(c)
the value of �−

Hdip as a function of A for each particle inside
a lysosome is plotted. The example shown corresponds to
d = 20 nm, φ = 3%, and T = 300 K. A similar correlation
between a positive value of �−

Hdip and a large hysteresis area
has been found in all of the other cases.

2. Influence of the applied magnetic field

The influence of the magnetic field amplitude on the
previous results is now presented. In the simulations presented
above, the applied magnetic field was large enough to saturate
the hysteresis loops of independent NPs, but not those of
interacting MNPs. The influence of the concentration in a
case where μ0Hmax = 1 T, with the other parameters being
the same as previously described, is first presented. The
magnetic field amplitude is clearly not reasonable for magnetic
hyperthermia; however, the results obtained with this value are
instructive. The evolution of the hysteresis area as a function
of φ is shown in Fig. 6(a), and the corresponding hysteresis
loops are shown in Fig. 6(c). Applying 1 T saturates the
hysteresis loops even for large concentrations. The influence
of magnetic interactions on the hysteresis loop shape and
area is rather simple: the coercive field, saturation field, and
hysteresis area all increase monotonously as a function of the
concentration.

Second, the results for a much lower value of μ0Hmax are
presented. The magnetic field value chosen for this example
is the one for which 20 nm NPs are perfectly optimized. To
maximize the hysteresis loop area in a given magnetic field,
the following relationship between the applied magnetic field
and the MNP coercive field should be verified (see Eq. (42) in
Ref. [8]):

μ0Hmax ≈ μ0HC

0.81
. (7)

Simulations using μ0Hmax = 7 mT have been performed to
verify Eq. (7). This condition corresponds to a practical case
where, for a given imposed external magnetic field of 7 mT and
a given imposed material with Keff = 13 000 J/m3 and MS =
106 A m−1, optimizing the heating power by varying the NP
size leads to a diameter of 20 nm. For these imposed conditions,
20 nm NPs are perfect NPs with the hypothesis that magnetic
interactions are negligible. In Fig. 6(a) the evolution of their
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FIG. 5. (Color online) Hysteresis loops as a function of φ, corresponding to the data of Fig. 4. φ = 0.01%, 0.05%, 0.1%, 0.3%, 0.6%, 1%,
2%, 3%, 10%, and 30%. (a) d → ∞ (T = 0). (b) d = 20 nm. (c) d = 9 nm. (d) Keff = T = 0.

FIG. 6. (Color online) (a) Evolution of the hysteresis area as a function of φ for 20 nm NPs. (�) μ0Hmax = 40 mT, (�) μ0Hmax = 1 T,
and (•) μ0Hmax = 7 mT. The other simulation parameters were the same as those in Fig. 4. (b)–(d) Corresponding hysteresis loops for
(b) μ0Hmax = 7 mT and (c) and (d) μ0Hmax = 1 T . (d) is an enlarged view of (c).
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heating power with concentration is shown. The corresponding
hysteresis loops are shown in Fig. 6(b). For these optimized
NPs, magnetic interactions have catastrophic consequences
because their heating power is almost completely canceled
for φ values as small as 0.6%. Indeed, these NPs have a
coercive field very close to the applied magnetic field when
they are independent; therefore, they cannot be switched by
the external magnetic field after increasing their coercive field
due to magnetic interactions.

All of the results shown in Fig. 6 can be easily and
qualitatively understood. Magnetic interactions increase the
coercive and saturation fields of the major loops. When the
applied magnetic field is larger (smaller) than these fields,
the SAR increases (decreases) with the interactions. This
result explains well that a monotonous increase, a monotonous
decrease, or a bell shape curve is observed, depending of
the relationship between the applied magnetic field and the
coercive/saturation field of the major loops.

3. Influence of the anisotropy, magnetization,
and universal curves

The influence of magnetic interactions has been shown
above for examples where Keff and MS were held constant.
These two parameters are expected to have a drastic influence
on the final result. Saturation magnetization enhances the
effect of the magnetic interactions, whereas anisotropy should
decrease their influence [7,10,18]. Simulations were run at
T = 0 with varying magnetization and anisotropy. Again,
this condition also corresponds to large NPs (d → ∞). The
hysteresis area as a function of φ was calculated. Because
increasing Keff increases the magnetic field required to
saturate the MNPs, the magnetic field was adapted in each
simulation to obtain only the major hysteresis loops at low
concentrations. Specifically, the ratio μ0Hmax

Keff
was kept constant

in the series. A first series of simulations with MS = 106 A m−1

and Keff in the range of 6 × 103–1 × 106 J m−3, as well as
a series with Keff = 13 × 103 J m−3 and MS in the range of
2 × 105–2 × 106 J m−3 were run. The results are shown in
Fig. 7 as black curves. All of the obtained data converge to
a single curve in a plot of a dimensionless hysteresis area
A

Keff
as a function of a dimensionless concentration μ0M

2
Sφ

Keff
.

The dimensionless area equals 2 at low concentrations, which
is the hysteresis loop area of randomly oriented NPs (see
Eq. (14) in Ref. [8]). At large concentrations, the hysteresis
area decreases because the applied magnetic field is below
the coercive and/or saturation field of the MNPs. Therefore,
this curve is a generalization of the d → ∞ curve shown in
Fig. 4(a). The blue curves in the same figure represent the
influence of μ0Hmax for a constant Keff. The behavior is the
same as that observed in Fig. 6(a). The red curves represent
the influence of a finite diameter for a constant Keff and a
constant μ0Hmax. Therefore, a correspondence exists between
these red curves and the study on the influence of diameter
shown in Fig. 4(a). Two findings can be extracted from this
figure: (i) large NPs follow a series of universal curves (the
blue and black lines) in which the dimensionless area only
depends on the dimensionless concentration. Each universal
curve corresponds to a given μ0Hmax

Keff
ratio. As previously

discussed, these universal curves decrease, increase, or have

FIG. 7. (Color online) The dimensionless hysteresis area A

Keff
as a

function of the normalized concentration
μ0M2

S
φ

Keff
. When not specified,

the parameters were the same as those for Fig. 4. The vertical, dashed
line represents the location where the dimensionless concentration
equals 0.02. The black dots and lines represent a series of simulations
at T = 0 K (d → ∞) with MS = 106 A m−1 and Keff in the range of
6 × 103–1 × 106 J m−3, as well as a series with Keff = 13 × 103 J m−3

and MS in the range of 2 × 105–2 × 106 J m−3. In these series, the
ratio μ0Hmax

Keff
was kept constant. For instance, for Keff = 6000 J/m3,

μ0Hmax = 18.4 mT. The blue dots and lines represent a series at
T = 0 K where Keff = 6000 J/m3 and μ0Hmax varied in the range of
0.008–1 T. The red dots and lines represent a series at T = 300 K,
Keff = 106 J m−3 with d in the range of 4–20 nm.

a bell shape. (ii) When the normalized concentration is below
0.02, there is no influence of the magnetic interactions, even
at a finite temperature or diameter.

4. Spatial dependence of the heating power inside lysosomes
and the influence of the number of NPs

The previous section presented results averaged on all
of the NPs inside the lysosome. Now, an investigation of
the heating power variation at different locations inside the
lysosome is presented. Figure 8 displays the evolution of
the heating power as a function of the normalized distance
from the lysosome center for 20 and 9 nm NPs and for φ

ranging from 0.01% to 30%. These parameters are the same
as those used in previous sections; therefore, there is a strong
relationship between Fig. 4(a) and Fig. 8. Figure 8 shows the
spatial dependence of the average heating power displayed
in Fig. 4(a). The heating power inside the lysosome cores is
constant or displays a low amplitude and smooth variation;
however, it may vary considerably near their surfaces: Inside
some of them, the heating power varies abruptly and strongly
when the normalized distance is in the range of 0.86–1.
This result means that this transition occurs at a thickness
corresponding to approximately 1.3 times the mean distance
between two neighboring NPs. Depending on the φ value, this
variation can be an increase or a decrease, as well as having
a different amplitude. For instance, a lysosome filled at 0.6%
with 9 nm NPs displays a heating power 14 times smaller
near its surface than in its center, whereas, if it is filled at 3%,
heating power is 6 times larger at the surface.
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FIG. 8. (Color online) (a) and (b) Evolution of the hysteresis area
as a function of the normalized distance from the center of the
lysosome for different φ values shown on the graphs. The simulation
parameters were similar to those from Fig. 4. The curves are the
results of 200 smoothed points. (a) d = 20 nm. (b) d = 9 nm. (c)
Evolution of �−

Hdip with the normalized distance from the lysosome
center, using the same parameters as in (a).

All of the curves in Fig. 8 can be qualitatively understood
by considering that NPs near the lysosome surface have
fewer neighbors and a lower effective concentration. When
considering the curves in Fig. 4(a), this result means that
approaching the surface is equivalent to a displacement to
the left of these curves. Thus, the sign and amplitude of
the derivative of these curves precisely explain the behavior
observed in Fig. 8. For instance, the two strong variations
given as examples in the previous paragraph correspond to
two points that have large derivative values and opposite signs
in Fig. 4(a). This explanation is provided to the reader as a first
approach of the underlying mechanism. In next section, this
preliminary explanation will be completed.

To visually illustrate these spatial variations of heating
power, lysosomes loaded with NPs are shown in Fig. 9 with a
color map corresponding to the NP heating power. Contrary to
the graphs shown in Fig. 8, this figure has no spatial averaging
of the heating power; therefore, the scattering of the heating
power inside the lysosomes is more visible than in Fig. 8.
Despite this difference, the variation of heating power between
the center and the surface of the lysosome is clearly observed.

Finally, in Fig. 10 the evolution of the heating power with
concentration is plotted for lysosomes filled with a number
of 9 nm NPs varying between 10 and 5000. In all cases,
the heating power as a function of the concentration curves
presents a bell shape similar to Fig. 4(a). However, the curves
are shifted: to display a heating power similar of the one of
the 5000 NP lysosomes, a 100 NP lysosome must be more
concentrated. Again, this result can be qualitatively understand
using concepts that have been used previously to explain the
spatial variation of heating power: Compared to a lysosome
with many NPs, a lysosome with a low number of NPs has
a larger surface area/volume ratio and comparatively more
particles displaying a reduced effective concentration at its
surface. Its average concentration must be increased to display
behavior similar to a larger lysosome.

5. Importance of the local concentration

The simulation results presented in the previous section
evidence the strong influence of the local environment of a
given NP on its heating power. We hypothesized that the local
volume concentration around a given NP might be one of the
main parameters governing its heating power because surface
effects in the lysosome seem to be confined to an extremely thin
layer. Different local concentrations can be defined depending
on the number of neighbors taken into account. The quantity
φN , which is the local volume concentration around a given
particle taking into account N neighbors, is introduced. It is
defined as

�N = 3NV

4πr3
N

, (8)

where rN is the distance between the N th neighbor and the
particle under consideration and V the NP volume.

The objective of this study is to investigate if a single
curve could be obtained by only plotting the heating power
of NPs as a function of the local concentration, independent
of the lysosome mean concentration. For this purpose, we
ran simulations on lysosomes containing 9 and 20 nm with
the concentration varying between 0.01% and 30%. The
parameters were the same as those used to plot Fig. 4(a)
except that, in the present case, averaging was performed
on the anisotropy axis orientation but not on the position.
Otherwise, the calculated local concentration around a given
NP would have been averaged and been rendered meaningless.
We then plotted the obtained heating power as a function
of various values of the local concentration (φ5, φ10, φ20,
φ50, φ100, and φ200) to determine which value led to the
best universal plotting. The best result, obtained using φ20,
is shown in Fig. 11. For a given particle diameter, all of the
data collapse well onto a single and smooth curve. These two
curves are more fundamental than those shown in Fig. 4. In
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FIG. 9. (Color online) Heating power of NPs inside a lysosome. The simulation parameters were similar to those from Fig. 4; therefore,
there is a link between these two figures. The plotted heating power corresponds to an average over 50 hysteresis loops with a change in the
anisotropy axis direction and the exact NP position between each cycle. The NPs are shown positioned on a cubic lattice, which is thus their
average position. The heating power displayed here is actually that of each NP and is not spatially averaged. The size of the NPs in the figure
has been chosen for clarity reasons and does not match their true size. Only half of the lysosome is shown so the reader faces the hemisphere.
(a) d = 20 nm, φ = 0.6%. (b) d = 20 nm, φ = 3%. (c) d = 9 nm, φ = 0.6%. (d) d = 9 nm, φ = 3%.

the latter, the volume concentration and hysteresis area varied
from point to point, especially when approaching the surface.
Therefore, the curves in Fig. 4 are a convolution of the curves
in Fig. 11. Notably, φ20 corresponds to a local concentration
inside a sphere of radius equaling approximately 1.6 times
the mean distance between neighbors. The thickness near the
lysosome membrane in which the transition of heating power

FIG. 10. (Color online) Hysteresis area as a function of the
concentration, plotted for different lysosome sizes. The number of
particles inside the lysosomes is shown on the graph. The parameters
are the same as those of Fig. 4 with d = 9 nm.

occurs was 1.3 times the mean distance between neighbors (see
Sec. III D). These two different approaches converge to a
similar result.

FIG. 11. (Color online) Hysteresis area as a function of the local
volume concentration φ20 calculated using Eq. (8). The simulation
parameters were the same as those in Fig. 4 with Keff = 13 000 J/m3

and T = 300 K. The results for d = 9 nm and d = 20 nm are shown.
For these results, averaging was only performed on the anisotropy
axis direction and not on the position.
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IV. DISCUSSION

We first summarize and provide a global view of the results
obtained in the results section, starting with the influence of
magnetic interactions on the heating power. First, the influence
of magnetic interactions on the hysteresis loops and heating

power become noticeable only when μ0M
2
Sφ

Keff
> 0.02. Above

this value, magnetic interactions have two effects on the
major hysteresis loops: (i) increase the coercive field and
(ii) incline the hysteresis loop and increase the saturation
field. The increase of coercivity of such NPs for a moderate
amount of magnetic interactions has been previously shown
using metropolis Monte Carlo simulations [5,18] and the
Fokker-Planck equation [21] but not using LLG [20].

The consequence of the coercive field increase is that,
for a very large applied magnetic field, the heating power
monotonously increases with concentration [see the curves at
large fields in Figs. 6(a) and 7]. However, using the magnetic
field values currently used in magnetic hyperthermia, there is
a concentration above which the applied magnetic field is too
small to saturate or rotate the particles, leading to a decline
of the heating power when increasing the concentration and
resulting in a bell shaped SAR (φ) curves. Finally, if the applied
magnetic field is below the coercive or saturation field of
the MNPs, magnetic interactions monotonously decrease the
SAR, even at low concentrations. In summary, the SAR (φ)
curve can decrease, increase, or have a bell shape depending
on the relationship between the applied magnetic field and the
coercive/saturation field of the major loops.

These findings have important practical consequences for
magnetic hyperthermia optimization. Two types of MNPs for
magnetic hyperthermia can be defined, and the generalities
presented above permit an understanding of their behavior
in standard hyperthermia conditions: (i) low-anisotropy fer-
romagnetic MNPs, once optimized, can display very large
SAR values when they are magnetically independent [8]. At
low concentrations, their SAR increases or decreases, but
maintains the same order of magnitude [see Figs. 4(a) and 7].
(ii) Superparamagnetic MNPs display a much lower SAR at
low concentrations. However, they are easier to synthesize,
stabilize, handle, and make stealthy than ferromagnetic MNPs.
Once concentrated, their heating power can increase by several
orders of magnitude, and their SAR can reach values similar
to those of ferromagnetic NPs in the regime [see Fig. 4(a)].
The strategy of using concentration to increase the SAR of
superparamagnetic NPs holds only at the condition that the
dispersion of the local NP concentration inside the cells is
not too large because their SAR strongly varies with the local
concentration.

For a large degree of interactions, all types of NPs have
strongly reduced SARs, except for those with very large
anisotropies. Therefore, one strategy could consist of using
high anisotropy NPs and large magnetic fields to simultane-
ously obtain large SAR values and NPs insensitive to magnetic
interactions. To quantify this approach, let us imagine that one
wants to use NPs insensitive to magnetic interactions for a local
concentration of φ = 30% with MS = 106 A m−1. Strictly

verifying the condition μ0M
2
Sφ

Keff
< 0.02 would require NPs with

an anisotropy of approximately 1.8 × 106 J/m3 (above that
of Co) and a working magnetic field in the Tesla range to

saturate them. These conditions are completely different from
the ones currently used in magnetic hyperthermia where, due
to the small amplitude of the magnetic field, low anisotropy
MNPs must be used [8]. Such large amplitude magnetic
fields at a reasonably high frequency (approximately 2 kHz)
to maintain a constant μ0Hmaxf product and thus similar
SAR values than at 100 kHz, 20 mT, are so far technically
inaccessible. However, it appears that increasing the magnetic
field amplitude, decreasing its frequency, and increasing the
MNP anisotropy is the only way to combine insensitivity to
magnetic interactions and large SAR values

In the absence of such conditions, i.e., with the current
values of applied magnetic field, we must address the
concentration dependence of SAR. The only solution is
to calculate the optimal characteristics of MNPs once the
local concentrations from biology experiments are known. At
present, such data are still lacking. However, general principles
on the mechanisms involved in this optimization have been
presented in this article.

Figures 8 and 9 show that heating power inside the
lysosomes strongly varies depending on the position inside
them. When cell death or tumor regression is due to a global
increase of cells or tumor temperature, this variation has
no important consequences since only the average heating
power is optimized. However, it has been shown that in
many cases, cell death in in vitro experiments is not due
to a global temperature increase [13,14,22–27] and involves
lysosome membrane permeabilization [13,14]. This effect
has not yet been explained; however, one can reasonably
hypothesize that a phenomenon triggered by a local energy
release occurs in the immediate vicinity of the NPs. Then, there
are two possibilities: (i) this phenomenon directly damages
the lysosome membrane so that only particles near it would
contribute to the effect and (ii) the membrane permeabilization
is an indirect consequence of a phenomenon occurring in
the core of the lysosome. Depending on which of these two
hypotheses is true, the NPs for optimizing cell death are not
the same. For the former (latter) case, the heating power of
the NPs at the surface (in the core) should be maximized.
It has been shown that the difference between the heating
power at the surface or in the core can reach one order of
magnitude; therefore, the discovery of the microscopic origin
of cell death in these puzzling in vitro experiments will permit
further improvements of NPs to maximize the cell damage.

V. CONCLUSIONS

We have studied the influence of magnetic interactions on
magnetic hyperthermia properties and found that local concen-
tration considerably affects the heating power amplitude. The
increase or decrease of the hysteresis area is well correlated
to the parallel or antiparallel nature of the projected dipolar
field acting on each particle. One central parameter influencing
the SAR value is the volume concentration of the 20 nearest
neighbors around a given NP. This sensitivity to the local
concentration leads to a spatial variation of heating power as
a function of the position inside the lysosome, especially near
the membrane where the SAR variation compared with the
core can be very large. The influence of magnetic interactions
strongly depends on NP diameter and anisotropy as well as
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on the amplitude of the applied magnetic field. These effects
can be summarized as follows: (i) as expected, increasing the
anisotropy decreases the effect of interactions. (ii) The NP
diameter is of crucial importance because it drags the NPs
from a superparamagnetic regime to a ferromagnetic regime,
in which the sensitivity to magnetic interactions and the
maximum SAR are very different. (iii) Magnetic interactions
increase the coercive field, saturation field, and hysteresis area
of the major loops. However, in the minor loops, depending on
the applied magnetic field value and its relationship with the
MNP coercive field, a decrease, an increase, or a nonmonotonic
variation of the SAR with concentration might be observed.

Because the local concentration of NPs might vary in cells
or tumors, decreasing the influence of magnetic interactions
may result in a constant and large SAR value, independent of
the environment. The only way to achieve this result would
be to use NPs with large anisotropy. However, this simplistic
solution faces is limited by the maximum applied magnetic

field in hyperthermia experiments. The optimal characteristics
of the NPs result from a compromise where the entrance
parameters are (i) the maximum applied magnetic field, (ii)
the maximum acceptable diameter, (iii) the local concentration
of NPs inside the cells or tumors, and (iv) the location inside
the lysosomes where the heating power should be maximized.
When this information is available, the numerical simulations
that we have developed will be an advantageous tool to predict
the heating power of MNPs in in vivo or in vitro conditions and
to calculate the anisotropy required to maximize the heating
power.
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