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Dissipation due to pure spin-current generated by spin pumping
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Based on spin-dependent transport theory and thermodynamics, we develop a generalized theory of the Joule
heating in the presence of a spin current. Along with the conventional Joule heating consisting of an electric
current and electrochemical potential, it is found that the spin current and spin accumulation give an additional
dissipation because the spin-dependent scatterings inside bulk and ferromagnetic/nonmagnetic interface lead to a
change of entropy. The theory is applied to investigate the dissipation due to pure spin-current generated by spin
pumping across a ferromagnetic/nonmagnetic/ferromagnetic multilayer. The dissipation arises from an interface
because the spin pumping is a transfer of both the spin angular momentum and the energy from the ferromagnet
to conduction electrons near the interface. It is found that the dissipation is proportional to the enhancement of
the Gilbert damping constant by spin pumping.
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I. INTRODUCTION

Dissipation due to electron transport in a conductor is an
important issue for both fundamental and applied physics
[1–5]. According to electron transport theory [6], the conduc-
tivity of the electron becomes finite because of impurity scat-
tering inside the conductor, which leads to Joule heating JeE,
where Je and E are the electric current density and electric
field, respectively. Motivated to reduce power consumption
due to Joule heating, as well as because of a fundamental
interest in its quantum mechanical nature, the generation of
a pure spin-current by spin pumping, spin-Seebeck effect, or
spin-Hall effect has been extensively investigated [7–15].

Dissipation is associated with the production of entropy.
Spin-flip processes and spin-dependent scatterings within a
bulk ferromagnet (F) or nonmagnet (N) and at an F/N interface
mix the spin-up and spin-down states, leading to a change of the
entropy. Therefore a physical system, such as a F/N metallic
multilayer, carrying a pure spin-current, still dissipates energy
even in the absence of an electric current. A quantitative
evaluation of the dissipation due to pure spin-current therefore
is a fundamentally important problem.

In 1987, Johnson and Silsbee [1] studied the surface
and bulk transport coefficients for spin conduction, and the
associated entropy production rates, without considering the
rate of interface heating. More recently, Sears and Saslow [4]
used irreversible thermodynamics to study interface heating
due to electric current in a magnetic system, and Tulapurkar
and Suzuki [5] used the Boltzmann equation to investigate bulk
and interface heating for spin conduction. Reference [5] shows
that, roughly speaking, the dissipation due to spin current
is proportional to the square of the spin polarization of the
conduction electrons, indicating that the heating associated
with the spin current is much smaller than that due to
the electric current. However, these works consider only a
collinear alignment of the magnetizations in a F/N multilayer,
so only the longitudinal components of the spin current and
spin accumulation (i.e., spin chemical potential, proportional
to the nonequilibrium spin density) appear. (Longitudinal and
transverse will be used to mean that the direction of the spin

polarization is collinear or normal to the local magnetization.)
On the other hand, in many physical phenomena, such as spin
torque switching [16] and spin pumping [7,8], a noncollinear
alignment of the magnetizations generally appears, in which
transverse spin current and spin accumulation exist. For
example, spin pumping is a generation of the transverse spin
current by the transfer of spin angular momentum from the
ferromagnetic layer to the conduction electrons [7,8,17–22].
Bulk heating due to spin pumping in a magnetic wire within
a domain wall (driven by m×H) has also been studied [3],
but was not extended to include interface heating. In these
works, the main contribution to the dissipation arises from the
electric current. The present work develops a unified theory of
dissipation which enables the simultaneous evaluation of both
bulk and interface heating in a ferromagnetic system, with the
spin current having arbitrary alignment of the magnetizations.
Also, an evaluation of the dissipation due to a pure spin-
current is indispensable for comparison with experiments that
determine the rate of heating.

This paper develops a general theory of dissipation in
the presence of spin current based on the spin-dependent
transport theory and thermodynamics. It is found that, along
with the conventional Joule heating, the spin current Is

(or its density Js) and spin accumulation μ contribute to
the bulk and interface dissipations, as shown in Eqs. (17)
and (18). We apply the theory to evaluate the dissipation
due to a pure spin-current generated by spin pumping in
the ferromagnetic (F1)/nonmagnetic (N)/ferromagnetic (F2)
multilayer. Spin pumping provides an interesting example to
study the dissipation problem of pure spin-current. In spin
pumping, electric current is absent throughout the system.
The electron transport is described by a one-dimensional
equation, and an external temperature gradient is absent, which
makes evaluation of the dissipation simple compared with the
spin-Seebeck effect or spin-Hall effect. It is found that the
dissipation is proportional to the enhancement of the Gilbert
damping by spin pumping. The amount of the dissipation due
to the spin pumping is maximized for an orthogonal alignment
of the two magnetizations. For the conditions we study, the
maximum dissipation is estimated to be two to three orders
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of magnitude smaller than the dissipation due to the electric
current when there is spin torque switching.

The paper is organized as follows. In Sec. II, the system we
consider is illustrated. Section III formulates a theory of dissi-
pation of spin-polarized conduction electrons, using diffusive
spin transport theory and thermodynamics. Section IV studies
the relationship between the dissipation due to spin pumping
and the equation developed in the previous section. Section V
quantitatively evaluates the dissipation due to spin pumping.
Section VI compares the spin pumping dissipation with the
dissipation in the case of spin torque switching. Section VII
provides our conclusions.

II. SPIN PUMPING IN F/N/F SYSTEM

Figure 1 shows a schematic view of the F1/N/F2 ferromag-
netic multilayer system, where m1 and m2 are unit vectors
pointing along the magnetizations of the F1 and F2 layers,
respectively. Where needed, subscripts k = 1,2 denote the Fk

layer. The thickness of the Fk layer is denoted by dk . The F1

and F2 layers lie in the regions −d1 � x � 0 and 0 � x � d2,
respectively. We assume that the spin current is conserved in
the N layer, and thus consider its zero-thickness limit because
a typical value for the spin diffusion length of an N layer is
much greater than its thickness: for example, the spin diffusion
length for Cu is on the order of 100 nm, whereas experimental
thicknesses are less than 5 nm [7,8,23].

Steady precession of m1 with the cone angle θ can be
excited by microwave radiation of the angular velocity ω for
ferromagnetic resonance (FMR) in the F1 layer. Then, the F1

layer pumps the pure spin-current

Ipump
s = �

4π

(
g

↑↓
r(F1)m1×dm1

dt
+ g

↑↓
i(F1)

dm1

dt

)
, (1)

where the real and imaginary parts of the mixing conductance
are denoted by g

↑↓
r and g

↑↓
i , respectively [24,25]. The pumped

spin current creates spin accumulations in the ferromagnetic
(μF) and nonmagnetic (μN) layers, which induce backflow

m1

m2

F1 F2N

m1
.

m1×m1
.

xd2d1

0
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F2→Nθ

FIG. 1. (Color online) Schematic view of the F1/N/F2 ferro-
magnetic multilayer system. The directions of ṁ1 and m1×ṁ1 are
indicated by arrows.

spin current (into N) [20,24–26], given by

IF→N
s = 1

4π

[
(1 − γ 2)g

2
m · (μF − μN)m

− g↑↓
r m×(μN×m) − g↑↓

i μN×m

+ t↑↓
r m×(μF×m) + t↑↓

i μF×m
]
. (2)

The total interface conductance g = g↑↑ + g↓↓ and the spin
polarization of the interface conductance γ = (g↑↑ − g↓↓)/
(g↑↑ + g↓↓) are defined from the interface resistance of the
spin-ν (ν =↑ , ↓) electrons rνν = (h/e2)S/gνν , where S is
the cross section area. The real and imaginary parts of the
transmission mixing conductance at the F/N interface are
denoted by t

↑↓
r(i) . The condition that the spin current is conserved

in the N layer can be expressed as

Ipump
s + IF1→N

s + IF2→N
s = 0. (3)

III. DISSIPATION FORMULAS

To obtain the dissipation due to spin pumping, it is necessary
to investigate how the spin accumulation relaxes inside the F
layers and at the F/N interfaces. For generality we include the
terms related to the electric current and field, although these
are absent in the spin-pumped system. The spin accumulation
in the ferromagnetic layer relates to the distribution function
F̂ = (f0 + f · σ )/2, which is a 2×2 matrix in spin space
and satisfies the Boltzmann equation [5,26–33], via [34]
μ = ∫

εF
Tr[σ F̂ ]dε, σ being the Pauli matrices. The charge

and spin distributions are denoted by f0 and f, respectively.
The distributions for spin parallel, f↑ = (f0 + m · f)/2, or
antiparallel, f↓ = (f0 − m · f)/2, to the local spin, give the
longitudinal spin. On the other hand, the components of f
orthogonal to m correspond to the transverse spin. Below,
we introduce the following notations to distinguish the
longitudinal (L) and transverse (T) components of the spin
current Is and spin accumulation μ:

IL
s = (m · Is)m, (4)

IT
s = m×(Is×m), (5)

μL = (m · μ)m, (6)

μT = m×(μ×m), (7)

where Is equals Ipump
s + IF1→N

s at the F1/N interface and
−IF2→N

s at the F2/N interface, respectively. The spin current
density is denoted as Js = Is/S.

We first consider the diffusive transport for the longi-
tudinal spin [27–33]. The longitudinal spin accumulation
relates to the electrochemical potential μ̄ν = μ0 + δμν − eV

(ν = ↑,↓) via μL = (μ̄↑ − μ̄↓)m, where μ0, δμν , and −eV

are the chemical potential in equilibrium, its deviation in
nonequilibrium, and the electric potential. The longitudinal
electron density nν = ∫

d3k/(2π )3fν and its current density
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jν = ∫
d3k/(2π )3vxfν satisfy [27]

∂nν

∂t
+ ∂jν

∂x
= − nν

2τ ν
sf

+ n−ν

2τ−ν
sf

, (8)

where the spin-flip scattering time from spin state ν to −ν (up
to down or down to up) is denoted by τ ν

sf . The charge density
ne = −e(n↑ + n↓) and electric current density Je = −e(j↑ +
j↓) satisfy the conservation law, ∂ne/∂t + ∂Je/∂x = 0. The
electron density nν is related to δμν via nν � Nνδμν , where
Nν is the density of states of the spin-ν electron at the Fermi
level. In the diffusive metal, jν can be expressed as

jν = −σν

e2

∂μ̄ν

∂x
, (9)

where the conductivity of the spin-ν electron σν relates to
the diffusion constant Dν and the density of state Nν via the
Einstein law σν = e2NνDν . Detailed balance [35], N↑/τ

↑
sf =

N↓/τ
↓
sf , is satisfied in the steady state. The spin polarizations of

the conductivity and the diffusion constant are denoted by β =
(σ↑ − σ↓)/(σ↑ + σ↓) and β ′ = (D↑ − D↓)/(D↑ + D↓). From
Eq. (8), the longitudinal spin accumulation in the steady state
satisfies the diffusion equation [27]

∂2

∂x2
μL = 1

λ2
sd(L)

μL, (10)

where λsd(L) is the longitudinal spin diffusion length defined as
1/λ2

sd(L) = [1/(D↑τ
↑
sf ) + 1/(D↓τ

↓
sf )]/2. The longitudinal spin

current density can be expressed as

JL
s = − �

2e2

∂

∂x
(σ↑μ̄↑ − σ↓μ̄↓)m. (11)

The issue of whether transport of the transverse spin in
the ferromagnet is ballistic or diffusive has been discussed
in [16,25,36] and [29–32]. These two theories are supported
by different experiments [26,37–39], and the validity of each
theory is still controversial. The present work considers the
case of diffusive transport for generality. Ballistic transport
corresponds to the limit of λJ ,t

↑↓
r(i) → 0, where λJ is the spin

coherence length introduced below. In the steady state, the
transverse spin accumulation μT = μ − μL obeys [26,29]

∂2

∂x2
μT = 1

λ2
J

μT × m + 1

λ2
sd(T)

μT, (12)

where the first term on the right-hand side describes the
precession of the spin accumulation around the magnetiza-
tion due to the exchange coupling. The exchange coupling
constant Jsd is in relation to the spin coherence length λJ

via λJ = √
�(D↑ + D↓)/(2Jsd) [28–33]. The spin diffusion

length of the transverse spin is λsd(T) [29]. The transverse spin
current density is related to the transverse spin accumulation
via [26,29]

JT
s = −�σ↑↓

2e2

∂

∂x
μT, (13)

where σ↑↓ = e2[(N↑ + N↓)/2][(D↑ + D↓)/2]. The solutions
of the transverse spin accumulation and current are linear com-
binations of e±x/� and e±x/�∗

with 1/� =
√

(1/λ2
sd(T)) − (i/λ2

J ).

In the nonmagnetic layer, the distinction between the
longitudinal and transverse spin is unnecessary. In fact, in
the limit of zero-spin polarization (β = β ′ = 0) and in the
absence of the exchange coupling between the magnetization
and electrons’ spin (Jsd = 0), as for the nonmagnet, Eqs. (10)
and (12), or Eqs. (11) and (13), become identical.

The relation between the spin accumulation and dissipation
is as follows. The heat density of the longitudinal spin-ν elec-
trons dqν relates to the energy density uν = ∫

d3k/(2π )3εfν ,
chemical potential μν = μ0 + δμν , and the electron density
nν via [40,41]

dqν = duν − μνdnν. (14)

The energy density uL = u↑ + u↓ for the longitudinal spin
satisfies [6]

∂uL

∂t
+ ∂jL

u

∂x
= JeE, (15)

where jL
u = ju,↑ + ju,↓, and ju,ν = ∫

d3k/(2π )3εvxfν is the
energy current density [6]. Here, the term JeE is the Joule
heating due to the electric current. On the other hand, the
energy current of the transverse spin jT

u satisfies ∂jT
u /∂x = 0

in the steady state, where the right-hand side is zero because
there is no source of the transverse spin inside the F and N
layers. We introduce the heat current density by [34]

jq = jL
u −

∑
ν=↑,↓

μνjν + jT
u − μT · JT

s

�
. (16)

In steady state, the heat current is related to the dissipation
via [42] ∂QV /∂t = T [∂(jq/T )/∂x], where the temperature
T is assumed to be spatially uniform in the following
calculations. The subscript V is used to emphasize that this
is the dissipation per unit volume per unit time. Then, ∂QV /∂t

is

∂QV

∂t
= Je

e

∂μ̄

∂x
− ∂

∂x

Js

�
· μ, (17)

where μ̄ = (μ̄↑ + μ̄↓)/2 is the electrochemical potential. The
interface resistance also gives the dissipation, where the
dissipation per unit area per unit time is

∂QA

∂t
= Je

e
δμ̄ − Js

�
· δμ, (18)

where δμ̄ and δμ are the differences of μ̄ and μ at the F/N
interface. The subscript A is used to emphasize that this is
the dissipation per unit area per unit time. Equations (17)
and (18) are generalized Joule heating formulas in the presence
of spin current, and the main results in this section. The
total spin current Js and spin accumulation μ include both
the longitudinal and transverse components, whereas only the
longitudinal components appeared in the previous work [5].
The amount of the dissipation can be evaluated by substituting
the solution of the diffusion equation of the spin accumulation
into Eqs. (17) and (18) with accurate boundary conditions
provided by Eqs. (1) and (2). We call Eqs. (17) and (18) the
bulk and interface dissipations, respectively.
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IV. DISSIPATION DUE TO SPIN PUMPING

In spin pumping, transverse spin angular momentum is
steadily transferred from the magnetic system (F1 layer) to
the conduction electrons near the F1/N interface. The net
spin angular momentum, ds = [Ipump

s + m1×(IF1→N
s ×m1)]dt ,

transferred from the ferromagnet should overcome the po-
tential difference μN − μF1 to be pumped steadily from the
F1/N interface to the N layer during the time dt . This means
that not only the spin angular momentum but also the energy
is transferred from the F1 layer to the conduction electrons.
The transferred energy per unit area per unit time is given by
(μN − μF1 ) · (ds/dt)/(�S). In terms of the spin current and
spin accumulation, this transferred energy is expressed as

∂QSP
A

∂t
= 1

�S

[
Ipump
s + m1×

(
IF1→N
s ×m1

)]
· [μN(x = 0) − μF1 (x = 0)]. (19)

Comparing Eq. (19) with Eq. (18), we find the relation(
∂QA

∂t

)T

F1/N

= −∂QSP
A

∂t
, (20)

where (∂QA/∂t)T
F1/N is defined by

(
∂QA

∂t

)T

F1/N

=
(

∂QA

∂t

)
F1/N

−
(

∂QA

∂t

)L

F1/N

. (21)

Here, (∂QA/∂t)F1/N is the F1/N interface dissipation defined
by Eq. (18), whereas(

∂QA

∂t

)L

F1/N

= − 1

�S

(
m1 · IF1→N

s

)
m1

· [μN(x = 0) − μF1 (x = 0)]. (22)

Because Eq. (22) is defined by the longitudinal components of
the spin current and spin accumulation in Eq. (18), we call this
quantity the longitudinal part of the F1/N interface dissipation.
On the other hand, Eq. (21) is defined by the transverse
components of the spin current and spin accumulation at the
F1/N interface. Moreover, using Eqs. (17), (18), and (21),
Eq. (19) can be rewritten as

∂QSP
A

∂t
=

(
∂QA

∂t

)
F2/N

+
∫ d2

0
dx

(
∂QV

∂t

)
F2

+
(

∂QA

∂t

)L

F1/N

+
∫ 0

−d1

dx

(
∂QV

∂t

)
F1

, (23)

where the F2/N interface dissipation, (∂QA/∂t)F2/N in
Eq. (23), and the F1 and F2 bulk dissipations, (∂QV /∂t)F1 and
(∂QV /∂t)F2 , are defined from Eqs. (17) and (18). As discussed
below, Eq. (23) describes the energy dissipation process
carried by the spin current. Therefore, we define Eq. (23),
or equivalently, Eq. (19), the dissipation due to spin pumping.

With the help of Figs. 2(a) and 2(b) we now discuss
the physical interpretation of Eq. (23), which schematically
show the flows of spin angular momentum and of energy.
In spin pumping one usually focuses attention only on the
flow of spin angular momentum, i.e., spin current, but because
we are also interested in energy dissipation we also show
energy flow. When the pumped angular momentum reaches

FIG. 2. (Color online) Schematic views of the flows of (a)
angular momentum and (b) energy from the microwave to the
ferromagnetic multilayer, in which L and T define the longitudinal
and transverse components with respect to m1.

the F2/N interface, part of it is absorbed in the F2 layer, and
is depolarized by scattering at the F2/N interface and by spin
flip and spin diffusion within the F2 layer. The remaining part
returns to the F1/N interface, which we call backflow. The
backflow to the F1 layer is relaxed by scattering at the F1/N
interface and by spin flip and spin diffusion within the F1 layer,
where the transverse component of the backflow at the F1/N
interface renormalizes the pumped spin current. In terms of the
energy flow shown in Fig. 2(b), spin absorption at the F2/N
interface leads to the interface dissipation (∂QA/∂t)F2/N and
bulk dissipation (∂QV /∂t)F2 due to spin depolarization. The
backflow at the F1 layer also gives the interface dissipation
(∂QA/∂t)L

F1/N and bulk dissipation (∂QV /∂t)F1 . The total
dissipation is the sum of these dissipations, as indicated by
Eq. (23). In other words, the transferred energy from the
F1 layer to the conduction electrons at the F1/N interface is
not localized, and is dissipated throughout the system. Then,
Eq. (23), or equivalently, Eq. (19), can be regarded as the
dissipation due to spin pumping. Also, Eq. (21) is regarded
as the energy transfer from the F1 layer to the conduction
electrons near the F1/N interface. Appendix A shows that all
terms on the right-hand side of Eq. (23) are positive, thus
guaranteeing the second law of thermodynamics.

To conclude this section, it is of interest to compare Eq. (19)
with the dissipation due to electric current. Let us assume that
an electric current is flowing through a multilayer, driven by a
voltage difference across two electrodes. The total dissipation
per unit area per unit time is obtained from Eqs. (17) and (18)
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as [5]

∂QEC
A

∂t
= Je

e
[μ̄(∞) − μ̄(−∞)], (24)

where [μ̄(∞) − μ̄(−∞)]/e is the voltage difference between
the electrodes. Comparing Eq. (19) with (24), we notice that
the net transverse spin current and the difference in the spin
accumulation at the F1/N interface correspond to the electric
current and applied voltage, respectively, and that in spin
pumping the F1/N interface plays the role of the electrode. This
is because the angular momentum and the energy transferred
from the magnetization of the F1 layer to the conduction
electron are pumped from this interface to the multilayer.

V. EVALUATION OF DISSIPATION

In this section, we quantitatively evaluate the dissipation
due to spin pumping, Eq. (19). Substituting the solutions of
Eqs. (10) and (12) into Eq. (2), the total spin currents at the
F1/N and F2/N interfaces are, respectively, expressed as

Ipump
s + IF1→N

s = �

4π

(
g̃

↑↓
r(F1)m1×dm1

dt
+ g̃

↑↓
i(F1)

dm1

dt

)

− 1

4π

[
g̃∗

F1
(m1 · μN)m1 + g̃

↑↓
r(F1)m1

× (μN×m1) + g̃
↑↓
i(F1)μN×m1

]
, (25)

IF2→N
s = − 1

4π

[
g̃∗

F2
(m2 · μN)m2 + g̃

↑↓
r(F2)m2 × (μN×m2)

+ g̃
↑↓
i(F2)μN×m2

]
. (26)

The renormalized conductances, g̃∗ and g̃
↑↓
r,i , are defined by

the following ways:

1

g̃∗ = 2

(1 − γ 2)g
+ 1

gsd tanh(d/λsd(L))
, (27)

(
g̃

↑↓
r

g̃
↑↓
i

)
= 1

K2
1 + K2

2

(
K1 K2

−K2 K1

)(
g

↑↓
r

g
↑↓
i

)
, (28)

where gsd = h(1 − β2)S/(2e2ρλsd(L)), and ρ = 1/(σ ↑ + σ ↓)
is the resistivity. The terms K1 and K2 are defined as

K1 = 1 + t↑↓
r Re

[
1

gt tanh(d/�)

]
+ t↑↓

i Im

[
1

gt tanh(d/�)

]
,

(29)

K2 = t↑↓
i Re

[
1

gt tanh(d/�)

]
− t↑↓

r Im

[
1

gt tanh(d/�)

]
, (30)

where gt = hSσ↑↓/(e2�). In the ballistic transport limit for
the transverse spin, g̃↑↓ equals g↑↓. Then, we expand μN

as μN = �(ωa sin θm1 + bṁ1 + cm1×ṁ1), where y = δy/�

(y = a,b,c) are dimensionless coefficients determined by
Eq. (3) with Eqs. (25) and (26). In the limit of g

↑↓
r 
 g

↑↓
i [25],

δb = 0, and �, δa , and δc are given by

� = (
g̃

↑↓
r(F1) + g̃

↑↓
r(F2)

)[(
g̃∗

F1
+ g̃∗

F2
cos2 θ + g̃

↑↓
r(F2) sin2 θ

)
× (

g̃
↑↓
r(F1) + g̃

↑↓
r(F2) cos2 θ + g̃∗

F2
sin2 θ

)
− (

g̃
↑↓
r(F2) − g̃∗

F2

)2
sin2 θ cos2 θ

]
, (31)

δa = g̃
↑↓
r(F1)

(
g̃

↑↓
r(F1) + g̃

↑↓
r(F2)

)(
g̃

↑↓
r(F2) − g̃∗

F2

)
sin θ cos θ, (32)

δc = g̃
↑↓
r(F1)

(
g̃

↑↓
r(F1) + g̃

↑↓
r(F2)

)(
g̃∗

F1
+ g̃∗

F2
cos2 θ + g̃

↑↓
r(F2) sin2 θ

)
.

(33)

Equation (19) in the limit of g
↑↓
r 
 g

↑↓
i is then given by

∂QSP
A

∂t
= �ω2 sin2 θg̃

↑↓
r(F1)(1 − c)

4πS

×
{
c + g̃

↑↓
r(F1)(1 − c)Re

[
1

gt tanh(d1/�)

]}
. (34)

In the ballistic transport limit of the transverse spin, Eq. (34)
is simplified to �ω2g

↑↓
r(F1)(1 − c)c/(4πS). We emphasize that

Eq. (34) is proportional to the enhancement of the Gilbert
damping by spin pumping [20,26]:

α′ = γ0�g̃
↑↓
r(F1)(1 − c)

4πMSd1
, (35)

where γ0 is the gyromagnetic ratio. Here, α′ is derived
in the following way. According to the conservation law
of the total angular momentum, the pumped spin from
the F1/N interface per unit time, ds/dt , should equal the
time change of the magnetization in the F1 layer, i.e., a
torque dm1/dt = [(gμB)/(�MSd)]ds/dt acts on m1, where
M/(gμB) is the number of the magnetic moments in the
F1 layer, and the Landé g factor satisfies gμB = γ0�.
This torque, [(gμB)/(�MSd)]ds/dt , with ds/dt = Ipump

s +
m1×(IF1→N

s ×m1), can be expressed as α′m1 × (dm1/dt).
Then, α′ is identified as the enhancement of the Gilbert
damping constant due to the spin pumping. The present result
indicating that the dissipation is proportional to α′ represents
that the pumped spin current at the F1/N interface carries not
only the angular momentum but also the energy from the F1

to N layer.
We quantitatively evaluate Eq. (34) by using parameters

taken from experiments for the NiFe/Cu multilayer with
the assumption β = β ′ [23,26,29,43]; (h/e2)S/[(1 − γ 2)g] =
0.54 k� nm2, γ = 0.7, g

↑↓
r /S = 15 nm−2, g

↑↓
i /S = 1 nm−2,

t
↑↓
r /S = t

↑↓
i /S = 4 nm−2, ρ = 241 � nm, β = 0.73, λsd(L) =

5.5 nm, λsd(T) = λsd(L)/
√

1 − β2, λJ = 2.8 nm, d = 5 nm,
γ0 = 1.8467×1011 rad/(T s), M = 605×103 A/m, and ω =
2π×9.4×109 rad/s, respectively, where the parameters of the
F1 and F2 layers are assumed to be identical, for simplicity.
In Fig. 3(a), we show the dissipation due to spin pumping,
Eq. (34), for an arbitrary cone angle θ . The damping α′,
Eq. (35), is also shown in Fig. 3(b). The cone angle θ in
typical FMR experiments [7,8] is small. However, the spin
pumping affects not only the FMR experiment but also spin
torque switching [37], in which θ varies from 0◦ to 180◦.
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FIG. 3. Dependencies of (a) the dissipation due to pure spin-
current, Eq. (19), and (b) the damping α′, Eq. (35), on the cone
angle θ .

Therefore, we show the dissipation and damping for the whole
range of θ in Fig. 3.

The dissipation is zero for θ = 0◦ and 180◦ because
dm1/dt = 0 at these angles. The maximum dissipation is
about 60 fJ/(nm2 s). To understand how large this dissipation
is, we compare this value with the dissipation due to spin
torque switching current in the same system; we discuss this
in the next section.

To conclude this section, we briefly mention that the
dissipation due to spin pumping can be evaluated not only
from Eq. (19) but also from Eq. (23). Appendix B gives explicit
forms for each term on the right-hand side of Eq. (23), from
which the dissipation can be calculated.

VI. COMPARISON WITH SPIN TORQUE SWITCHING

Spin pumping occurs not only in FMR experiments but also
in spin torque switching experiments. An important issue in
the spin torque switching problem is the reduction of power
consumption due to heating [44]. Whereas heating has usually
meant the dissipation due to electric current, the results of the
previous section indicate that spin pumping also contributes to
the dissipation. Thus it is of interest to quantitatively evaluate
the dissipation due to the electric current, and compare it with
that due to spin pumping studied in the previous section, which
will clarify the ratio of the contribution of spin pumping to
heating in the spin torque switching experiment.

We assume that an electric current I is injected from the F2

layer to the F1 layer. Then, a term

IFk→N
s(e) = �γ

2e
I Fk→Nmk (36)

should be added to Eq. (2), which represents a spin current due
to the electric current [25]. The current I Fk→N is the electric
current which flows from the Fk layer to the N layer, meaning
that I F1→N = −I F2→N = −I . As in the system studied in the
previous section, we assume that the spin current is zero at
both ends of the ferromagnet. Taking into account Eq. (36),
Eqs. (25) and (26) are replaced by

Ipump
s + IF1→N

s = �

4π
g̃↑↓

r m1×dm1

dt
− 1

4π

[
g̃∗(m1 · μN)m1

+ hg̃∗I
g̃ee

m1 + g̃↑↓
r m1×(μN×m1)

]
, (37)

IF2→N
s = − 1

4π

[
g̃∗(m2 · μN)m2 − hg̃∗I

g̃ee
m2

+ g̃↑↓
r m2×(μN×m2)

]
, (38)

where, as done in the previous section, we assume that the
material parameters of two ferromagnets are identical, and
thus, omit subscripts Fk from the conductances, for simplicity.
We also assume that g

↑↓
r 
 g

↑↓
i . A new conductance g̃e is

defined as

1

g̃e

= 2γ

(1 − γ 2)g
+ β

gsd
tanh

(
d

2λsd(L)

)
. (39)

A characteristic current of the spin torque switching is the
critical current of the magnetization dynamics Ic, which can
be defined as the current canceling the Gilbert damping torque
of the F1 layer at the equilibrium state [38]. The equilibrium
state in the present study corresponds to θ = 0◦. In this limit
(θ → 0), Eq. (35) is replaced by

α′ = γ0�g̃
↑↓
r

4πMSd1

(
1

2
− πg̃∗I

eωg̃
↑↓
r g̃e

)
. (40)

We assume that the Gilbert damping purely comes from the
spin pumping. Then, the critical current is defined as the
current satisfying α′ = 0; i.e.,

Ic = eωg̃
↑↓
r g̃e

2πg̃∗ . (41)

Using the same parameter values as in the previous section,
the critical current density Jc = Ic/S is estimated as 6.3×106

A/cm2. This value is about the same order of an experimentally
observed value [45] (∼6×106 A/cm2 on average) of the
critical current having a magnetic anisotropy field HK, whose
magnitude (1–3 kOe) is about the same order of the parameter
value, ω/γ0 � 3.2 kOe, used here. The dissipation due to
this electric current based on the conventional Joule heating
formula, ∂QEC

A /∂t = ∑
k[ρJ 2

c dk + rFk/NJ 2
c ], is evaluated as

11.8×103 fJ/(nm2 s), where rF/N = (h/e2)S/g is the F/N
interface resistance. This value of the dissipation is two to
three orders of magnitude larger than the dissipation due to the
spin pumping studied in the previous section.
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We briefly investigate the origins of a large difference
between the dissipations due to the spin and electric cur-
rents. Let us assume that the bulk and interface spin po-
larizations (β and γ ) are identical, and that the thickness
of the ferromagnetic layer is much larger than the spin
diffusion length (d 
 λsd(L)), for simplicity, from which the
critical current is simplified as Ic = eωg̃

↑↓
r /(2πβ). Then

the ratio between the dissipations due to spin pumping
and electric current becomes (∂QSP

A /∂t)/(∂QEC
A /∂t) ∼ β2

�/

[e2(g̃↑↓
r /S)(ρd + r)]. The square of the spin polarization, β2,

is on the order of 10−1. Also, the orders of [(h/e2)S/(g̃↑↓
r r)]

and r/ρd are 1 and 0.1, respectively. Then, the ratio
(∂QSP

A /∂t)/(∂QEC
A /∂t) is roughly 10−2, which is roughly

consistent with the above evaluation. This consideration
implies that a large dissipation due to the electric current
comes from the smallness of the spin polarization. Also, a
large bulk resistivity (ρ), in addition to the interface resistance
(r), also contributes to the large dissipation due to the electric
current, whereas only the interface resistance contributes to the
spin pumping dissipation because spin pumping is an interface
effect.

To conclude this section, we mention that the total dissipa-
tion in the FMR consists of that due to spin pumping, Eq. (34),
and that due to the intrinsic damping in the F1 layer. One can
consider the possibility that the total dissipation in the FMR
might become comparable to or exceed the dissipation due
to the electric current (calculated above) when the dissipation
due to intrinsic magnetic damping is included, despite the
fact the dissipation due to spin pumping is small. However,
we found that the intrinsic damping constant α0 should be
at least on the order of 0.1–1 to make the dissipation in
the FMR comparable with that due to the electric current;
see Appendix C. On the other hand, the experimental value
of the intrinsic Gilbert damping constant is on the order of
0.001–0.01 [46]. Therefore, the dissipation in the FMR is
still much smaller than that due to the electric current even
after the dissipation due to the intrinsic damping is taken
into account. The energy supplied by the microwave to the
F1 layer is divided into the power to sustain the magnetization
precession and that transferred to the conduction electrons near
the F1/N interface, where their ratio is roughly α0 : α′. The
former (∝ α0) is dissipated by the bulk magnetic dissipation
whereas the latter (∝ α′) is dissipated by the spin-flip processes
and spin-dependent scatterings within bulk and at the interface,
as shown by Eq. (23).

VII. CONCLUSION

The dissipation and heating due to a pure spin-current
generated by spin pumping in a ferromagnetic/nonmagnetic/
ferromagnetic multilayer was quantitatively investigated. Us-
ing spin-dependent transport theory and thermodynamics we
generalized the Joule heating formula in the presence of spin
current flowing in a ferromagnetic multilayer. The bulk and
interface dissipation formulas are given by Eqs. (17) and (18),
respectively. For spin pumping, the transferred energy from
the ferromagnet to the conduction electrons is not localized
at the interface, and is dissipated throughout the system by
the flow of a pure spin-current, as shown by Eq. (23). The

dissipation due to the spin pumping, Eq. (34), is proportional
to the enhancement of the Gilbert damping by spin pumping,
Eq. (35). Using typical values of parameters in a metallic
multilayer system, the amount of the dissipation at maximum
is estimated to be two to three orders of magnitude smaller
than the dissipation due to the electric current for spin torque
switching.
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APPENDIX A: NONNEGATIVITY OF BULK
AND INTERFACE DISSIPATIONS

In this Appendix, we prove that all terms on the right-hand
side of Eq. (23) are positive, which guarantees the second law
of thermodynamics; i.e., the dissipation, or rate of the entropy
production, is positive [41]. Here, we omit the subscript Fk

(k = 1,2) from conductances, for simplicity.
First, we prove the nonnegativity of the longitudinal and

transverse parts of the bulk dissipation. The longitudinal part
of Eq. (17) can be rewritten as

(
∂QV

∂t

)L

= Je

e

∂μ̄

∂x
− ∂

∂x

JL
s

�
· μL

= −
∑

ν=↑,↓
jν

∂μ̄ν

∂x
− (μ̄↑ − μ̄↓)

2

∂

∂x
(j↑ − j↓)

=
∑

ν=↑,↓

e2

σν

(jν)2 + (1 − β2)

4e2ρλ2
sd(L)

(μ̄↑ − μ̄↓)2, (A1)

which is clearly positive. Here, we use the relation ∂(j↑ − j↓)/
∂x = −(1 − β2)(μ̄↑ − μ̄↓)/(2e2ρλ2

sd(L)). Also, we can con-
firm from Eqs. (12) and (13) that the transverse part,

(
∂QV

∂t

)T

= − ∂

∂x

JT
s

�
· μT

= 2e2

�2σ↑↓

(
JT

s

)2 + σ↑↓
2e2λ2

sd(T)

(μT)2, (A2)

is positive. Therefore, the bulk dissipation is positive at any x.
Next, let us prove the nonnegativity of the interface

dissipation by using the solutions of the spin current and spin
accumulation (see also Appendix B). The longitudinal part of
the F1/N interface dissipation can be written as

(
∂QA

∂t

)L

F1/N

= g̃∗

4π�S

[
1 − g̃∗

gsd tanh(d1/λsd(L))

]
(m1 · μN)2.

(A3)

According to Eq. (27), 1 − g̃∗/[gsd tanh(d1/λsd(L))] is larger
than zero. Therefore, the longitudinal part of the F1/N interface
dissipation is positive. The longitudinal part of the F2/N
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interface dissipation,
(

∂QA

∂t

)
F2/N

= JF2→N
s

�
· (μF2 − μN), (A4)

is positive because of the same reason. The transverse part of
the F2/N interface dissipation,

(
∂QA

∂t

)T

F2/N

= g̃
↑↓
r

4π�S

{
1 − g̃↑↓

r Re

[
1

gt tanh(d2/�)

]}

×[
μ2

N − (m2 · μN)2
]
, (A5)

is also positive due to similar reasons, where we use approxi-
mation g̃

↑↓
r 
 g̃

↑↓
i used in Sec. V for simplicity.

APPENDIX B: THEORETICAL FORMULAS
FOR BULK AND INTERFACE DISSIPATION

In this Appendix, we discuss how to calculate the dissipa-
tion due to spin pumping from Eq. (23). To this end, we first
show the solutions for the spin current and spin accumulation
in the F1 and F2 layers because each term on the right-hand side
of Eq. (23) consists of spin current and spin accumulation, as
shown in Eqs. (17) and (18). The general solution for the spin
current and spin accumulation are summarized in our previous
work [47]. Here, we use these solutions, and express the spin
current and spin accumulation in terms of the coefficients a and
c of μN defined in Sec. V with the assumptions g̃

↑↓
r 
 g̃

↑↓
i .

First, we present the theoretical formulas for the spin current
and spin accumulation within the F1 layer. We introduce
two unit vectors t1 = m1×ṁ1/|m1×ṁ1| and t2 = −ṁ1/|ṁ1|,
which are orthogonal to the magnetization m1 and satisfy
t1×t2 = m1, because the transverse components of the spin
current and spin accumulation, Eqs. (5) and (7), can be
projected to these two directions. Then, the longitudinal and
transverse components of the spin current in the F1 layer are
given by

m1 · Is(F1) = −�ωg̃∗a sin θ

4π

sinh[(x + d1)/λsd(L)]

sinh(d1/λsd(L))
, (B1)

t1 · Is(F1) = �ωg̃
↑↓
r (1 − c) sin θ

4π
Re

[
sinh[(x + d1)/�]

sinh(d1/�)

]
, (B2)

t2 · Is(F1) = �ωg̃
↑↓
r (1 − c) sin θ

4π
Im

[
sinh[(x + d1)/�]

sinh(d1/�)

]
. (B3)

We can confirm that the sum of these components, (m1·I)m1 +
(t1 · Is)t1 + (t2 · Is)t2, at x = 0 is identical to the spin current at
the F1/N interface, Ipump

s + IF1→N
s . Similarly, the longitudinal

and transverse spin accumulation in the F1 layer are given by

m1 · μF1 = �ωg̃∗a sin θ

gsd

cosh[(x + d1)/λsd(L)]

sinh(d1/λsd(L))
, (B4)

t1 · μF1 = −�ωg̃↑↓
r (1 − c) sin θRe

[
cosh[(x + d1)/�]

gt sinh(d1/�)

]
, (B5)

t2 · μF1 = −�ωg̃↑↓
r (1 − c) sin θ Im

[
cosh[(x + d1)/�]

gt sinh(d1/�)

]
. (B6)

Next, we present the explicit forms of the spin current
and spin accumulation in the F2 layer. The magnetization m2

can be expressed in terms of (t1,t2,m1) as m2 = cos θm1 +
sin θ t1. We introduce two unit vectors, u1 = − sin θm1 +
cos θ t1 and u2 = t2 satisfying u1×u2 = m2, to decompose
the transverse component. In terms of (u1,u2,m2), μN

can be expressed as μN = �ω sin θ [(a cos θ + c sin θ )m2 +
(−a sin θ + c cos θ )u1]. Then, the longitudinal and transverse
spin currents are given by

m2 · Is(F2) = −�ωg̃∗(a sin θ cos θ + c sin2 θ )

4π

× sinh[(x − d2)/λsd(L)]

sinh(d2/λsd(L))
, (B7)

u1 · Is(F2) = −�ωg̃
↑↓
r (−a sin2 θ + c sin θ cos θ )

4π

×Re

[
sinh[(x − d2)/�]

sinh(d2/�)

]
, (B8)

u2 · Is(F2) = −�ωg̃
↑↓
r (−a sin2 θ + c sin θ cos θ )

4π

×Im

[
sinh[(x − d2)/�]

sinh(d2/�)

]
. (B9)

We can confirm that the sum of these components, (m2·I)m2 +
(u1 · Is)u1 + (u2 · Is)u2, at x = 0 is identical to the spin current
at the F2/N interface, −IF2→N

s . The longitudinal and transverse
spin accumulations are given by

m2 · μF2 = �ωg̃∗(a sin θ cos θ + c sin2 θ )

gsd

×cosh[(x − d2)/λsd(L)]

sinh(d2/λsd(L))
, (B10)

u1 · μF2 = �ωg̃↑↓
r (−a sin2 θ + c sin θ cos θ )

×Re

[
cosh[(x − d2)/�]

gt sinh(d2/�)

]
, (B11)

u2 · μF2 = �ωg̃↑↓
r (−a sin2 θ + c sin θ cos θ )

×Im

[
cosh[(x − d2)/�]

gt sinh(d2/�)

]
. (B12)

Figures 4(a) and 4(b) show the spatial distributions of the
spin current density and spin accumulation, respectively. The
spin current density and spin accumulation are decomposed
into the longitudinal and transverse directions, where the solid
lines correspond to the longitudinal components whereas the
dotted (‖ t1 or u1) and dashed (‖ t2 or u2) correspond to
the transverse components. The values of the parameters are
identical to those used in Sec. V with θ = 45◦. Because spin
pumping occurs at the F1/N interface, the spin current density
and spin accumulation are concentrated near this interface.
We emphasize that the spatial directions of the longitudinal
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FIG. 4. (Color online) Examples of the distributions of (a) lon-
gitudinal (solid) and transverse (dotted and dashed) spin current
densities, (b) longitudinal (solid) and transverse (dotted and dashed)
spin accumulations, and (c) bulk dissipations for θ = 45◦.

and transverse spin are different between the F1 and F2 layers
when the magnetizations, m1 and m2, are noncollinear; as a
result the spin current in Fig. 4(a) looks discontinuous at the
interface, although Eq. (3) is satisfied.

We now consider the dissipation formulas. The longitudinal
and transverse parts of the bulk dissipation in the F1 layer can

be expressed as(
∂QV

∂t

)L

F1

= �ω2

4πS

g̃∗2a2 sin2 θ

gsdλsd(L) sinh2(d1/λsd(L))

× cosh

[
2(x + d1)

λsd(L)

]
, (B13)

(
∂QV

∂t

)T

F1

= �ω2g̃
↑↓2
r (1 − c)2 sin2 θ

4πS2

e2

hσ↑↓

×
{

1

λ2
sd(T)

∣∣∣∣� cosh[(x + d1)/�]

sinh(d1/�)

∣∣∣∣
2

+
∣∣∣∣ sinh[(x + d1)/�]

sinh(d1/�)

∣∣∣∣
2}

. (B14)

Similarly, the longitudinal and transverse parts of the bulk
dissipation in the F2 layer can be expressed as(

∂QV

∂t

)L

F2

= �ω2

4πS

g̃∗2(a sin θ cos θ + c sin2 θ )2

gsdλsd(L) sinh2(d2/λsd(L))

× cosh

[
2(x − d2)

λsd(L)

]
, (B15)

(
∂QV

∂t

)T

F2

= �ω2g̃
↑↓2
r (−a sin2 θ + c sin θ cos θ )2

4πS2

e2

hσ↑↓

×
{

1

λ2
sd(T)

∣∣∣∣� cosh[(x − d2)/�]

sinh(d2/�)

∣∣∣∣
2

+
∣∣∣∣ sinh[(x − d2)/�]

sinh(d2/�)

∣∣∣∣
2}

. (B16)

Figure 4(c) shows the spatial distribution of the bulk dissipa-
tion, which is also concentrated near the interface.

The longitudinal part of the F1/N interface dissipation and
the longitudinal and transverse parts of the F2/N interface
dissipations are given by(

∂QA

∂t

)L

F1/N

= �ω2g̃∗a2 sin2 θ

4πS

[
1 − g̃∗

gsd tanh(d1/λsd(L))

]
,

(B17)

(
∂QA

∂t

)L

F2/N

= �ω2g̃∗(a sin θ cos θ + c sin2 θ )2

4πS

×
[

1 − g̃∗

gsd tanh(d2/λsd(L))

]
, (B18)

(
∂QA

∂t

)T

F2/N

= �ω2g̃
↑↓
r (−a sin2 θ + c sin θ cos θ )2

4πS

×
{

1 − g̃↑↓
r Re

[
1

gt tanh(d2/�)

]}
. (B19)

For θ = 45◦, we quantitatively evaluate that∫ 0
−d1

dx(∂QV /∂t)L
F1

= 3.34 fJ/(nm2 s),
∫ 0
−d1

dx(∂QV /∂t)T
F1

=
6.51 fJ/(nm2 s),

∫ d2

0 dx(∂QV /∂t)L
F2

= 18.15 fJ/(nm2 s), and∫ d2

0 dx(∂QV /∂t)T
F2

= 4.95 fJ/(nm2 s), respectively. Also,
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the interface dissipations are quantitatively evaluated as
(∂QA/∂t)L

F1/N = 0.44 fJ/(nm2 s), (∂QA/∂t)L
F2/N = 2.39 fJ/

(nm2 s), and (∂QA/∂t)T
F2/N = 8.03 fJ/(nm2 s) for θ = 45◦,

respectively. We can confirm that the value of the dissipation
evaluated from these values as Eq. (23) is the same as that
evaluated from Eq. (19) with Fig. 3.

APPENDIX C: DISSIPATION DUE
TO INTRINSIC DAMPING

In this Appendix, we briefly evaluate the dissipation due to
the magnetization precession in the FMR experiment, which
arises from the intrinsic Gilbert damping. In the FMR, the
energy supplied by the microwave balances with the dissi-
pation due to the damping, and the magnetization precesses
practically on the constant-energy curve. The magnetization
dynamics with the macrospin assumption is described by the
Landau-Lifshitz-Gilbert (LLG) equation

dm1

dt
= −γ0m1×H − α0γ0m1×(m1×H), (C1)

where the magnetic field H relates to the magnetic energy
density E via H = −∂E/∂(Mm1). From Eq. (C1), the change
of the energy density averaged on the constant-energy curve is
given by

dE

dt
≡ 1

τ

∮
dt

dE

dt

= −αγ0M

τ

∮
dt[H2 − (m1 · H)2], (C2)

where τ = ∮
dt is the precession period on a constant-energy

curve. Assuming that the ferromagnet has uniaxial anisotropy
H = (0,0,HKmz) as done in Sec. VI, Eq. (C2) is given by

dE

dt
= −α0γ0MH 2

K sin2 θ cos2 θ. (C3)

The microwave should supply the energy density −dE/dt

to sustain the precession. Then, the energy supplied
by the microwave per unit area per unit time is
α0γ0MH 2

Kd1 sin2 θ cos2 θ , where d1 is the thickness of the
ferromagnet. Comparing this energy with the dissipation due
to the spin pumping carried by the spin current, Eq. (34), the
ratio of the dissipation between the intrinsic damping and spin
pumping is

|dE/dt |d1

∂QSP
A /∂t

∼ α0

α′ , (C4)

where α′ is given by Eq. (35). The dissipation due to the spin
pumping (∝ α′) is two to three orders of magnitude smaller
than the dissipation due to the electric current. Therefore, the
intrinsic Gilbert damping constant α0 giving bulk magnetic
dissipation of the same order of magnitude as the dissipation
due to the electric current is roughly 102−3 × α′. From the
value of α′ in Fig. 3(b), this gives an α0 on the order of 0.1–1.
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