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General Einstein relation model in disordered organic semiconductors under quasiequilibrium
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In this work, the Einstein relation between the diffusivity and mobility of charge carriers for disordered organic
semiconductors is analyzed. We formulate an analytic theory that allows predicting the Einstein relation for charge
carrier hopping in disordered organic semiconductors with Gaussian density of states distribution as a function
of disorder, temperature, bias field, and Fermi level, i.e., concentration of occupied states of the DOS under the
condition of quasiequilibrium. By scanning the Fermi across the DOS, we calculate the charge carrier mobility
and diffusivity as well the qD/μkBT ratio. We are thus able to identify the role of mobile and localized states
on the interplay of diffusion and drift and can determine under which condition Einstein relation is valid or not.
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I. INTRODUCTION

Charge transport is a fundamental issue of disordered
organic semiconductors. Unlike in nearly perfect crystals,
charge transport in amorphous and polycrystalline thin films
is dominated by various kinds of defects. Charge transport is
usually described in terms of variable-range hopping, where
the charges hop from site defect to site defect, where the
probability of each hop depends on the site energy and the
hopping distance. Therefore the transport mechanism devi-
ates significantly from what classical semiconductor models
predict and the validity of the Einstein relation is open to
conjecture [1,2]. Generally speaking, the Einstein relation is
the relation between two fundamental transport parameters,
i.e., the diffusion coefficient of charge carriers D and their
mobility μ, and reads as [3]

D

μ
= kBT

q
, (1)

with kB the Boltzmann constant, T the temperature, and q

the elementary charge. Numerous theoretical and experimental
studies [4–7] indicate, however, that in the presence of disorder
the Einstein relation can be violated. For nonequilibrium
transport, it shows that there is a disorder driven anomalous
spreading of a charge carrier packet in the presence of an
electric field with the coefficient for anomalous diffusion
increasing quadratically with electric field [8–10]. Meanwhile,
the theory for rationalizing the interplay between diffusion and
drift of charge carriers in a semiconductor has been extended to
include the dependence of the carrier concentration under the
premise of quasiequilibrium conditions. It has been proposed
that a more general Einstein relation should read as [11–13]

D

μ
= n

q∂n/∂EF

, (2)

where EF is the quasi-Fermi-level and n is the carrier
concentration in the DOS,

n =
∫ ∞

−∞

g(E)

1 + exp
(

E−EF

kBT

)dE. (3)
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Equation (2) predicts that D/μ should increase with increasing
charge density [11]. However, Eq. (2) is derived under the
condition that in the continuity equation, drift and diffusion of
charge carriers at the Fermi level of a semiconductor are ex-
actly compensated. This implies that there is no net current and
Eq. (2) therefore is only valid under small perturbations from
equilibrium, i.e., at low electric fields where the conduction is
ohmic. In an organic semiconductor diode or in a field effect
transistor this condition will be violated. Moreover, Eq. (2)
does not consider that charge transport occurs in a rough energy
landscape. Applying Eq. (2) to such system is, therefore, an
arguable procedure. In fact, recent analyses of Einstein ratio
based upon the current-voltage dependence on an organic
diode are controversial [1,2]. From Monte Carlo simulations,
Mendels and Tessler [14] conclude that the Einstein ratio
remains at the classic value of qD/μkBT = 1, independent
of the charge carrier concentration. This is at variance with
both Eq. (2) and time of flight studies on charge transport that
feature long tails.

Considering these controversies we developed a general
model for the Einstein ratio as a function of electric field,
temperature, and, notably, on charge carrier concentration
applied to either one- or three-dimensional disordered organic
semiconductors under the premise of quasiequilibrium. It will
show under which conditions qD/μkBT will deviate from
unity.

II. MODEL

Models for describing the charge transport in disordered
semiconductors are usually based upon the Miller-Abrahams
formalism for the jump rate [15]. It is appropriate for charge
carriers hopping at moderate temperatures [16], and assumes
that hopping transport takes place via tunneling between an
initial state i and a target state j with a rate

ν = ν0 exp(−R)

= ν0

{
exp

(−2αRij − Ej −Ei

kBT

)
, Ei < Ej

exp(−2αRij ). Ei > Ej

. (4)

Here, ν0 is the attempt-to-jump frequency, Rij is the hopping
distance, R is the hopping range [17–19], Ei and Ej are the
energies at sites i and j , respectively, and α is the inverse
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localized length. An applied electric field will reduce the
activation energy for upward jumps in field direction. The
hopping range with normalized coordinates (ε = E/kBT and
rij = 2αRij ) can therefore be rewritten as [17,20]

R =
{

(1 + β cos θ )rij + εj − εi, εj > εi − β cos θrij

rij , εj < εi − β cos θrij
,

(5)

where β = Fq/2αkBT and θ is the angle between Rij and the
electric field ranging from 0 to π . For a site with energy εi in
hopping space, the most probable hop for a carrier on this site
is to an empty site at a range R, under the condition that energy
be minimized. Transport is a result of a series of hops through
this hopping space. So the mobility (diffusivity) will depend on
an average of the probabilities of sequential tunneling events
under quasiequilibrium (see Appendix A). For simplicity, one-
dimensional (1D) charge transport will be considered first. The
average hopping range Rnn can be obtained from the approach
used our previous work [20] by solving equation

Bc = 1

2α

∫ Rnn

0

∫ Rnn+εi−rij (1±β)

−∞
τ (ε,εF )dεdrij .

Where Bc ≈ 1 is the percolation criterion for a one-
dimensional system [21], g(ε) is the density of states, and
τ (ε,εF ) = g(ε)[1 − f (ε,εF )] with f (ε,εF ) = 1/[1 + exp(ε −
εF )] being the Fermi-Dirac distribution. Here, we consider
a one-dimensional Gaussian-shaped DOS of the form of
g(ε) = Nt√

2πσ0
exp(− ε2

2σ 2
0

) [22,23], where Nt is the number of

states per unit length, typical 1 × 109 m−1, and σ0 = σ/kBT .
Most of the calculations were done for the case of weak
disorder, σ/kBT � 3, where dispersion effects are negligible.
In order to study transport as a function of the concentration
of charge carriers, the DOS distribution will be filled up to a
variable Fermi level.

Generally speaking, the Einstein relation can be calculated
by using the following definition:

D

μ
= (x̄2 − x̄2)/2d t

x̄/F t
= F (x̄2 − x̄2)

2d x̄
,

where x is the position of carrier, t is time, and d is the
dimensionality. At zero electric field, a particle with energy εi

at a given site hops over a distance Rnn in the hopping space.
Because these hops occur in random directions, there will
be, on average, no net spatial displacement. In the presence,
there is a prevalence of jumps along the field direction and,
concomitantly, there will be a net displacement. Summing
up the jumps trajectories for an initial energy εi , the average
hopping distance along the electric field, x̄f , is given as

x̄f = I1 + I2

I3 + I4
, (6)

where

I1 =
∑

±

∫ εi+Rnn

εi±βRnn

τ (ε,εF )

(
Rnn − εi + ε

1 ± β

)
dε,

I2 =
∑

±

∫ εi±βRnn

−∞
τ (ε,εF )Rnndε,

I3 =
∑

±

∫ εi+Rnn

εi±βRnn

τ (ε,εF )dε,

I4 =
∑

±

∫ εi±βRnn

−∞
τ (ε,εF )dε.

In the hopping space, the probability of all these hops
is exp(−Rnn). Knowing the average hopping distance al-
lows calculating the average rate of the transport, i.e., is
ν0x̄f exp(−Rnn). Hence the mobility at energy εi is

μ(εi) = lim
t→∞

dx̄f

Fdt
= ν0x̄f

F
exp(−Rnn). (7)

To calculate the diffusion constant D in the long-time limit,
we shall use the definition

D(εi) = 1

2
lim
t→∞

d

dt

[
x̄2

f − x̄f
2
]

= [(x̄f + �x)2 − x̄f
2]

2
ν0 exp(−Rnn)

= [(x̄f + ν0 exp(−Rnn)t(ε))2 − x̄f
2]

2
ν0 exp(−Rnn).

The term of t(ε) in the expression appears due to the
stochastic variance of times of carrier release from deep traps,
written as

t(ε) = I ′
1 + I ′

2

I ′
3 + I ′

4

, (8)

where

I ′
1 =

∑
±

∫ Rnn

0
dr

∫ εi+r

εi±βRij

dε
τ (ε,εF )

ν0

× exp(2α(1 ± β)r + ε − εi),

I ′
2 =

∑
±

∫ Rnn

0
dr

∫ εi±βr

−∞
dε

τ (ε,εF )

ν0
exp(2α(1 ± β)r),

I ′
3 =

∑
±

∫ Rnn

0
dr

∫ εi+r

εi±βr

dετ (ε,εF )dε,

I ′
4 =

∑
±

∫ Rnn

0
dRij

∫ εi±βr

−∞
dετ (ε,εF ).

This yields the Einstein relation as a function of the
normalized site energy εi :

D(εi)

μ(εi)
= F

[
x̄2

f − x̄f
2
]

2x̄f

. (9)

After averaging over the normalized site energies, we end up
with

D

μ
=

∫ ∞
−∞ dε D(εi )

μ(εi )
g(εi)f (εi,εF )∫ ∞

−∞ dεg(εi)f (εi,εF )
. (10)

D/μ depends on normalized disorder and electric field because
both D and μ depend differently on electric, temperature, and
degree of disorder [25].
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Using a similar way, we extend the results for the 1D
calculation to a three-dimensional (3D) network of hopping
sites. In this situation, the values of Rnn can be determined
from

Bc = 1

8α3

∫ π

0
dθ sin θ

∫ Rnn

0
drij 2πr2

ij

×
∫ Rnn+εi−rij (1+β cos θ)

−∞
dετ (ε,εF ).

Here, Bc = 2.8 [24] and I1-I ′
4 can be presented as

I1 =
∫ π

0
dθ sin θ

∫ εi+Rnn

εi−βRnn cos θ

dετ (ε,εF )

(
Rnn − ε + εi

1 + β cos θ

)3

× cos θ,

I2 =
∫ π

0
dθ sin θ

∫ εi−βRnn cos θ

−∞
dετ (ε,εF )R3

nn cos θ,

I3 =
∫ π

0
dθ sin θ

∫ εi+Rnn

εi−βRnn cos θ

dετ (ε,εF )

(
Rnn − ε + εi

1 + β cos θ

)2

,

I4 =
∫ π

0
dθ sin θ

∫ εi−βRnn cos θ

−∞
dετ (ε,εF )R2

nn,

I
′
1 =

∫ π

0
dθ sin θ

∫ Rnn

0
dr2πr2

∫ Rnn+εi−r(1+β cos θ)

εi−rβ cos θ

dε

× τ (ε,εF )

ν0
exp(2α(1 + β cos θ )r + ε − εi),

I
′
2 =

∫ π

0
dθ sin θ

∫ Rnn

0
dr2πr2

∫ εi−rβ cos θ

−∞
dε

τ (ε,εF )

ν0

× exp(2α(1 + β cos θ )r),

I
′
3 =

∫ π

0
dθ sin θ

∫ Rnn

0
dr2πr2

∫ Rnn+εi−r(1+β cos θ)

εi−rβ cos θ

dετ (ε,εF ),

I
′
4 =

∫ π

0
dθ sin θ

∫ Rnn

0
dr2πr2

∫ εi−rβ cos θ

−∞
dετ (ε,εF ).

Substituting I1-I ′
4 into Eqs. (6) and (8), the Einstein relation at

energy εi in three-dimensional space can be calculated by

D(εi)

μ(εi)
= F

[
x̄2

f − x̄f
2
]

6x̄f

. (11)

Connecting Eqs. (10) and (11), one obtains the Einstein
relation in the three-dimensional case.

III. RESULTS AND DISCUSSION

In Fig. 1, we first show the dependence of qD/μkBT as a
function of the disorder parameter σ/kBT for a 3D system with
a localization radius α−1 = 1 nm and an electric field F =
1 × 107 V/m, parametric in the position of the Fermi level
EF . qD/μkBT approaches an exponential dependence on
(σ/kBT )2. This type of dependence on the disorder parameter
is a characteristic feature of hopping transport within a Gaus-
sian DOS. It is a signature of the fact that in a virtually empty
DOS charge carriers tend to equilibrate at an average energy
of E∞/σ = σ/kBT . This implies that the activation energy

FIG. 1. (Color) Dependence of qD/μkBT as a function of the
disorder parametric in the normalized Fermi level EF /σ (carrier
concentration).

needed for transport increases upon lowering the temperature.
When raising the Fermi level to EF = 3σ , i.e., close to the
equilibrium energy, the dependence of qD/μkBT on σ/kBT

becomes weaker. Consistent with earlier work [8–10], the
calculations show that qD/μkBT increases quadratically with
electric field and the effect increases when going from a 1D
to a 3D system (Fig. 2). This is a signature of anomalous
spreading of the carrier packet in a disordered system in the
presence of a bias field. Physically, mobility reflects carrier
motion down-field while diffusion reflects three-dimensional
motion. The Einstein relation applies when motion in all three
directions is equivalent, which is only at low field. The Einstein
relation does not apply under high-field conditions when the
down-field motion is very different in magnitude compared to
motion in the perpendicular directions.

Next, we examine in greater detail how qD/μkBT changes
upon filling up the DOS distribution by raising the Fermi level
in Fig. 3. This anomalous spreading of the carrier packet
is caused by filling the DOS as evidenced by the variation
of the carrier mobility, their diffusivity and qD/μkBT as a
function of the concentration of the charge carriers. The carrier
concentration is calculated from Eq. (3). Figure 3 shows also
data for σ/kBT = 2.3 in which the quasiequilibrium energy,

FIG. 2. (Color) Dependence of qD/μkBT on the electric field.
The parameters are σ = 0.06 eV and EF = −0.35 eV. The other
parameters are the same as those in Fig. 1
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FIG. 3. (Color) (Top) Dependence of the charge carrier mobility
μ (bottom), the diffusivity D (middle) and qD/μkBT (top) as a
function of the relative charge carrier concentration for a 3D system
and F = 1 × 107 V/m. The arrows indicate the relative positions of
the Fermi level at which the qD/μkBT begins to fall off.

normalized to σ , is at −σ/kBT = −2.3. At low lying Fermi
level, i.e., when the DOS is virtually empty, the charge carrier
mobility is independent on carrier concentration and starts
increasing weakly around n/Nt = 1 × 10−4, consistent with
earlier work [26,27]. Remarkably, the field-assisted diffusivity
begins to decrease already at a relative concentration of the
order of n/Nt = 1 × 10−6, equivalent to a normalized Fermi
level at EF /σ of 6.7 (σ/kBT = 2.3) and 6.2 (σ/kBT = 3).
The qD/μkBT ratio decreases accordingly. Nenashev et al. [9]
argued already that the deep are responsible for the anomalous
spreading of the carrier packet. This is, by the way, difficult
to assess via Monte Carlo simulation because of the requires
huge site array but is easily taken care of in the current analytic
calculations.

The notion that the decrease of both D and qD/μkBT is
associated with the deep tail states of the DOS is plausible
because deeply localized trapped carriers are more strongly
localized and lag behind the packet of moving carriers.
Eliminating those deep states by raising the Fermi level
must therefore reduce field assisted diffusion as illustrated
in Fig. 3(middle). The effect of deep states is also diminished
by raising the temperature. This is documented by the facts
that(i) the diffusivity decreases exponentially with (σ/kBT )2

whereas the mobility increases with (σ/kBT )2 and (ii) that
the slope of ln(qD/μkBT ) versus (σ/kBT )2 decreases upon
raising the Fermi level.

Figure 4 shows that the decrease of qD/μkBT with increas-
ing n/Nt diminishes upon lowering the electric field because
the anomalous spreading of the carrier is a field-driven process.
It is clear here, at high electric field, qD/μkBT decreases
with carrier density, which is contradictory to the prediction
of Eq. (2). The inset in Fig. 4 demonstrates that at low
electric field (1 × 105 V/m), qD/μkBT indeed approaches

FIG. 4. (Color) Dependence of qD/μkBT on carrier concen-
tration for different electric fields for 3D system and for F =
1 × 107 V/m for a 1D system. The disorder parameter σ/kBT is
σ/kBT = 2.3. The inset shows the dependence of qD/μkBT for 3D
on the carrier concentration at low electric fields.

unity when the concentration reaches about n/Nt = 1 × 10−3.
Interestingly, though, qD/μkBT tends to level off at high
carrier concentration and higher fields suggesting that in this
case, the Einstein relation is violated, probably because of
charge carrier heating. The observation that qD/μkBT = 1 is
recovered at low fields is consistent with the simulations of
Mendels and Tessler for a field of F = 5 V/m [14].

In summary, we show that, at low fields, the Einstein
relation applies correctly to organic semiconductors, however,
at a higher electric field regime, the Einstein relation deviates
dramatically, this should be expected in any material including
organic semiconductors. We have also shown that anomalous
field assisted diffusion is a fictitious phenomenon, caused by
the spatial displacement between a moving charge carrier front
and strong localized carriers that lag behind as electric field
and disorder increase. This effect is gradually diminished when
either those deep states are filled by raising the Fermi level or
by increasing temperature when the occupational DOS shifts
towards the center of the DOS. The interplay between the
operationally defined diffusion and drift of charge carriers,
expressed by the Einstein ratio, is a temperature and field
driven process. It is gradually eliminated upon filling up the
states in a hopping system with the Gaussian DOS distribution.

We would also point out that the MA model is actually
a good approximation for Marcus theory in equilibrium
mode [16], the choice of the hopping rate only affects the
temperature dependence of the averaged jump rate because
an extra term for the geometric relaxation energy enters, this
term is unimportant for charge carrier hopping near room
temperature. The Marcus rate equation can be also included in
our model (see Appendix B).
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APPENDIX A

The hopping probability between two sits depends
on their spatial separation and energy difference, de-
scribed as Miller equation (4). The transport of the car-
rier through a semiconductor layer consists of a se-
ries of hops, therefore, the net conductivity depends on
the average of the probabilities of sequential hops. As
sequential probabilities multiply, the appropriate average
is the geometric mean, i.e., 〈P 〉 = lim�→∞[

∏�
i Pi]1/� =

exp(lim�→∞ 1
�

∑�
i ln Pi) [17,20], where Pi is the probability

of the individual hop. Defining Pi = exp(−R) results in
〈P 〉 ∼ exp(−〈R〉) = exp(−Rnn), and Rnn is the average range
hopped by a particular carrier on its passage through the
material. For an quasiequilibrium system, this value should
be the same for this particular carrier.

APPENDIX B

In the case of the Marcus jump rate model, the probability
of carrier jump from a site with energy normalized εi to the
target site with energy εj is given [28,29]

ν = |Iij |2
�kBT

√
π

εa

exp

[
− (εj − εi + εa)2

4εa

]
. (B1)

Here, εd = Ea/kBT with Ea being the reorganisation energy
related to the polaron relaxation, Iij = J0 exp(−2αRij ) is the
transfer integral, i.e., the wave-function overlap between sites
i and j . Similar to Eq. (4), when electric field F exists, Marcus
hopping rate can be written as

ν = |Iij |2
�kBT

√
π

εa

exp

⎡
⎣−

(
εj − εi + qFRij cos θ

kBT
+ εa

)2

4εa

⎤
⎦

= ν0 exp

⎡
⎣−2rij −

(
εj − εi + qFRij cos θ

kBT
+ εa

)2

4εa

⎤
⎦ .

In this situation, the hopping range can be presented as

R = 2rij + (εj − εi + βrij cos θ + εa)2

4εa

. (B2)

Then, according to the definition of the average hopping range
in the manuscript, Rnn can be obtained by solving

Bc = 1

8α3

∫ π

0
dθ sin θ

∫ Rnn/2

0
dr2πr2

×
∫ εi−εa−β cos θr+√

4εa (Rnn−2r)

εi−εa−β cos θr−√
4εa (Rnn−2r)

dετ (ε,εF ).

Again, following the definition of x̄f in the manuscript, one
can obtain

x̄f = I1

I3
(B3)

with

I1 =
∫ π

0
dθ sin θ

∫ εi−εa+(4εaRnn)1/2

εi−εa−Max((4εaRnn)1/2,0.5βRnn cos θ)
dετ (ε,εF )

×
(−B ± √

B2 − 4AC

2A

)3

cos θ.

I3 =
∫ π

0
dθ sin θ

∫ εi−εa+(4εaRnn)1/2

εi−εa−Max((4εaRnn)1/2,0.5βRnn cos θ)
dετ (ε,εF )

×
(−B ± √

B2 − 4AC

2A

)2

,

where

A = β2 cos2 θ, B = 2β cos θ (ε − εi + εa) + 4εa

C = (ε − εi + εa)2 − 4εaRnn.

Then

t(ε) = I ′
1

I ′
2

, (B4)

I ′
1 =

∫ π

0
dθ sin θ

∫ Rnn/2

0
dr2πr2

∫ εi−εa−β cos θr+√
4εa (Rnn−2r)

εi−εa−β cos θr−√
4εa (Rnn−2r)

× dετ (ε,εF )
exp

[
4α +

(
εj −εi+ qFRij cos θ

kB T
+εa

)2

4εa

]
ν0

,

I ′
2 =

∫ π

0
dθ sin θ

∫ Rnn/2

0
dr2πr2

∫ εi−εa−β cos θr+√
4εa (Rnn−2r)

εi−εa−β cos θr−√
4εa (Rnn−2r)

× dετ (ε,εF ).

Substituting Eqs. (14) and (15) into (6), (9), and (10), D/μ

based on Marcus rate can be calculated. It can be seen from
Fig. 5, though the dependence of D/μ is not so strong as Miller
equation, the basic trend is the same. This conclusion holds
for the field and temperature dependence of D/μ as well.

FIG. 5. Dependence of D/μ on carrier density. The parameters
used here are F = 1 × 107 V/m, σ/kBT = 3 and Ea = 0.5 eV. The
other parameters are the same as those in Fig. 1.
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