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Effect of Vegard strains on the extrinsic size effects in ferroelectric nanoparticles
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By changing the size and the shape of ferroelectric nanoparticles, one can govern their polar properties,
including their improvement in comparison with the bulk material. The shift of the ferroelectric transition
temperature can reach hundreds of degrees Kelvin. A phenomenological description of these effects was proposed
in the framework of Landau-Ginsburg-Devonshire (LGD) theory using the concepts of surface tension and surface
bond contraction. However, this description contains a series of poorly defined parameters, and the physical nature
is ambiguous. It appears that the size and shape dependences of the phase transition temperature, along with
all polar properties, are defined by the nature of the size effect. Existing LGD-type models do not take into
account that defect concentration strongly increases near the particle surface. In order to develop an adequate
phenomenological description of size effects in ferroelectric nanoparticles, one should consider Vegard strains
(local lattice deformations) originating from defect accumulation near the surface. In this paper, we propose
a theoretical model that takes into account Vegard strains and performs a detailed quantitative comparison of
the theoretical results with experimental ones for quasispherical KTa1-xNbxO3 nanoparticles (average radius 25
nm), which reveal the essential (about 100 K) increase of the transition temperature in spherical nanoparticles
in comparison with bulk crystals. From the comparison between the theory and experiment, we established the
leading contribution of Vegard strains to the extrinsic size effects in ferroelectric nanoparticles. We determined
the dependence of Vegard strains on the content of Nb and reconstructed the Curie temperature dependence on
the content of Nb using this dependence. The dependence of the Curie temperature on the Nb content becomes
a nonmonotonic one for the small (<20 nm) elongated KTa1-xNbxO3 nanoparticles. We established that the
accumulation of intrinsic and extrinsic defects near the surface can play a key role in the physical origin of
extrinsic size effects in ferroelectric nanoparticles and govern its main features.
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I. INTRODUCTION

The study of unique physical properties of ferroelectric
nanoparticles attracts the attention of researchers. Yadlovker
and Berger [1–3] present unexpected experimental results
that reveal the enhancement of polar properties of cylindrical
nanoparticles of Rochelle salt. The authors of Refs. [4–6]
successfully managed the temperature of the ferroelectric
phase transition and the magnitude and position of the
maximum of the dielectric constant for nanopowders and
nanoceramics of barium titanate and lead titanate. The studies
of KTaO3 nanopowders [7–10] and nanograined ferroelectrics
of KNbO3 and KTa1-xNbxO3 [11–13] revealed new polar and
magnetic phases and the shift of phase transition temperature
in comparison with bulk crystals.

Theoretical consideration of manifold size effects allows
one to establish the physical origin of the transition tem-
perature shift and phase diagram changes appearing under
the decrease of nanoparticle sizes. In particular, using the
continual phenomenological approach, Perriat et al. [14],
Huang et al. [15,16], Morozovska et al. [17,18,20], Eliseev
et al. [21], and Ma [22] have shown that the changes of the
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transition temperatures and the enhancement or weakening
of polar properties are conditioned by different “extrinsic”
and “intrinsic” size effects in nanoparticles. The partition is
tentative and specified by the size effect manifestation. Size
effect classification in ferroelectric nanoparticles is given in
the first column of Table I.

As a rule, the term “extrinsic size effects” implies that its
consequences depend on the size and the shape of the particle
but not on its internal state (e.g., not the gradients of physical
properties inside the nanoparticle). The contribution of the
extrinsic size effecst leads to the shift of the transition Curie
temperature from the paraelectric to ferroelectric phase that is
proportional to either 1/R [14,17–21] or 1/R2 [15], depending
on the model, where R is the curvature radius of the nanopar-
ticles surface (e.g., it is the radius of the spherical particle).
For instance, if one considers intrinsic surface stress (see, e.g.,
Ref. [23]) under the curved surface of solid bodies, it leads
to isotropic compression of the particles, resulting in the shift
of the transition temperature proportional to Qμ/R, where μ

is the coefficient of the surface stress (similar to the surface
tension coefficient determining the surface energy in liquids).
The form of the “effective” electrostriction constant Q essen-
tially depends on the shape of the particle, having different
signs for the cylinders and spheres of perovskite ferroelectrics
[17–21]. In the “surface bond contraction” model [15], the shift
of the Curie temperature is proportional to the ratio χ/R2, and
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TABLE I. Size effects of Curie temperature in ferroelectric nanoparticles.

Contribution to size effect
(and its origin)

Size dependence of Curie temperature shift and dependence on the
particle radius R Size effect type Ref.

Spherical particle of radius R Ellipsoid or wire of radius R with
polarization directed along the
longer axes L � R

Surface stress (from the
surface tension)

− 2μ(2Q12+Q11)
αT R

− 4μQ12
αT R

Extrinsic (∼1/R) [17,18]

μ is a surface stress (tension) coefficient that is positive, Qij are
electrostriction coefficients, and αT is the temperature coefficient of
dielectric stiffness

Surface bond contraction
(from the surface curvature)

4Y

αT

δa

a

(na)2

R2
2Y

αT

δa

a

(na)2

R2 Extrinsic (∼1/R2) [15,16]

Y is the Young modulus, δa is the contraction of a lattice constant a,
and n is the number of contracted layers; factor χ = 4Y

αT

δa

a
(na)2

Vegard strains/stresses (from
defect accumulation)

−2η(Q11+2Q12)
αT (s11+2s12)

R2
0

R2
−4ηQ12

αT (s11+s12)

R2
0

R2 Extrinsic (∼1/R2) This work

η is the Vegard strain, R0 is the defect layer thickness, and sij are
elastic compliances

Depolarization, correlation,
and spontaneous
flexoelectric effects (from
electric field and
polarization gradients)

−(g/αT )
(g/nd )+(λ+√

g/nd )(R/3)

λ > 0

nd = 1
(εb+2εe)ε0

is a

depolarization factor

− 2
αT

(
g

R λ+R2/4

)
, λ > 0,

− 2
αT

(
g 2λ−R

2R λ2

)
, λ < 0.

The shift from the depolarization
field is negligibly small, and
absent in the limit of a wire when
L/R → ∞

Intrinsic (R dependence
is complex)

[17,18,27]

λ is the extrapolation length, g is the polarization gradient term, nd is
a depolarization factor, εb is the background permittivity of
ferroelectrics [28], and εe is the permittivity of external media

the value of the factor χ is determined by the surface bond
contraction to the lattice parameter ratio δa/a [Table I]. The
influence of extrinsic size effects is essential for the particles
with a curvature radius (or size) smaller than 50–100 nm.

The known intrinsic size effects of ferroelectric nanopar-
ticles are determined mainly by the long-range gradient
of the depolarizing electric field inside the particle and
the short-range (or “chemical”) polarization gradient near
the surface [24]. They lead to the more complicated depen-
dence of the transition temperature on the shape and size
of the particles, primarily due to a nontrivial dependence of
the electrical depolarization fields and flexoelectric strains on
particle shape, the orientation of the ferroelectric polarization,
and the conditions of its screening near the particle surface
[17–21]. As a rule, the influence of intrinsic size effects is
essential for the particles with sizes less than 10 nm; the
internal scale of polarization is determined by the correlation
length, which is typically less than 0.5 nm in spherical particles
due to the depolarization effect; and the deviation from the bulk
polarization is governed by the so-called extrapolation length
λ that is about 0.5–2 nm [25,26].

Therefore, the analysis of the experimentally observed
transition temperature dependence on the particles sizes allows
one to establish the nature of size effects in the studied system
and to determine corresponding phenomenological parameters
like μ, χ , or λ from the fitting of experimental data with

the adequate theoretical model. Despite this, it remains to be
realized for the majority of nanostructured systems. Probably,
the difficulties are mostly due to existing phenomenological
considerations of ferroelectric particles not being adequate for
real nanoparticles with strongly strained near-surface layers,
where the strains or stresses are caused by the accumulation of
defects (impurities and vacancies) in the region. Indeed, it is
well established that the defects concentration noticeably in-
creases near the particle surface, allowing for the essential low-
ering of their formation energies [27–29]. The abrupt, spon-
taneous polarization near the surface of ferroelectrics causes
the strong accumulation of ions and charged vacancies in the
spatial regions to screen the bond surface charges [30–33].
In turn, vacancies and ion accumulations near the surfaces
of solids produce surface stresses [34] that substantially alter
thermodynamic equilibrium [35], leading to the changes of
phase diagrams and transition temperatures.

In order to develop an adequate thermodynamic description
of size effects in ferroelectric nanoparticles, one has to deter-
mine the microscopic nature of phenomenological parameters
and relate them to the lattice deformation near the particle
surface due to the defect accumulation. The analysis of our
experimental results has shown that the concept of composi-
tionally induced expansion [34] (or chemical pressure [36])
originated from the Vegard strains [37,38] is consistent with
our model. According to this concept, the inclusion of a defect
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FIG. 1. (a) Sequence of phase and structural transformations in KTa1-xNbxO3. (b) Intrinsic defects in KTa(Nb)O3 lattice. (c) and (d) Local
lattice deformations caused by intrinsic [oxygen and potassium vacancies, V (O) and V (K)] and extrinsic (Fe3+ or Mn2+ ions) defects.

(impurity ion or vacancy) leads to the local deformation of the
crystal lattice, and the action of many defects causes a strain
proportional to their concentration. In this case, the proportion-
ality coefficient is determined either from ab initio calculations
[38] or from experiments [39,40]. It should be noted that the
influence of the Vegard strain, coming from the diffusion and
the accumulation of defects near the interfaces of ferroelectric
thin films, results in the pronounced change of their polar prop-
erties [41,42]. Therefore, it is natural to expect that one could
not neglect Vegard strains when describing polar properties of
ferroelectric nanoparticles. Also, a steric effect [43,44] takes
place for the strong accumulation (“crowding”) of defects.

Thus, we performed the modeling of the transition temper-
atures for ferroelectric nanoparticles taking into account the
Vegard strains. Theoretical results are analyzed and compared
with the experiment for KTa1-xNbxO3 nanoparticles.

II. THEORETICAL MODEL

A. Model background for the KTaO3-KNbO3 system

It was experimentally established that extrinsic and intrinsic
defects play a crucial role in the emerging of polar properties
in KTa1-xNbxO3 nanocrystals [8–10,13]. Thus, due to the
presence of the dipole centers associated with Fe3+ ions
(the centers of axial and rhombic symmetries), ferroelectric
phase transition occurs in nanocrystalline KTaO3 at 29 K
[7,8], while the bulk material is a quantum paraelectric [45].
These centers include oxygen vacancies in their structure and
are formed mainly near the surface of the particles, as the
concentration of oxygen vacancies has a sharp maximum in
the surface layer.

Note the main features of polar and structural phase
transitions in the considered system. Bulk KTaO3 is a quantum
paraelectric having a cubic structure down to 0 K [45]. At
the same time, KNbO3 and solid solutions of KTa1-xNbxO3

(x > 0.2) undergo three successive phase transitions, namely,
from the cubic paraelectric to tetragonal ferroelectric phase
at Curie temperature (TC) and then two structural transitions,
with the polarization vector Р, switching between different
crystallographic directions [Fig. 1(a)]. Also, as shown in
Ref. [46], TC shifts almost linearly under the changes of
the Nb content x in the KTa1-xNbxO3 solid solution. Below
we consider the dependence of the Curie temperature on the
composition under the decreasing size of the crystals for two
particle shapes.

In the solid solutions considered, the most prevalent intrin-
sic defects are vacancies of oxygen and potassium [Fig. 1(b)].
Iron and manganese ions are mostly registered among the
extrinsic defects [Figs. 1(c) and 1(d)], which are incorporated
into the lattice during the synthesis as unavoidable impurities
[9,13]. Figure 1(b) gives an idea of the atomic arrangement
and intrinsic defects (oxygen and potassium vacancies) in
the KTa(Nb)O3 lattice. Figure 1(c) demonstrates different
possibilities of lattice strain appearance in the presence of an
impurity Fe3+ ion and/or potassium vacancy. In the first case,
the Fe3+ ion occupies a site of the potassium ion K+, and an
oxygen ion invades as the charge compensator in the nearest in-
tersite, which leads to strong local stretching of the lattice. The
local lattice contraction occurs under the potassium vacancy
formation. Corresponding atomic displacements are indicated
by arrows. Figure 1(d) demonstrates the different possibilities
of lattice strain in the presence of an impurity Mn2+ ion and/or
oxygen vacancy. In the first case, the Mn2+ ion occupies the site
of the Ta5+/Nb5+ ion, and an oxygen vacancy is formed as a
charge compensator in the immediate environment. The result
is a local extension of the lattice around the impurity ion and
its local contraction around oxygen vacancy. Corresponding
atomic displacements are indicated by arrows.

It is known that the concentration of defects inside the
crystal is inhomogeneous and strongly increases from the bulk
to the surface of the particle [34,35]. Since the near-surface
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layer is enriched with defects, here the crystal lattice becomes
either “spongy” or “denser” depending on the type of defect
[Figs. 1(b)–1(d)], meaning that the lattice parameter is also
locally changed.

With the presence of different types of defects, resulting in
either expansion or compression of the lattice, the surface of
the particle may have a complicated relief structure. However,
the ensemble of weakly interacting or noninteracting particles
most probably can be considered as an effective ensemble of
ellipsoids with different aspect ratios of the semiaxes R and
L. In our calculations, we change the curvature of the surface
1/R and calculate the Curie temperature for two limiting forms
of the particle, namely the sphere and very prolate ellipsoid.
Thus, R is either the sphere radius or the smaller semiaxis of
the ellipsoid hereinafter.

B. Basic equations

1. Core and shell model for Vegard pressure calculations

Possible lattice deformations caused by intrinsic [vacancies
V (O) and V (K)] and extrinsic (Fe3+ or Mn2+ ions) defects
are shown in Figs. 1(b)–1(d). Following Huang et al. [15]
and using the concept of compositionally induced expansion
or contraction introduced by Sheldon and Shenoy [34], the
defect accumulation under a curved surface produces effective
stresses of the inner part of the particle. The screening of
the depolarization field at the surface and outside of the
particle leads to the exponential decrease of charged defect
concentration when moving away from the surface [34]. In
addition, the characteristic thickness of the layer enriched by
defects is determined by the screening length, and their max-
imal concentration is limited by a steric effect [41,42]. Based
on the abovementioned results, we perform an elementary
speculation leading to the semipostulated expression for the
hydrostatic pressure acting on the inner part of an ellipsoidal
particle with semiaxes R and L(R � L) [Fig. 2].

In accordance with the Vegard law [37], local changes
in the concentration of defects lead to the appearance of
additional sources for elastic strains δηij = W̃ d

ij δNd , where
Wd

ij are the Vegard stress tensor components for defects
of the type “d”; δNd (�r) = Nd (�r) − Nde is the difference
between the “instant” concentration of defects Nd (r) in the
point r and their equilibrium (average) concentration Nde.
Hereinafter, the Vegard tensor is diagonal, i.e., W̃ d

ij = Wδij

(δij is the Kronecker delta symbol). For perovskites ABO3,
the absolute values of W related to vacancies can be estimated
as |W |�(10−102) Å3 [38], and so the corresponding strains
δuij (r) can reach percentages for a high variation of defect
concentration δNd ∼ 1027m−3. Assuming that most defects
are located in the ultrathin layer under the particle surface
and their concentration decreases exponentially towards the
particle bulk [34], we can approximately consider the particle
consisting of an ultrathin “shell” of thickness R0 � R highly
enriched by defects and the remaining “core” of radius
R − R0 ≈ R without them, i.e., δNd = 0 in the core and
δNd = Nd in the shell. Depending on the Vegard stress sign,
the mechanism leads to the tangential compressive or tensile
strain δη11 = δη22 = WδNd , which exists in the shell of
thickness R0. For the sake of brevity, the strain is further
denoted as η, i.e., η ≡ WδNd . Then, using eqs. (1) and (3)

FIG. 2. (Color online) Schematics of an ellipsoidal particle with
semiaxes R and L covered by the shell of thickness R0, with
accumulated defects. Separation between the screening charge and
the spontaneous and abrupt polarization at the core-shell interface is
RS . Ferroelectric polarization is directed along the longest ellipsoid
axes.

from Huang et al. [15] and exactly following their derivation
in the paper, the deformation η leads to the changes of the
spherical particle radius for the value δR = ηR0 and thus to the
appearance or tangential and normal stresses σtt = Y δR

R
and

σrr = −Y δR
R

R0
R

, correspondingly, where Y is the Young modu-
lus. To adjust our results with notations used in Ref. [15], note
that R = Na, δR = nδa, and so n/N ≈ R0/R. Finally, using
Y = 1/(s11 + s12) and for cubic symmetry, while it should
be substituted by the factor for a wire Y → 1/(s11 + 2s12)
[17], the hydrostatic pressure acting on the inner part of the
ellipsoidal particle with semiaxes R and L acquires the form

σrr (R,x) =
{ −η(x)

s11(x)+s12(x)
R2

0 (x)
R2 , R � L (prolate ellipsoid),

−η(x)
s11(x)+2s12(x)

R2
0 (x)
R2 , R ≈ L (sphere).

(1)

Here, subscript rr denotes that the pressure is radial, and R is
the particle radius. sij (x) is the elastic compliance modulus of
the material, and the characteristic size R0 (x) is the particle
surface layer thickness, where accumulated defects create ele-
mentary volume changes. Parameter η (x) is a “compositional”
Vegard strain [36–38] that is usually dependent on the Nb
content x in KTa1-xNbxO3 due to the strong dependence of the
elementary volume changes on defect and surrounding atoms
type [38]. Immediately, the Vegard strain x dependence can
lead to the analogous dependence of the shell thickness R0 (x).
Moreover, the following correlation should exist: the higher the
Vegard strain, the thicker the shell, because more numbers of
layers are required for the full relaxation of the surface strain.
Note that the stress σrr in Eq. (1) is radius (R) and content
(x) dependent; and its x dependence can be determined from
our experimental data. With increasing R, the stress decreases
proportionally to the ratio (R2

0/R
2).
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2. Model for depolarization field calculations in ferroelectric
nanoparticles covered with a paraelectric shell

In accordance with the Poisson equation divD = ρfree, an
internal electric field is inevitably present in a nanoparticle with
inhomogeneous polarization P that creates nonzero divergence
inside the particle, divP �= 0, as well as when the polarization
normal component is abrupt at the particle surface [17–20], and
the field is depolarizing. The field is exactly zero only for the
case of the ferroelectric nanowire with polarization directed
along its axis [17]; it can be regarded negligibly small for
ellipsoidal particles with semiaxes R and L and polarization
directed along the long axes L, if the aspect ratio R/L is very
high (more than 103).

Since we postulated the shell layer enriched by defects,
the strong polarization gradient is very likely here. First, let
us estimate the “maximal” depolarization field created by an
ellipsoidal single-domain ferroelectric nanoparticle core with
uniform polarization �P = (0,0,P3) directed along its longer
axes L, relative dielectric permittivity εcore

33 , and without free
carriers. The core is covered by a nonferroelectric paraelectric
shell with relative dielectric permittivity εshell

33 , and in addition,
the strong inequality εshell

33 � εcore
33 is likely when the shell is

regarded to be in a paraelectric phase close to the ferroelectric
transition. The screening charge is located either immediately
outside the shell or near its outer surface, so the “effective”
separation between the screening charge and the spontaneous
and abrupt polarization at the core-shell interface is RS and
RS � R0. Using the inequalities R0 � R < L, the local situa-
tion is similar to the planar ferroelectric capacitor of thickness
L with a dielectric gap of thickness RS and a depolarization
field Ed

3 = −RSP3

ε0(RS εcore
33 +L εshell

33 ) [28], where ε0 is a universal

dielectric constant. It is shown that the electrostatic problem
in Fig. 2 can be solved exactly for a spherical particle, i.e.,
Ed

3 = −(R3−(R−RS )3)P3

ε0((R−RS )3(εshell
33 −εcore

33 )+R3(2εshell
33 +εcore

33 ))
where R = L. Using

the expression and interpolation for ellipsoid depolarization
field factors [47] proposed in Ref. [17], nD(a) ∼ a2/(1 + a2),
where a = R/L, we obtain the upper estimation for the

depolarization field of the ferroelectric ellipsoid covered with
the paraelectric shell

Ed
3 ≈

⎧⎨
⎩

−RSRP3

ε0ε
shell
33 L2 , R � L (very prolate ellipsoid),

−2RSP3

3ε0ε
shell
33 R

, R ≈ L (sphere).
(2)

In reality, expression (2) gives the upper estimation of the
depolarization field. In particular, if the shell is semiconduct-
ing, the value RS acquires the sense of the Thomas-Fermi
screening radius that can be much smaller than the lattice
constant [48]. Also, the difference of core and shell averaged
polarizations should be included in Eq. (2), i.e., one can
substitute P3 → (P3 − P shell

3 ).

3. Landau-Ginsburg-Devonshire—phenomenological description

Since the actual particle sizes for which we have ex-
perimental data are higher than 10 nm [Fig. 3(e)], in the
following, we can ignore intrinsic size effects that originated
from the polarization gradient, so the Landau-Ginsburg-
Devonshire (LGD)-potential functional for the solid solution
of paraelectric and ferroelectric acquires the relatively simple
form [17–21]]:


 = αbulk(T ,x)
P 2

3

2
+ β(x)

P 4
3

4
+ γ (x)

P 6
3

6
− P3

Ed
3

2

−Qij33σijP
2
3 − 1

2
sijklσij σkl . (3)

Here, x is the content of Nb in KTa1-xNbxO3. P 3 stands for the
uniform polarization, Ed

3 is depolarization field, and Qijkl are
electrostriction tensor coefficients. As one can see from Eq. (3),
the coefficient αbulk(T ,x) becomes renormalized by the stress
given by Eq. (1) via the electrostriction effect [17–21], namely,
α(T ,R,x) = αbulk(T ,x) − Qij33 (x) σij (R,x). The coefficient
α(T ,R,x) depends on temperature T , particle size R, content
x, polarization orientation, and other material parameters. For
ellipsoidal particles with semiaxes R and L, with polarization
uniformly aligned along the longer ellipsoid axis L, the
coefficient α(T ,R,x) was calculated as

α =
⎧⎨
⎩

xαTf

(
T − T b

C

) + (1 − x)αT q

( Tq

2 coth
( Tq

2T

) − T0
) + RSR

ε0ε
shell
33 L2 + 4η(x)Q12(x)

s11(x)+s12(x)
R2

0
R2 , R � L,

xαTf

(
T − T b

C

) + (1 − x)αT q

( Tq

2 coth
( Tq

2T

) − T0
) + 2RS

3ε0ε
shell
33 R

+ 2η(x)(Q11(x)+2Q12(x))
s11(x)+2s12(x)

R2
0

R2 , R ≈ L.
(4)

Hereinafter, subscripts q and f denote the values related to proper ferroelectrics and quantum paraelectrics, respectively. Note
that the KTa1-xNbxO3 parent phase has cubic m3m symmetry. Here, T b

C is the ferroelectric Curie temperature of the bulk material.
In Eq. (4), we used the Barrett-type formula for the coefficient αq(T ,R) = αT q((Tq/2) coth(Tq/2T ) − T0), which is valid for
quantum paraelectrics [49] in a wide temperature interval, including low quantum temperatures. T0 and Tq are the extrapolated
“virtual” Curie temperature and characteristic quantum oscillations temperature, respectively. At temperatures T � Tq/2, the
Barrett formulae transform into the classical limit, αq(T ,R) ≈ αT q (T − T0). Electrostriction tensor coefficients Qij content x

dependence can be regarded as linear Qij (x) = xQ
f

ij + (1 − x) Q
q

ij . Linear dependences can also be used for elastic compliances

sij (x) = xs
f

ij + (1 − x) s
q

ij , Vegard strain η (x) = xηf + (1 − x) ηq , and shell thickness R0 (x) = xRf + (1 − x) Rq .
The Curie temperature TC (x,R) of the solid solution can be determined from the condition α(TC,R,x) = 0 that in the classical

limit, TC � Tq/2, Rgives evident analytical expressions

TC(R,x) =

⎧⎪⎨
⎪⎩

xαTf T b
C+(1−x)αT qT0−RSR/(ε0ε

shell
33 L2)

xαTf +(1−x)αT q
− 4ηQ12(R2

0/R2)
(s11+s12)(xαTf +(1−x)αT q ) , R � L,

xαTf T b
C+(1−x)αT qT0−2RS/(3ε0ε

shell
33 R)

xαTf +(1−x)αT q
− 2η(Q11+2Q12)(R2

0/R2)
(s11+2s12)(xαTf +(1−x)αT q ) , R ≈ L.

(5)
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FIG. 3. (Color online) (a) Curie and ferroelectric transition temperature vs Nb content x in bulk KTa1-xNbxO3. Symbols are experimental
data from Ref. [46], and solid curves are the theoretical fitting based on Eqs. (1)-(5). Abbreviations PE and FE stand for paraelectric and
ferroelectric phases. Parameters of the bulk KTaO3 and KNbO3 are listed in Table II. (b) Curie temperature vs Nb content x in assemblies of
KTa1-xNbxO3 nanoparticles. Different symbols (diamonds and bars) are experimental data, solid and dotted curves are theoretical fittings for
nanoparticles with radii of 25, 15, and 35 nm, respectively. Fitting parameters are listed in Table III. (c) and (d) TEM images that show the
quasispherical and ellipsoidal KTa1-xNbxO3 nanoparticles. (e) The size distribution of nanoparticles. Solid red curve is the histogram fitting by
polynomial-Gaussian fit.

For the case of the second-order phase transitions, TC(x,R)
is the transition temperature from the ferroelectric to para-
electric phase. For the first-order phase transitions, the con-
dition α(TC,R,x) = 0 still gives the Curie temperature, but
the ferroelectric-paraelectric transition temperature TFE(x,R)
should be found as a solution of the transcendental equation
α(TFE,R,x) = 3β(x)2/(16γ (x)). The spontaneous polariza-
tion at E = 0 is P 2

0 = (
√

β2 − 4αγ − β)/2γ .
As one can see from Eq. (5), the size-dependent shift of

the Curie temperature is induced by the joint action of the
depolarization field and Vegard strain, and the latter is reflected
by the product η(R0/R)2. For the case of the negligible
depolarization contribution (e.g., at εshell

33 → ∞), the radius
dependence of the Curie temperature shift is governed by
the ratio (R0/R)2. Equation (5) shows that the increase of
the Curie temperature in comparison with a bulk material
can appear under the condition η (x) (Q11 (x) + 2Q12 (x)) < 0
for spherical particles, or η (x) Q12 (x) < 0 for ellipsoidal
particles with high aspect ratio L/R � 1.

III. Nb CONTENT AND SIZE DEPENDENCE OF THE
NANOPARTICLE TRANSITION TEMPERATURE

To fit the experimental dependence of the Curie temperature
TC (x) [squares in Fig. 3(a)] and ferroelectric transition

temperature TFE (x) [triangles in Fig. 3(a)] on the content
x of Nb, we use the interpolate function for T0 (x) =
T0(1 + 25(1 − x)0.7). Our fitting, based on Eqs. (1)–(5), is
shown by solid curves for TFE (x) and dotted curves for TC (x).
Corresponding parameters of the bulk KTaO3 and KNbO3 are
listed in Table II.

Table II gives us the parameters of the bulk materials, but the
composition dependences of the Vegard strain coefficient and
shell thickness, which determine the strength of the size effects
in nanoparticles in accordance with, e.g., Eq. (4), remain
unknown.

To obtain the dependences, we performed the comparison
with our experiment. The KTa1-xNbxO3 nanoparticle fabrica-
tion process is described in detail in Refs. [8,11,12]. Examples
of transmission electron microscopy (TEM) images, which
show the nanoparticles of quasispherical and ellipsoidal shape,
can be seen in Figs. 3(c) and 3(d). Most of the fabricated
nanoparticles have a quasispherical shape; their radii are
distributed around the most probable size of 20–25 nm [see
histogram in Fig. 3(e)]. The full width at half-maximum
(FWHM) of the particle size distribution is about 20 nm.
Although there were sizable amounts of large nanoparticles,
they contributed almost nothing to the studied size effects,
acting as a background and slightly elongating the error bars of
the Curie temperature to lower temperatures. Experimentally,
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TABLE II. Parameters of the bulk KTaO3 and KNbO3 extracted from Refs. [10,46,50,51].

Physical quantity Quantum paraelectric KTaO3 Ferroelectric KNbO3

Coefficient αT αT q = 1.36 × 106m/(FK) αTf = 4.6 × 105 m/(FK)
Characteristic temperatures Tq = 55 K, T0 = 15 K TC = 633 K, TFE = 698 K
Electrostriction coefficients Q11 = 0.11 m4/C2, Q11 = 0.13 m4/C2,

Q12 = −0.023 m4/C2 Q12 = −0.047 m4/C2

Elastic compliances s11 = 2.7 × 10−12 Pa−1 s11 = 4.61 × 10−12 Pa−1

s12 = −6.25 × 10−13 Pa−1 s12 = −1.11 × 10−12 Pa−1

the Curie temperature was determined from Raman scattering
measurements using a Jobin Yvon/Horiba T64000 triple Ra-
man spectrometer. The temperature dependences of intensity,
width, and frequency of relevant modes of the Raman spectra
were thoroughly analyzed. The experimental technique was
described in detail in Refs. [11,12].

Comparison of the calculated Curie temperature with
experimental results for KTa1-xNbxO3 nanoparticles is shown
in Fig. 3(b). We attributed the diamonds in the figure to experi-
mental data for nanoparticles with the most probable radius of
25 nm. Error bars show the Curie temperature scattering that
originated from the particle radii deviation from 25 nm or about
±10 nm that corresponds to the radii from 15 to 35 nm. Solid
and dotted curves show the corresponding theoretical fitting
for the 25, 15, and 35 nm radii. Note the pronounced increase
of the Curie temperature for KTa1-xNbxO3 nanoparticles in
comparison with a bulk solid solution for x > 0.8, leading
to a strong enhancement of the ferroelectric properties.
Since Q12 (x) < 0 and Q11 (x) + 2Q12 (x) > 0 for all x, the
negative Vegard strain η (x) increases the Curie temperature for
spherical nanoparticles, and positive strains η (x) increase the
temperature for the prolate ellipsoids accordingly per Eq. (5).

Note that the depolarization field contribution, proportional
to RS/(ε0ε

shell
33 αTf R), decreases the Curie temperature by

hundreds of degrees Kelvin for a spherical nanoparticle with
shell permittivity εshell

33 less than 103 and the thickness ratio
RS/R more than 10−2, but our experiment reveals a noticeable
increase of the nanoparticles’ Curie temperature (T̄C) in
comparison with a bulk one (Table III). Moreover, the depo-
larization field contribution can strongly dominate the Vegard
one. Thus, in order to explain the experimental enhancement of
T̄C , we should assume that the depolarization field contribution

leads to a Curie temperature decrease much smaller than
dozens of degrees Kelvin. This is readily possible for a
semiconducting shell with εshell

33 � 103 and RS/R < 10−2.
Content-dependent parameters determined from the fitting to
experiment are listed in Table III.

We found out that the best fitting of the Curie temperature
for the quasispherical particles of radius (25 ± 10 nm)
corresponds to the negative Vegard strain η (x) = −0.01x −
0.03 (1 − x) and shell thickness R0 (x) = (2.4x + 4.2 (1 − x))
nm. The latter values are quite reasonable and correspond
to the 6- to 10-unit-cell-thick shell. As anticipated, effective
sphere fractions in the composite appeared rather high,
g (x) = 0.95x + 0.9 (1 − x), but some small amount of prolate
ellipsoidal particles (from 5% to 10%, depending on the
content x) exists due to the presence of elongated particles
with high aspect ratio L/R � 1.

Here, an important remark should be made. We failed
to fit the experimental data using both effective surface
tension and intrinsic size effect models [17,18] for the
realistic values of the surface stress coefficient; such a fitting
required very high negative values of the coefficient (about
−(10 − 20) N/m), which is in contradiction to the surface
equilibrium and realistic range of the coefficient +(1–2) N/m
in different perovskites and other oxides [22]. Inclusion of
the intrinsic size effect (polarization gradient along with
induced depolarization field) leads to the correct trend that
agrees with the experiment, namely, to the Curie temperature
increase with radius decrease, only at negative extrapolation
lengths, and the increase becomes noticeable at a particle
radius of less than 5 nm. Since there is no solid background
for the existence of the negative extrapolation length and
the minimal particle radius represented in the histogram is

TABLE III. Parameters of the nanosized KTa1-xNbxO3
a.

Experimental data for Curie Content-dependent parameters determined from the fitting to
temperature in KTa1-xNbxO3 experiment shown in Fig. 3(b)

Content x Curie temperature Sphere fraction Shell thickness Vegard coefficient
TC = T̄C ± T g(x) = xgf + (1 − x)gq R0(x) = xRf + (1 − x)Rq η(x) = xηf + (1 − x)ηq

gf = 0.95, gq = 0.9 Rf = 4.2 nm, Rq = 2.4 nm ηf = −3%, ηq = −1%

x = 0.3 TC = (243 ± 30) K 0.915 2.8 nm −1.6%
bulk TC = 238 K

x = 0.5 TC = (359 ± 40) K 0.925 3.3 nm −2%
bulk TC = 351 K

x = 1 TC = (748 ± 50) K 0.95 4.2 nm −3%
bulk TC = 633 K

aTo switch off the depolarization contribution, the shell permittivity εshell
33 was chosen more than 104 and RS less than 0.5 nm.
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5 nm [Fig. 3(e)], inclusion of the intrinsic size effect does
not help us describe the experiment. In contrast, the model
based on the Vegard strain appeared in quantitative agreement
with the experimental results for realistic values of all fitting
parameters. The surface bond contraction model [15] gives
the same radius dependence of the Curie temperature shift as
that of the Vegard strain-based model, but it does not allow
quantitative fitting of the experimental data dependence on Nb
content x, since only the Young modulus Y is x dependent in
the factor χ = 4Y

αT

δa
a

(na)2 included in the model (see Table I).
Substitution of the known dependence Y (x) does not lead
to a reasonable fitting. Other factors, such as the surface
bond contraction and the lattice parameter, are almost content
independent. The surface bond contraction model is probably
adequate for the nanoparticles without surface defects.

Since we extract the dependence of the Vegard strain and
shell thickness on Nb content x from experimental data in
an unambiguous way, we can reliably enough reconstruct
the impact of size effects on the nanosized KTa1-xNbxO3

using these dependences and vary the particle radius and
the sphere-to-ellipsoid ratio in the particle assembly, because
these factors can be controlled in realistic experiments. Such a
procedure allows the opportunity to predict the Vegard strain
impact on the extrinsic size effects in nanoparticles. Thus,
let us consider a KTa1-xNbxO3 nanocomposite, where particle
sizes are distributed around the average value, and the particle
shape varies, namely, there are some fraction of ellipsoidal
and spherical particles in the material, but electric and elastic
interaction between the particles can be regarded as small due
to the screening effects and surface stresses in the interfacial
regions. Using Eqs. (1)–(5) and the parameters listed in
Tables II and III, we study content and radius dependences of
the extrinsic size effects in the composites with the fraction of
spheres varying from 100% to 0%. Reconstructed dependences
of the Curie temperature on Nb content x and particle radius
R are depicted in Figs. 4 and 5.

Curie temperature increases with the increase of Nb content
in bulk KTa1-xNbxO3 (dotted curves in Fig. 4). Unexpectedly,
the Curie temperature TC (x,R) nonmonotonically depends
on Nb content x in assemblies of small (R = 15 nm)
KTa1-xNbxO3 nanoparticles, when the fraction of spheres
becomes less than 50% for the negative Vegard strain
η (x) = −0.01x − 0.03 (1 − x) [Fig. 4(a)]. Such unexpected
behavior could not be described as the consequence of
particle shape changes, since the latter was constant under
the increase of x. At the same time, the change of compo-

sition leads to the changes of the terms 4η(x)Q12(x)
s11(x)+s12(x)

R2
0 (x)
R2 and

2η(x)(Q11(x)+2Q12(x))
s11(x)+2s12(x)

R2
0 (x)
R2 in Eqs. (4) and (5), proportional to

the Vegard strain η (x), which changes in a strong way with
composition x, according to Table III. Thus, the nonmonotonic
behavior is a direct sequence of the rather strong increase of the
Vegard strain with increasing x. When the fraction of spheres
is higher than 50%, the Curie temperature monotonically and
superlinearly increases with an x increase and can overcome
the bulk Curie temperature by hundreds of degrees Kelvin for
x > 0.8.

Figure 4(b) illustrates how the Curie temperature changes
for the positive Vegard strain η (x) = 0.01x + 0.03 (1 − x)
and the same parameters as in Fig. 4(a). Qualitatively, the

FIG. 4. (Color online) Curie temperature vs Nb content x in
nanosized KTa1-xNbxO3. Plots are calculated for negative (a) and (c)
and positive (b) and (d) Vegard strains. The particle radius is 15 nm in
plots (a) and (b). The sphere fraction changes from 100% to 0%, with
a step of 20% for different curves in the direction indicated by arrows.
Plots (c) and (d) are calculated for different particle shapes (prolate
ellipsoids and spheres as indicated by arrows) and radii 10, 20, and
40 nm (indicated by labels Ri near the curves). Material parameters
are listed in Tables II and III.

FIG. 5. (Color online) Curie temperature vs particle radii R,
calculated for Vegard strain at Nb content x = 0.3 (a), x = 0.5 (b), x

= 0.9 (c), and x = 1 (d). The spheres fraction changes from 100% to
0%, with a step of 20% for different curves in the direction indicated
by arrows. Material parameters are listed in Tables II and III.
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behavior for positive η (x) is complementary to the one for
negative η (x) [compare Figs. 4(a) and 4(b)]. Namely, for
η (x) > 0 sublinear x dependence of TC appears when the
fraction of prolate ellipsoids becomes less than 50%. The
Curie temperature monotonically and superlinearly increases
with the Nb content increase and can overcome the bulk
Curie temperature when the fraction of spheres is lower
than 50%.

These results support the statement that the principal
behavior of the Curie temperature is governed by the Vegard
strain sign (compression or tension), its absolute value, and
particle shape (prolate or spherical one). In particular, one can
see from Figs. 4(a) and 4(b), which correspond to the opposite
signs of the Vegard strain, that for positive η values, the
curves for prolate ellipsoidal nanoparticles are located above
the dotted curve corresponding to the bulk material; curves
for spherical nanoparticles are located below the dotted curve.
The curve sequence is the opposite for negative η values. The
curve order and slope change with respect to the bulk dotted
curve, with the changing fraction of spheres. In numbers, the
transition temperature in the nanosized composite could be
from tens to hundreds of degrees Kelvin lower or higher than
in the bulk KTa1-xNbxO3.

The smaller the particle radius R is, the stronger the
deviation of the curves from the dotted bulk ones [Fig. 4(c)]
is. Size effects are visible for the radii of less than 50 nm,
and the minimal content of Nb required for the ferroelec-
tricity appearance is different for bulk material (20%) and
nanoparticles (from 10% to 30%), depending on the particle
size, shape, and Vegard strain sign. In the case of the negative
Vegard strain (η (x) < 0), the ellipsoids are characterized by
the nonmonotonic dependence of the Curie temperature on the
Nb content x, having a maximum at х = 0.6 and the second
critical concentration of Nb, х = 0.95, at which ferroelectric
order disappears. Figure 4(d) illustrates a model situation,
when η (x) > 0 and other parameters are the same as for
Fig. 4(c). One could see from this figure that it is possible
to have a nonmonotonic dependence of the Curie temperature
on Nb content for spherical nanoparticles of small radius; for
the prolate ellipsoids, the Curie temperature monotonically
increases with the increase of Nb content with the superlinear
trend.

Reconstructed dependences of the Curie temperature via
particle radius are shown in Fig. 5 for different x and sphere-
to-ellipsoid ratios. At fixed content x, the Curie temperature TC

tends to the bulk value with the particle radius increase. With
the radius decrease, we see either the strong increase of TC

proportional to R2
0/R

2 for the negative product η (2Q12 + Q11)
or ηQ12 for spherical or prolate nanoparticles, respectively [see
Eq. (5)], or its rapid decrease up to T = 0 K at some “critical”
radius Rcr in the opposite case (compare top and bottom
curves in Fig. 5). The critical radius Rcr of the ferroelectricity
disappearance exists for the positive product η (2Q12 + Q11)
or ηQ12 for spherical or prolate nanoparticles, respectively.
Rcr increases with the increase of the η absolute value.

The strong changes in the radius dependence of the Curie
temperature TC appeared when the fraction of spheres varies
from 100% to 0%. Actually, in the composite with compressed
spherical nanoparticles (η < 0), TC increases with the radius
decrease. Increasing the fraction of prolate ellipsoids, TC

gradually decreases, becomes lower than the bulk one, and
rapidly decreases with the radius decrease in the composite
with 50%, 20%, and 0% of spheres. Note, that the situation
is vice versa for particles under tensile strains, η > 0; here
the temperature increases as the fraction of prolate particles
increases.

IV. SUMMARY

We proposed a phenomenological description of size effects
in ferroelectric nanoparticles taking into account Vegard
strains caused by defect accumulation near the surface of
the particle. Performing calculations and detailed quantita-
tive comparison with experimental results on quasispherical
KTa1-xNbxO3 nanoparticles (average radius 25 nm) allowed us
to determine the key impact of the Vegard strain on the extrinsic
size effects and reveal the essential (about 100 K) increase of
the transition temperature in nanoparticles compared with bulk
crystals.

We also determined the dependence of the Vegard strains on
the Nb content, and using this dependence, we reconstructed
the content dependence of the solid solution Curie temperature.
The dependence of the Curie temperature on the Nb content
should be nonmonotonic for the small elongated KTa1-xNbxO3

nanoparticles (at size <30 nm).
In this way, it is established that the key role in the

origin of extrinsic size effects in nanoparticles belongs to the
accumulation of intrinsic and extrinsic defects near the surface
that cause local Vegard strains. The strains can govern the main
features of the particles’ ferroelectric properties.
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