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Noncollinear Andreev reflections in semiconductor nanowires
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We show that noncollinear Andreev reflections can be induced at interfaces of semiconductor nanowires
with spin-orbit coupling, Zeeman splitting, and proximity-induced superconductivity. In a noncollinear local
Andreev reflection, the spin polarizations of the injected and the retro-reflected carriers are typically at an angle
that is tunable via system parameters. While in a nonlocal transport, this noncollinearity enables us to identify
and block, at different voltage configurations, the noncollinear cross Andreev reflection and the direct charge
transfer processes. We demonstrate that the intriguing noncollinearity originates from the spin-dependent coupling
between carriers in the lead and the lowest discrete states in the wire, which, for a topological superconducting
nanowire, are related to the overlap-induced hybridization of Majorana edge states in a finite system. These
interesting phenomena can be observed in semiconductor nanowires of experimentally relevant lengths, and are
potentially useful for spintronics.
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I. INTRODUCTION

Andreev reflection (AR) plays a central role in the charge
transmission at the interface between a normal conductor
(N) and a superconductor (S) [1–3]. An important feature
of the process is its spin dependence. For instance, near
the interface, electrons with a certain spin injected from
N are retroreflected as holes of the opposite spin via a
conventional local Andreev reflection (LAR). When the spin
flip is allowed at the interface, equal-spin AR can occur, where
both the electrons and the holes have the same spin [4,5].
Recently, it has been shown that equal-spin AR can also
be induced by the Majorana bound state (MBS) residing
on the edge of a semi-infinite topological superconducting
nanowire with spin-orbit coupling (SOC), Zeeman splitting,
and proximity-induced superconductivity [6,7]. As the equal-
spin AR therein originates from the self-Hermitian nature
of MBS, the spin dependence of the AR is bound to be
affected in finite-size systems, where overlap coupling be-
tween MBSs on different edges invalidates the self-Hermitian
property.

More generally, for a finite-length nanowire with SOC,
Zeeman splitting and proximity-induced superconductivity,
pairs of nondegenerate discrete states appear in the energy
spectrum [8,9]. In a finite-size topological superconducting
wire, the lowest discrete states, i.e., the pair of states closest to
the Fermi surface, correspond to the in-gap states induced
by the hybridization of MBSs on the edges. While in a
topologically trivial wire with finite length, the lowest discrete
states correspond to the gap-edge states. In this work, we show
that carriers involved in a resonant AR with the lowest discrete
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states can have noncollinear spin orientations, in contrast to
the conventional and the equal-spin AR.

In a noncollinear LAR, the spin polarizations of the injected
and retroreflected carriers are typically at an angle, tunable via
system parameters. Hence LAR can be suppressed by using
a half-metal (HM) lead whose carriers only have finite spin
projections along one of the polarization directions. We show
that the noncollinear AR is intimately connected to the local
spin orientations of the lowest discrete states at the edge. Under
appropriate parameters, the conventional or the equal-spin
AR can be recovered as limiting cases of the more general
noncollinear AR, which is particularly important for finite-size
nanowires in realistic experiments.

This noncollinearity is particularly important for nonlocal
transport processes where the wire length is typically com-
parable to the superconducting coherence length [10–19]. In
general, when an electron is injected from one N lead to the S, it
can either form a Cooper pair in the S and leave an out-going
hole in the other N lead; or it can propagate through the S
to the other lead. These two different processes respectively
correspond to the cross Andreev reflection (CAR) [10,11]
and the direct charge transfer [13]. By sandwitching the wire
between two HM leads [see Fig. 1(a)], we show that, depending
on whether the Fermi levels of the two leads are aligned
with the same [Fig. 1(b)] or different [Fig. 1(c)] discrete
states, these noncollinear nonlocal transport processes can
be respectively blocked by adjusting the magnetization of
the HM leads. The noncollinearity then provides us with a
useful tool to selectively induce fully spin-polarized currents
for applications in spintronics.

The paper is organized as follows: in Sec. II, we first
introduce a model system where the noncollinear AR can be
observed. Then, we present the effective Hamiltonian as well
as our formalism based on nonequilibrium Green’s functions to
calculate the transport properties. In Sec. III, numerical results
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FIG. 1. (Color online) (a) A semiconductor nanowire with
proximity-induced superconductivity is coupled to two leads. Under
different voltage configurations, either a resonant CAR (b) or a
direct charge transfer (c) can occur. In either case, two different
microscopic transport channels, marked by blue-solid and red-dashed
lines respectively, exist, which are characterized by the electrons
(filled circle) and holes (empty circle)in the leads with noncollinear
spin polarizations (black arrows). The nonlocal transport processes
can thus be blocked by adjusting the polarizations of the HM leads,
such that transport in both microscopic channels become impossible.

based on realistic parameters of InSb nanowires are presented.
We show that the noncollinearity can leave signatures in
the differential conductance and the current noise, and that
different microscopic processes in the LAR or the CAR can
be selectively blocked. Finally, a brief summary is presented
in Sec. IV.

II. MODEL AND FORMALISM

We consider a quasi-one-dimensional semiconductor
nanowire, which can host MBS for appropriate parame-
ters [20]. As illustrated in Fig. 1(a), the wire lies in the
x direction with an external magnetic field Bz along the z

direction. The two ends of the nanowire can be coupled,
respectively, to the left (L) and the right (R) leads. The wire is
grounded while the two leads are biased by applying voltages
V1 and V2, respectively.

The tight-binding Hamiltonian of the nanowire [21,22]

Hwire =
N−1∑
j=1

(
− t0

2
c
†
j cj+1 − αSO

2
ic

†
j σycj+1 + H.c.

)

+
N∑

j=1

[Vzc
†
j σzcj − (μ− t0)c†j cj + �(cj↑cj↓ + H.c.)],

where cj = (cj↑,cj↓)T is electron annihilation operator in
spinor form at site j with spin up (↑) and down (↓) in
the z direction, N is the number of the lattice sites, σy,z

are the Pauli matrices, αSO = αR/a is the SOC constant
with the Rashba parameter αR and the lattice spacing a, Vz

is the effective Zeeman field, � is the proximity-induced
superconducting gap, and μ is the chemical potential. The

hopping rate t0 = �
2

m∗a2 , with the effective mass of electrons
m∗. The eigenspectrum of Hwire for a finite-size system
consists of pairs of nondegenerate discrete states. We may
then define the local spin orientation of a discrete state:
�se/h(x) = 〈ψe/h(x)|�σ |ψe/h(x)〉

〈ψe/h(x)|ψe/h(x)〉 , which is useful for understanding
the noncollinear AR. Here, �σ is a vector of Pauli matrices and
ψe/h(x) is a spinor in the Nambu space for the electron (hole)
component of the discrete state wave function.

The leads are described by the mean-field Stoner
model [23]: Hlead = ∑

αks εαksa
†
αksaαks , where aαks is the

annihilation operator with quantum number k, spin index
s and energy εαks in the α = L,R lead. Here, s = +(−)
denotes spins parallel (antiparallel) to the magnetic moment
nα = (sin θα cos ϕα, sin θα sin ϕα, cos θα), where θα and ϕα are
the azimuthal angles in the α lead.

The coupling between the leads and the wire is spin conserv-
ing: HT = ∑

k(tLc
†
1uLaLk + H.c.) + ∑

k(tRc
†
NuRaRk + H.c.),

where tα is the hopping between the α lead and the wire.
The electron annihilation operators in spinor form aαk =
(aαk+,aαk−)T . The unitary matrix uα [24] accounts for the
magnetic-moment misalignment in the α lead with the z

direction

uα =
(

cos θα/2 e−iϕα sin θα/2
eiϕα sin θα/2 − cos θα/2

)
.

The coupling strength between the wire and the α lead 	s
α =

2π |tα|2ρs
α (s = ±), which is energy independent in the wide-

band limit. Under the Stoner model, the spin asymmetry in
the α lead is characterized by its density of states ρs

α for the
majority (s = +) and minority (s = −) spins. For a normal
lead, we have 	+

α = 	−
α ; while for HM leads, 	−

α = 0.
We are interested in the transport properties of the system.

The current operator for the L lead Î = −eṄL [25], with the
carrier number NL = ∑

ks a
†
LksaLks . Much information can

be obtained from the current fluctuation or noise due to the
discrete nature of the charge transport [26]. Here, we focus on
the autocorrelation of the current from the L lead. The zero-
frequency noise spectral density S = �

∫
dt ′〈δI (t ′)δI (0) +

δI (0)δI (t ′)〉, where δI (t ′) = Î (t) − I with I = 〈Î 〉 the direct
current from the L lead. Both I and S can be evaluated by the
standard Keldysh Green’s function method [25].

The current from the L lead is given by

I = e

h

∫
dεReTr

{
σ̂
[
G<�a

1,1 + Gr�<
1,1

]}
, (1)

where σ̂ = diag(1,−1,1,−1) in the spin⊗Nambu space ac-
counts for the different charge carried by electrons and
holes. The retarded (lesser) Green’s function Gr/< can be
derived from the analytical continuation of the contour-ordered
Green’s function G(t,t ′) = −i〈T ψ(t)ψ†(t ′)〉, where ψj =
(cj↑,c

†
j↓,cj↓,c

†
j↑)T . The retarded (advanced) self-energy �r/a

with the relation �r = (�a)† has nonzero elements for lattice
sites at the ends of the wire due to the tunnel coupling. In
the wide-band limit, �r for the outmost sites is given by
�r

1,1 = −i�L/2 and �r
N,N = −i�R/2, where the matrix �α
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is given in spin⊗Nambu space as

�α =

⎛
⎜⎝

γ11 0 γ12 0
0 γ22 0 γ21

γ21 0 γ22 0
0 γ12 0 γ11

⎞
⎟⎠ .

Here, γ11 = 	+
α cos2 θα

2 + 	−
α sin2 θα

2 , γ22 = 	+
α sin2 θα

2 +
	−

α cos2 θα

2 , γ12 = (	+
α e−iϕα − 	−

α eiϕ) sin θα

2 , and γ21 = γ ∗
12.

The lesser self-energy �<, which characterizes the particle
injection from the leads, is given by �< = [�a − �r ]F, where
F1,1 = diag(f (ε − μL),f (ε + μL),f (ε − μL),f (ε + μL))
and FN,N = diag(f (ε − μR),f (ε + μR),f (ε − μR),f (ε +
μR)), with f being the Fermi distribution function.

In this work, we focus on the autocorrelation of the current
from the L lead. The zero-frequency noise spectral density
is defined as S = �

∫
dt ′〈δI (t ′)δI (0) + δI (0)δI (t ′)〉, where

δI (t ′) = Î (t) − I is the current fluctuation. Î is the current
operator. In terms of the Green’s functions and self-energies,
the noise spectral density can be obtained from

S = e2

h

∫
dεTr{[σ̂�<

1,1σ̂ G> + G<σ̂�>
1,1σ̂ ]

− σ̂ [�1,1G]<σ̂ [�1,1G]> − [G�1,1]<σ̂ [G�1,1]>σ̂

+ G>σ̂ [�1,1G�1,1]<σ̂ + σ̂ [�1,1G�1,1]>σ̂ G<}, (2)

where the Langreth theorem of analytic continuation such
as [AB]≶ = ArB≶ + A≶Ba and [ABC]≶ = ArBrC≶ +
ArB≶Ca + A≶BaCa , have been employed. In the above
expressions, the advanced Green’s function Ga = (Gr )† and
the greater Green’s function G> can be found from the relation
G> − G< = Gr − Ga .

III. NUMERICAL RESULTS AND DISCUSSION

For numerical simulations, we consider a heterostructure
at zero temperature where a InSb nanowire is in contact with
NbTiN [27] or Ni [28], with the parameters: m∗ = 0.015me,
with me the electron mass, αR = 0.25 eV Å, a = 1 nm, and
� ∼ 140 μeV. With these, we show that the noncollinear AR
can occur in nanowires ranging from submicrometer to several
microns in length.

A. Discrete states and local Andreev reflection

As the resonant AR is typically connected with discrete
states in the wire, we focus on the lowest discrete states in a
finite system, which, under the particle-hole symmetry, emerge
as a pair with the same energy spacing E1 to the Fermi energy.
We show in Fig. 2 the nonmonotonic evolution of E1 as a
function of Vz [8,9]. These discrete states can be probed by
the transport measurement. With an N lead coupled to one end
of the wire, the dominant transport process is the LAR. When
the Fermi level of the lead is aligned with E1, conductance
peaks of resonant LAR can be identified, where the peak value
approaches 2e2/h, as shown in the inset of Fig. 2.

The spin dependence of LAR can be identified by replacing
the N lead with an HM lead, while letting the bias voltage V

satisfy the condition for a resonant AR. We plot the differential
conductance dI/dV in Fig. 3(a) as a function of the azimuthal
angles θ and ϕ of the HM magnetic moment. In most situations,

FIG. 2. (Color online) The lowest discrete state energy E1 of the
wire as a function of the effective Zeeman field Vz for wire length
L = 1.2 (solid line), 1.5 (dashed line), 2.1 (dash dot dot line), and
4.5 μm (dash dot line). The inset: differential conductance dI/dV at
various Vz. Parameters for the inset: L = 1.2 μm, 	±

L = 0.2 t0.

dI/dV approaches 2e2/h due to resonant LAR. However,
two separate dips can be identified in Fig. 3(a), indicating
the complete suppression of LAR at two particular magnetic
moments of the HM lead. For an HM lead with a particular
magnetic-moment alignment, carriers with spin opposite to
that direction are blocked. Thus the existence of two dips
in Fig. 3(a) suggests that carriers with spin opposite to the
direction corresponding to either dip are intrinsic in the LAR
process; that the LAR can be blocked when carriers with one of
the two special spin polarizations become unavailable. Since
the angle between these two spin polarizations is different
from π (opposite-spin AR) and 0 (equal-spin AR), Fig. 3(a)
clearly indicates a noncollinear LAR. The noncollinear LAR
can also be revealed by the current noise Fano factor F =
S/2eI [26,29,30]. For the LAR-dominated transport, the Fano
factor approaches 2 at low transmission, indicating an effective
transfer of two electrons in the process [11]. In Fig. 3(b), two
such peaks emerge in the contour plot of F , whose positions
are consistent with those of the dips in Fig. 2(a).

As the coupling between the lead and the wire is spin
conserving, it is instructive to explore the local spin orientation
of the lowest discrete state in resonance [31]. In Fig. 4(a), we
plot the spatial dependence of the angle �θ between �se and �sh

of the lowest discrete state with energy E1. While the spin
orientations of electron and hole components are opposite
(�θ = π ) with vanishing αR or Vz, they become spatially
varying and noncollinear under finite SOC parameters, with
�θ at the wire end tunable over a wide range by adjusting
αR , Vz or L. In particular, in the topological superconducting
regime, as L increases, �θ approaches 0. This is consistent
with the MBS-induced equal-spin AR in Ref. [6], where
the spin orientations of electron and hole components of the
MBS are the same due to the self-Hermitian nature of MBS.
In a finite topological superconducting wire, the MBSs on
different edges overlap to form the lowest discrete states,
which acquire a finite �θ . A natural implication here is that
the spin-dependence of AR should be intimately connected to
the local spin orientation �θ at the edges.

205435-3



B. H. WU, W. YI, J. C. CAO, AND G.-C. GUO PHYSICAL REVIEW B 90, 205435 (2014)

FIG. 3. (Color online) Contour plots of the differential conduc-
tance dI/dV (a) and noise Fano factor (b) due to the resonant LAR as
functions of azimuthal angles θ and ϕ of the HM magnetic moment.
Parameters: Vz = 1.2 �, 	+

L = 0.4 t0, and L = 1.2 μm.

To see this, we vary the magnetic moment of the HM lead in
the x-z plane, and adopt the convention: θ > 0 for ϕ = 0; θ <

0 for ϕ = π . Figure 4(b) displays the contour plot of dI/dV

as a function of θ and Vz, for which the voltage eV = E1.
The directions opposing that of the local �se(0) and �sh(0) at
the wire end are also displayed with dashed lines. The overlap
between the dashed lines and the dI/dV dips clearly indicates
that resonant LAR can be suppressed once carriers with spin
aligned with either �se(0) or �sh(0) become unavailable in the
lead.

B. Crossed Andreev reflection and direct charge transfer

The noncollinearity discussed in the previous subsection
can also be manifested in the nonlocal transport with two
leads [10–12,14,15], where the spin-polarization of the carrier
passing through one N-S interface can take an arbitrary angle
to that of the carrier at the other interface. Depending on
the voltage configuration of the leads, nonlocal transport
processes, such as the CAR and the direct charge transfer
can be selectively blocked based on this noncollinearity.

We consider the typical case where two HM leads are
symmetrically attached to two ends of the wire at x = 0 and
x = L. The Hamiltonian of the wire observes the symmetry:

FIG. 4. (Color online) (a) The spatial dependence of �θ , the
angle for the local spin orientations of the lowest discrete state in
resonance, for varius Vz, αR and L. (b) Contour plot of the differential
conductance dI/dV as a function of Vz and the azimuth angle θ

of the magnetic moment in the HM lead. The dashed lines in (b)
indicate the directions opposing the local spin orientations of the
lowest discrete state on the edge. Other parameters: 	+

L = 0.4 t0,
Vz = 1.2 �, L = 1.2 μm, and αR = 0.25 eV · Å.

H (x,α) = H (L − x,−α). For the discrete state with energy
E1, the local spin orientations satisfy: sx,y

e/h(x) = −s
x,y

e/h(L − x)
and sz

e/h(x) = sz
e/h(L − x).

We first consider identical bias voltages eV1 = eV2 = E1,
where the Fermi levels of both leads are aligned with the same
discrete state [Fig. 1(b)]. The dominant nonlocal transport here
is the CAR. As demonstrated in Fig. 5(a), by varying the
spin orientations of the L and R leads in the x-z plane, two
broad humps, each with a sharp feature peaking close to 2,
appear in the noise Fano factor, indicating LAR-dominated low
transmission. The locations of both peaks satisfy θL = −θR ,
representing either the simultaneous blocking of carriers with
spins aligned in the �se(0) direction at the left N-S interface and
those with spins in the �se(L) direction at the right interface; or
the simultaneous blocking of carriers with spin aligned with
�sh(0) at the left and those with �sh(L) at the right. The peaks
thus indicate the simultaneous blocking of both microscopic
transport channels illustrated in Fig. 1(b).

Next, we consider the bias voltages eV1 = −eV2 = E1. The
dominant nonlocal transport is then the direct charge transfer.
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FIG. 5. (Color online) The contour plots of the noise Fano factor
F as functions of θL and θR for different bias configurations for
the resonant CAR: (a) eV1 = eV2 = E1 and (b) eV1 = −eV2 = E1.
Parameters: Vz = 0.8 �, 	+

α = 0.4 t0, and L = 1.2 μm.

From the contour plot of the noise Fano factor at the L lead
[Fig. 5(b)], we find two sharp peaks, with peak values close to
2. However, as |θL| �= |θR| at the peaks, they represent either
the simultaneous blocking of carriers with spins in the �se(0)
direction at the left interface and those with �sh(L) at the right;
or the simultaneous blocking of carriers with spins in the �sh(0)
direction at the left and those with �se(L) at the right [32].
The peaks thus indicate the simultaneous blocking of both
microscopic transport channels in Fig. 1(c).

IV. CONCLUSION

We show that noncollinear AR can be induced at interfaces
of semiconductor nanowires of finite, but experimentally
relevant lengths. This feature provides us with a useful tool
to induce fully spin-polarized current for applications in
spintronics. The intriguing effects of noncollinear ARs can
be observed in semiconductor nanowires with strong SOC,
such as InSb [27,28] or InAs [33,34], which are currently
under intensive study for the search of MBS. A test of the
noncollinear AR via transport properties is also within the
reach of current technology [35], where a supercurrent through
HM films such as CrO2 has recently been studied [36].
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