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Stacking-dependent magnetoelectronic properties in multilayer graphene
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The generalized Peierls tight-binding model is developed to study multilayer graphenes. For an N -layer
system, there are N groups of conduction and valence Landau levels. Each group is clearly specified by the
corresponding sublattice. The Landau-level spectra strongly depend on the stacking configuration. ABC-stacked
graphenes exhibit two kinds of Landau-level anticrossings, the intergroup and intragroup Landau levels, as a
function of the applied magnetic field. On the other hand, in contrast to its frequent wide-energy presence in
ABC-stacked graphenes, the anticrossing only occurs occasionally in AB-stacked graphenes, and is absent in
AA-stacked graphenes. Furthermore, all 4N Dirac-point related Landau levels are distributed over a limited
energy range near the Fermi level. In AA- and AB-stacked graphenes, the total number of such levels is fixed,
while their energies depend on the stacking configuration. These results reflect the main features of the zero-field
band structures.
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I. INTRODUCTION

Ever since few-layer graphenes were first fabricated from
highly oriented pyrolytic graphite via exfoliation procedures
[1,2], they have attracted considerable experimental and
theoretical interest. Being held together by van der Waals
interactions, the graphene sheets are essentially stacked in
AA [3], AB [4–10], or ABC [7–11] sequence along the per-
pendicular direction, with the respective geometric structures
contributing to very distinct electronic properties [12–22]. The
unique electronic structures have been experimentally verified
by angle-resolved photoemission spectroscopy [23–25]. In
particular, the main features of magnetoelectronic properties
are associated with the zero-field band structure [26–32],
including the energy spectrum, classification, and anticrossing
of Landau levels (LLs). Subsequently, further investigation
brought to light other intriguing physical properties, e.g., the
Coulomb excitations [33,34], optical properties [26,35], and
the quantum Hall transport properties [36–41].

Layered graphene is a gapless 2D semimetal with a
slight overlap between valence bands and conduction bands
[14,16,18], whereas a tunable energy gap is introduced in
AB bilayer [42–46], and ABC trilayer graphenes [47–49]
subjected to an external electric field. In the presence of a
uniform perpendicular magnetic field (B = B0ẑ), the energy
bands evolve into dispersionless LLs. The important anti-
crossing phenomenon among the LLs has been investigated in
biased few-layer AB-stacked graphene [50–55] and in the bulk
graphite [56]. Another crucial issue is the splitting of the zero-
energy LLs that result from the Dirac-point properties [36,40].
While recent experimental observations on the quantum Hall
effects (QHE) reveal the LL crossing, the plateau shift and
the specific sequence of plateaus of QHE conductivity in
trilayer graphene [40,41,55], studying other layer systems is
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worthwhile in terms of determining the dependence of the
unique LL properties on the layer number and the stacking
sequence.

In the absence of an external field, the low-energy electronic
structure of ABC-stacked graphene consists of one pair of
weakly dispersive bands at the Fermi level (EF = 0) and
a few other bands crossing at K point, which constitute a
hybridization of hyperbolic, linear and mexican-hat bands
[16,18,25]. In contrast, AA- and AB-stacked graphenes pos-
sess relatively simple band structures which resemble mono-
layer or bilayer graphene, or a hybridization of both [12,13,15].
Previous works have shown that in AA-stacked systems, the
LL spectrum exhibits the monolayerlike energy dependence
[26], while in AB-stacked systems, the characteristic of the
monolayer spectrum is presented in the cases of odd number of
stacking layers [29]. In this work, we show that the peculiarity
of the band structure in ABC-stacked graphenes leads to the
LL evolution under a magnetic field revealing a complex
pattern of LL anticrossings, especially in the region of weak
fields, as a result of the specific interlayer atomic interactions
from the full tight-binding model. With an increasing number
of layers, the magnetoelectronic properties are enriched and
diversified. It should be noted that the few Dirac-point related
LLs are confined in a small energy range around EF = 0. The
total number of such LLs is fixed for AA- and AB-stacked
graphenes, while their energies are dependent on the stacking
configurations.

In the generalized tight-binding model, the sublattice dom-
inance is evidently derived from the Landau wave functions.
Due to the relationship between the Landau state and the
sublattice dominance, LLs can be classified without ambiguity,
and quantum numbers are straightforwardly defined. Interlayer
atomic interactions lead to versatile electronic properties, to
an extent that even remote interactions are important. The
Landau wave functions consisting of multizero modes can
explain the anticrossings of LLs in terms of the perturbation
theory. The obtained results are useful for further research on
the essential physical properties. In Sec. II, the Hamiltonian is
built from the Peierls tight-binding model in B. A discussion
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on the LL energy spectrum and the Landau wave functions
is offered in Sec. III, where the sublattice dominance is
identified and utilized to define each LL quantum number.
Other spectrum features are investigated as well, includ-
ing the sublattice dominance, the field-dependent energies
and the inter- and intragroup anticrossings. Meanwhile, the
aforementioned results are compared to AA- and AB-stacked
graphenes. Investigation of the anticrossing patterns amongst
these systems is a worthwhile undertaking. Finally, Sec. IV
contains concluding remarks.

II. THE PEIERLS TIGHT-BINDING MODEL

ABC-stacked graphene has an interlayer distance of d =
3.37 Å and a bond length of b′ = 1.42 Å, as sketched in
Fig. 1(a). For an N -layer system, there are 2N carbon atoms
per primitive unit cell where two sublattice atoms in the nth
layer are denoted as An and Bn. Each of the graphene sheets
is shifted by a distance of b′ along the armchair direction
with respect to the adjacent layer. The sublattice B (black
dots) of one layer is situated directly above the A atom of

FIG. 1. (Color online) (a) The geometric structure of ABC-
stacked graphene under a uniform magnetic field B = B0ẑ, perpen-
dicular to the graphene plane. The interlayer atomic interactions are
illustrated in the right panel. At B0 = 0, the low-energy band structure
of (b) tetralayer graphene is plotted and (c) shows a zoomed-in view
near the Fermi level.

the adjacent lower layer, whereas sublattice A (red dots) lies
above the center of its hexagon. The low-energy electronic
properties, mainly arising from the 2pz orbitals, are described
by the tight-binding model. The Hamiltonian is characterized
by the intralayer and the interlayer atomic interactions βi’s
[Fig. 1(a)], where β0 represents the nearest-neighbor hopping
integral within the same layer; β1, β3, and β4 are between
adjacent layers; β2 and β5 are associated with the next-nearest
layers. β1 and β2 are couplings between two vertical sites,
and β3, β4, and β5 are nonvertical couplings. The hopping
integral values are as follows: β0 = −3.16 eV, β1 = 0.36 eV,
β2 = −0.01 eV, β3 = 0.32 eV, β4 = 0.03 eV, and β5 =
0.0065 eV [57].

An extra Peierls phase GR , associated with a uniform
perpendicular magnetic field is introduced in the tight-binding
functions. Characterized by the vector potential A, GR

takes the form of (2π/φ0)
∫ r

R A · dl, where φ0(=hc/e)
is the flux quantum. In the Landau gauge A = (0,B0x,
0), the derived period of the Peierls phase along the x

axis is 2φ0/φ = 2RB . This means that the unit cell is an
enlarged rectangle with 4NRB sublattices [the shading
of Fig. 1(a)]. The Hamiltonian can be built from the
space spanned by the 4NRB tight-binding functions
{|A1

1k〉,|B1
1k〉,|A2

1k〉,|B2
1k〉 . . . |AN

1k〉,|BN
1k〉 . . . |AN

2RB k〉,|BN
2RB 1k〉}

based on the periodical atoms in the rectangular unit cell,
where the superscript and subscript numbers denote the
layer and sublattice numbers, respectively, and k is the wave
vector. By detailed calculations, the Hamiltonian matrix
elements associated with the hopping integrals β ′

i s are given
by

〈
Bl

jk

∣∣H
∣∣Al′

ik

〉

= β0� exp
[
ik · (

RAl′
i
− RBl

j

) + 2πi

�0

(
GR

Bl
j

− GR
Al′

i

)]

= β0(t1,iδi,j + qδi,j+1)δl,l′ for l = 3n − 2 � N, (1)

〈
Bl

jk

∣∣H
∣∣Al′

ik

〉 = β0(t3,iδi,j−1 + qδi,j )δl,l′

for l = 3n − 1 � N, (2)

〈
Bl

jk

∣∣H
∣∣Al′

ik

〉 = β0(t2,iδi,j + qδi,j+1)δl,l′ for l = 3n � N,

(3)

〈
Al

jk

∣∣H
∣∣Bl′

ik

〉 = β1δi,j δl,l′−1 for l � N − 1, (4)

〈
Bl

jk

∣∣H
∣∣Al′

ik

〉 = β2δi,j δl,l′−2 for l � N − 2, (5)

〈
Al

jk

∣∣H
∣∣Bl′

ik

〉 = β3(t2,iδi,j + qδi,j+1)δl,l′+1

for l = 3n − 1 � N, (6)

〈
Al

jk

∣∣H
∣∣Bl′

ik

〉 = β3(t3,iδi,j−1 + qδi,j )δl,l′+1

for l = 3n + 1 � N, (7)
〈
Al

jk

∣∣H
∣∣Bl′

ik

〉 = β3(t1,iδi,j + qδi,j+1)δl,l′+1 for l = 3n � N,

(8)
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〈
Bl

jk

∣∣H
∣∣Bl′

ik

〉 = 〈
Al+2

jk

∣∣H
∣∣Bl′+2

ik

〉 = β4(t1,iδi,j + qδi,j+1)δl,l′−1

for l = 3n − 2 � N, (9)

〈
Al

jk

∣∣H
∣∣Al′

ik

〉 = 〈
Bl+1

jk

∣∣H
∣∣Bl′+1

ik

〉 = β4(t3,iδi,j−1 + qδi,j )δl,l′−1

for l = 3n − 2 � N, (10)

〈
Al

jk

∣∣H
∣∣Al′

ik

〉 = 〈
Bl+1

jk

∣∣H
∣∣Bl′+1

ik

〉 = β4(t2,iδi,j + qδi,j+1)δl,l′−1

for l = 3n − 1 � N, (11)

〈
Bl

jk

∣∣H
∣∣Bl′

ik

〉 = 〈
Al+2

jk

∣∣H
∣∣Al′+2

ik

〉 = 〈
Al′+1

jk

∣∣H
∣∣Bl+1

ik

〉

= β5(t2,iδi,j + qδi,j+1)δl,l′+2 for l = 3n � N,

(12)

〈
Al

jk

∣∣H
∣∣Al′

ik

〉 = 〈
Bl+1

jk

∣∣H
∣∣Bl′+1

ik

〉 = 〈
Al′+2

jk

∣∣H
∣∣Bl+2

ik

〉

= β5(t1,iδi,j + qδi,j+1)δl,l′+2 for l = 3n � N,

(13)

〈
Al

jk

∣∣H
∣∣Bl′

ik

〉 = 〈
Bl′+2

jk

∣∣H
∣∣Bl+2

ik

〉 = 〈
Al′+1

jk

∣∣H
∣∣Al+1

ik

〉

= β5(t3,iδi,j−1 + qδi,j )δl,l′−2

for l = 3n − 2 � N, (14)

where n is a positive integer. The four independent phase terms
are

t1,i = exp{i[−(kxb
′/2) − (

√
3kyb

′/2) + π�(i − 1 + 1/6)]}
+ exp{i[−(kxb

′/2) + (
√

3kyb
′/2)

−π�(i − 1 + 1/6)]},
t2,i = exp{i[−(kxb

′/2) − (
√

3kyb
′/2) + π�(i − 1 + 3/6)]}

+ exp{i[−(kxb
′/2) + (

√
3kyb

′/2)

−π�(i − 1 + 3/6)]},
t3,i = exp{i[−(kxb

′/2) − (
√

3kyb
′/2) + π�(i − 1 + 5/6)]}

+ exp{i[−(kxb
′/2) + (

√
3kyb

′/2)

−π�(i − 1 + 5/6)]}, and

q = exp{ikxb
′}.

In order to enhance the computation efficiency, we
choose the bases of {|A1

1k〉,|B2
1k〉,|A3

1k〉, |B1
1k〉,|A2

1k〉,|B3
1k〉 . . .

|B1
2RBk〉,|A2

2RBk〉,|B3
2RB 1k〉} to arrange the Hamiltonian as a

bandlike symmetric matrix. This allows an efficient numerical
solution of the eigenvalues and eigenfunctions, even for a small
magnetic field strength and a huge RB .

In a magnetically enlarged unit cell, the Landau wave
function is a linear combination of the products between the
subenvelope function and the tight-binding function of each
sublattice site, expressed as

|�k)〉 =
N∑

l=1

2RB∑

m=1

Al
m

∣∣ Al
mk

〉 + Bl
m

∣∣ Bl
mk

〉
, (15)

where the value of the subenvelope function Al
m or Bl

m

(x-dependent) represents the probability amplitude of the
tight-binding function. The LL spectrum is obtained from
the diagonalization scheme with a bandlike tight-binding
Hamiltonian. The generalized tight-binding model, based on
the subenvelope functions of the distinct sublattices, is suitable
for studying arbitrarily stacked graphene systems and other
layered systems with complicated stacking configurations.
This method has been used to define the quantum number of the
LLs in monolayer, bilayer, and trilayer graphenes [28,30,31],
and is valuable in understanding other physical properties,
such as the mechanisms of magneto-optical and Coulomb
excitations, etc. [26,33,35,51].

III. RESULTS AND DISCUSSION

A. Zero-field band structure and the quantized Landau levels

The tetralayer ABC-stacked graphene, as a model study,
presents a band structure consisting of four pairs of conduction
and valence subbands, respectively, labeled S

c,v
1 , Sc,v

2 , Sc,v
3 , and

S
c,v
4 , and colored by black, red, blue, and green in Fig. 1(b),

respectively. Near EF = 0, the two bands cross in the KM and
K	 directions [Fig. 1(c)]; the anisotropic energy dispersion
reflects the trigonal warping effect [30]. The states in the
vicinity of the weak dispersions are formed predominantly
from the atomic orbitals localized on the two outermost
layers [19–21]. Away from EF = 0, the conduction (valence)
subbands cross near the energy of β1 (−β1). In particular, the
subband Sc

2(Sv
2 ) is mexican-hat shaped and has a local energy

minimum (maximum) and maximum (minimum), evaluated
respectively, at 0.29 (−0.29) eV and 0.36 (−0.36) eV. The other
two pairs, S

c,v
3 and S

c,v
4 , are monotonic parabolic and linear

energy bands. The feature-rich band structure determines the
unique field-dependent energy spectra of LLs.

For a tetralayer graphene subjected to B0 = 25 T, the LLs
can be divided into four groups, as indicated by black, red, blue
and green colors in Fig. 2(a), the division being in accordance
with the characteristics of the spatial distribution of the wave
function. Moreover, each level is fourfold degenerate for each
(kx,ky) state. In particular, the extreme values and dispersion
relations of the zero-field energy bands are relevant to the
onset energies and level spacings for all groups, respectively.
The first group starts to form near EF = 0, in the vicinity
of which the four LLs are slightly split by the interlayer
hoppings, similar to those in trilayer graphene [30], while
away from EF = 0 the spacing is apparent and the conduction
LL formation is more intensive with increasing energy due
to the higher density of states of subband Sc

1. Near β1, the
LLs are densely packed as a consequence of the crossover
of the Sc

2, Sc
3, and Sc

4 subbands. The second, third, and
forth groups sequentially appear. The spacing for each group
also grows in sequence from the lower- to the higher-order
groups, corresponding to the energy dispersions of those
subbands.

Here, we define the quantum number for each LL based
on the Landau wave function, as shown in Fig. 2, where
the subenvelope functions of distinct sublatices expressed
in Eq. (15) are plotted. The fourfold degenerate Landau
wave functions are localized at four different locations in
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FIG. 2. (Color online) The Landau levels corresponding to (a) tetralayer graphene under B0 = 25 T. For each level, the odd-indexed envelop
functions of sublattices B1

o , B2
o , B3

o , and B4
o are shown in (b), (c), (d), and (e), respectively.

the enlarged rectangular, i.e., the locations at 1/6, 2/6, 4/6,
and 5/6 of the total length of the enlarged cell for the
(kx = 0, ky = 0) state. The wave functions at 1/6 and 4/6 have
identical amplitudes, as do those at 2/6 and 5/6. Moreover,
the 1/6 localized state has the subenvelope functions Al

o’s
(l = 1,2,3 and 4 for layer numbers), which are equal to −Bl

o’s
(l = 4,3,2 and 1) of the 2/6 localized state and vice versa. In
Figs. 2(b)–2(e), the subenvelop functions of the 2/6 localized

state are demonstrated, where only Bl
o is considered, and thus

further discussions of only the odd-indexed sublattices are
appropriate due to the relationship Bl

o = −Bl
e. It is shown that

each sublattice component resembles the nth-order Hermite
polynomial Hn multiplied by a Gaussian function, a result that
is similar to the Landau states in 2D electron gas systems. In
principle, the node number n, i.e., the zero points of functions,
standing for the spatial symmetry, is used to define the quantum
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number of a LL. Be aware of the deformity of the Hermite
function, which can be attributed to the complex interlayer
atomic interactions.

For the four LLs nearest to EF = 0, the two lower-energy
ones of them are occupied valence states, assigned the quantum
numbers nv

1 = 0 and nv
1 = 1, and the other two, belonging to

unoccupied conduction states, correspond to nc
1 = 2 and 3. As

illustrated by the black curves in Fig. 2(b), these numbers are
determined by subenvelope function B1

o because its weight
is evidently stronger than the others. This quantization is
responsible for the localized states on the sublattice B1 of
the outer surface. On the contrary, the quantization related
to the opposite outmost sites of A4 is introduced to the
other degenerate states. With increasing energy, the higher
conduction LL indices increase in order from 4, 5, 6 . . . , with
the numbers indicating the zero points of B1

o . In this same way,
the opposite valence LLs are also assigned quantum numbers 4,
5, 6 . . . , with an increase of the number signifying an approach
to deep levels.

Instead of a monotonic sequence, an unusual LL sequence
accounting for the mexican-hat structure of the Sc

2 subband is
revealed in the second group. The first conduction LL stems
from states being aggregated near the local energy maximum
of the Sc

2 subband at the K point (Ec ≈ 0.36 eV). Its quantum
number nc

2 = 0 is clearly demonstrated by B3
o , the red curve in

Fig. 2(d). The two conduction LLs with nc
2 = 1 and 2 are

formed between the local minimum and maximum of the
Sc

2 subband. It is not until the LLs move above Ec(nc
2 = 0)

that the quantum numbers grow with the energy due to the
monotonically increasing energy dispersions. The valence LLs
show a similar sequence. The formation of LLs within this
region is dominated by the interplay of the magnetic field
strength and the mexican-hat band structure. That is to say, the
numbers, energies, and existence of these unusually sequenced
LLs strongly depend on B0. Furthermore, the distorted Landau
wave functions for the nc

2 = 0 and 3 states mainly result from
the intragroup anticrossing of the nc

2 = 0 and 3 LLs (illustrated
later). Associated with the unique mexican-hat structure,
the special spectral patterns also hold for all ABC-stacked
graphenes. Unlike the other groups, the conduction and va-
lence quantum numbers of both the third and fourth group LLs
are in monotonic sequences, and their onset energies approach
the band minimum at the K point. The lowest three conduction
LLs of the former, nc

3 = 0, 1, and 2, are evident in the B2 sub-
lattice [blue curves in Fig. 2(c)], as are those of the latter by the
B4 sublattice [green curves in Fig. 2(e)]. The nc

4 = 2 LL also
shows intergroup anticrossing (between the fourth and the sec-
ond group) according to the distorted subenvelope functions.
Overall, the dominant sublattices are, respectively, B1, B3, B2,
and B4 for the groups changing from the first to the fourth.
If there exists a way of identifying the sublattice dominance
with respect to each group of LLs, then each sublattice equally
dominates in the magnetoelectronic properties. This deduced
generalization is applicable to arbitrarily stacked graphenes.

B. Landau-level spectra with respect to different stackings

The unique spectral features for the ABC-stacked configu-
ration is better understood by investigating the dependence of
the four grouped LL energies on the magnetic field. As shown

by Fig. 3(a), the first group of LLs monotonically depends
on B0, and each moves towards EF = 0 when B0 approaches
zero. In this vicinity, the first four LLs are confined within
a small range. The total number and energy distributions of
such levels are related to the stacking layers and the interlayer
atomic interactions. A more detailed investigation will be made
later. On the other hand, in Fig. 3(b), the onset energies of
all the other groups correspond to the local extreme values
of the subbands Sc

2, Sc
3, and Sc

4 at the K point where the
subbands cross each other. The mexican-hat dispersion at
zero field is evidently reflected in the LL spectrum at lower
fields, a complicated pattern showing a nonmonotonic energy
dependence on field strength and, therefore, the intragroup LL
crossing and anticrossing patterns. The inverted curvature of
such a subband structure gives rise to the inverted LL energy
dependence. The LLs of the second group at first decrease
with the field strength. Upon reaching the minimum of the
energy distribution, which is related to the subband minimum,
they convert back to the typical behavior regarding B0. These
unusual LLs are reduced by a further increase of field strength.
Once the magnetic field is strong enough, i.e., B0 > Bc � 15 T,
the first few LLs can accommodate all the electronic states
covered by the mexican-hat band structure so that the LLs
evolve into an ascending sequence with increasing quantum
number. That is to say, the degeneracy of the lowest few levels
is comparable to the electronic states enclosed in this region.

FIG. 3. (Color online) The Landau-level spectrum of ABC-
stacked tetralayer graphene.
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FIG. 4. (Color online) (a) Intragroup and intergroup Landau-level anticrossing patterns. The evolutions of subenvelope functions are
demonstrated during the anticrossing processes for (b)–(i) self-group (the second group) and (j)–(q) intergroup (the second and the third
groups) Landau levels.

The field-dependent energy spectrum exhibits some special
phenomena, including the intragroup and intergroup LL anti-
crossings. For B0 < Bc, the anticrossing frequently happens
for the second group of LLs within 0.29–0.36 eV, for which the
levels are in an unusual sequence, e.g., the anticrossing of nc

2 =
0 and 3 shown by the dashed rectangle. With increased energy,
the anticrossing also occurs between neighboring groups, as in
the region of the dashed ellipses. Furthermore, the event can
even be triggered between all different groups in a sufficiently
strong magnetic field. Through the qualitative perturbation
analysis that has been performed on the AB-stacked bulk
graphite [56], the Landau states can be correlated to one
another by an identifiable pattern of the mode differences
between the same sublattice in multiples of 3. The interlayer
atomic interaction β3 between the nonvertical sites in adjacent
layers is exclusive to the intergroup anticrossings of the
AB-stacked systems. On the other hand, in addition to β3,
there are other interlayer atomic interactions, β2 and β5, that
are identified to induce both the intragroup and intergroup
LL anticrossings in the ABC-stacked graphenes. The energy
correction caused by β2 is its expectation value between the
subenvelope functions B1 and A3 of the two states possessing
the same zero mode. A likewise explanation of the β3-induced

correction is applicable to β5, which is also responsible for the
corrected energy due to the specific relationship between B1

and B3; A1 and A3.
Some parts of the hybridized Landau states have the

same modes, which prevent the mixed LLs crossing each
other. The drastic changes of the wave functions during the
anticrossing processes between intragroup LLs (nc

2 = 0 and 3)
and between intergroup LLs (nc

2 = 5 and 0) are, respectively,
illustrated in Figs. 4(b)–4(i) and 4(j)–4(q). In principle, for
Landau states away from the anticrossing regions, the two
envelop functions established on the perpendicular projected
sublattices in adjacent layers have the same number of the zero
points, and the number difference between two sublattices in
the same layer is equal to one, except that some of the sublattice
amplitudes approach zero for the lowest few LLs of each group.
As to the nc

2 = 3 wave function at 8 T < B0 < 14 T [the first
four circles in Fig. 4(a)], the well-defined zero points in the
lower part of Figs. 4(b)–4(i) are 4, 5, 3, 4, 2, 3, 1, and 2 in
the order of {A1

o,B
1
o ,A

2
o,B

2
o ,A

3
o,B

3
o ,A

4
o,B

4
o }. However, it starts

to mix with the nc
2 = 0 Landau wave function as the two LLs,

nc
2 = 0 and 3, repel each other, and significant hybridization of

the two levels is present at the center of the anticrossing region
[∼0.29–0.36 eV in Fig. 4(a)], as shown in the middle part of
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FIG. 5. The field-dependent energies of the four Dirac-point
related Landau levels of ABC-stacked tetralayer graphene are shown
in (a). In (b), energies are plotted for B0 = 25 T based on their
dependence on the number of stacked layers.

Figs. 4(b)–4(i). The amplitudes of the two hybridized states
are comparable, while the wave function during the movement
away from this region transforms into the characteristics of
the nc

2 = 0 Landau state. This means that instead of being
specific to a certain quantum number, the Landau states in the
anticrossing regions are characterized by multi-zero points due
to the hybridization of LLs.

Similarly, the interlayer-induced anticrossing between the
intergroup LLs, nc

2 = 5 and nc
3 = 0, also holds, while the

coupling modulo is 6 [Figs. 4(j)–4(q)]. Therefore the field-
range of anticrossing is of an order smaller than in the
above case. By definition of the quantum number for the four
grouped LLs, the two correlated Landau states are deduced to
satisfy the following conditions: nc

1 − nc
2 = ±3n, nc

1 − nc
3 =

±(3n − 2), nc
1 − nc

4 = ±3n, nc
2 − nc

3 = ±(3n − 1), nc
2 − nc

4 =
±(3n − 1), and nc

3 − nc
4 = ±(3n − 1). The multimode Landau

wave function implies that a substitution of a single-mode
wave function in the Hamiltonian fails to exactly solve the
eigenenergy and to realize the stacked graphene systems.

Another important feature of the tetralayer graphene is
its four LLs near EF = 0. A zoomed-in view on the region
of the interest is shown in Fig. 5(a). Within a very narrow
energy range, −4 ∼ 2 meV, the degeneracy of LLs is weakly

lifted by interlayer atomic interactions, and the B0-dependent
energies of the splitting LLs are dominated by the specific
interaction β4. When B0 approaches zero, the four levels are
directly mapped to the four separate Dirac points in terms
of their energies [Fig. 1(c)]—the energies that are relevant
to the stacking configurations. Moreover, the generalization
of the Dirac-point related LLs is extended to the N -layer
ABC-stacked graphenes. It is shown that in Fig. 5(b), there
exist N fourfold degenerate LLs, with their energies insensitive
to B0 and limited within a very narrow region near EF = 0.
The energy width is evaluated to be ∼10 meV for N � 10.
The above discussed characteristics of the LL spectrum are
also formed in systems with different stacking sequences,
e.g., in AA- and AB- stacked graphenes; however, the energy
distributions of these 4N LLs and the groups that they could
be classified into strongly depend on stacking configurations.

A further exploration on the cases of distinct graphene
layers is worthwhile in order to comprehend the LL anti-
crossings and the unusually sequenced LLs. For an N -layer
ABC-stacked graphene, there are N − 1 pairs of conduction
and valence subbands intersecting near the energies ±β1

[17]. The dispersion and number of the mexican-hat energy
subbands determine the unique LL patterns. There is only
one such group of LLs in the trilayer graphene [Fig. 6(a)],
and the group number becomes two for both the pentalayer
and hexalayer graphenes [Figs. 6(b) and 6(c)]. However, the
trilayer graphene exhibits a relatively narrow inverted region of
LLs, which means that the states enclosed in the mexican-hat
band structure are relatively small, as is the estimated critical
magnetic field Bc. It can be deduced that with an increased
number of layers, more groups demonstrate the intragroup LL
anticrossing and own stronger Bc’s; the anticrossing regions
are also enlarged. The derived rules are that the number of
groups is, respectively, (N − 1)/2 and (N − 2)/2 for odd and
even N ’s. The aforementioned results apparently reveal the
feature-rich spectrum for more stacking layers.

The stacking symmetry plays an important role in the
LL spectrum features of multilayer graphenes, such as the
sublattice dominance in Landau states, the field-dependent
energies and the inter- and intragroup LL anticrossings. For an
AA-stacked tetralayer graphene, the LLs are divided into four
groups, with group possessing a monolayer-like spectrum, as
shown in Fig. 7. The LL distributions of the four groups are
related to the four Dirac cones that are primarily separated
by interlayer atomic interaction α1 (the case without the field
seen in Ref. [13]). The LL distribution regarding the same
group is almost symmetric about the zero-mode Dirac-point
related LL, which is almost constant as a function of field
strength, and each level moves towards the Dirac point when
the magnetic field approaches zero. The quantum numbers
of LLs can be classified by sublattice A or B in any layer,
since the four layers are equivalent and each reflects the
same relationship between the two subenvelope functions
described for a monolayer graphene. Meanwhile, each Landau
state can be characterized by a harmonic function with a
single mode, since there is no coupling among LLs resulting
from interlayer atomic interactions. This demonstrates that
neither the inter- nor the intragroup LL anticrossings can occur
regardless of the circumstances in terms of energies and field
strengths.
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FIG. 6. (Color online) The Landau-level spectra of ABC-stacked
(a) trilayer, (b) pentalayer, and (c) hexalayer graphenes.

The four groups of LLs exhibited in AB-stacked graphenes
are rather more distinct than those formed in AA- and
ABC-stacked graphenes, as shown in Fig. 8. The dominant
subenvelop functions in the first to fourth group determine the
quantum numbers and, respectively, correspond to sublattices
A2(B3), B1(A4), A1(B4), and B2(A3). However, similar to
the AA- and ABC-stacked configurations, there are four
fourfold degenerate LLs with their energies insensitive to
the magnetic field. They are located in the vicinity of
EF = 0, and categorized as the first and the second groups
assigned the quantum numbers nv

1 = 0, nv
1 = 1, nc

2 = 0, and
nc

2 = 1. The intergroup LL anticrossing occurs around two
neighboring groups, i.e., one case is between the first and
the second groups, and another case between the second
and the third groups, as seen in the regions marked by
the ellipses. Two levels based on the rules nc

1 − nc
2 = ±3

and nc
2 − nc

3 = ±4, respectively, are introduced in the former
and the latter cases. It is the neighboring interlayer atomic
interaction γ3 that leads to the couplings for these LLs [29].
However, unlike the situation in the ABC-stacked graphenes,
the anticrossing between LLs rarely occurs between
intergroups.

FIG. 7. (Color online) The Landau-level spectrum of AA-
stacked tetralayer graphene.

A generalization of magnetoelectronic properties is valu-
able for understanding other physical properties, such as the
mechanisms of magneto-optical excitations. Previous works
investigated the feature-rich magneto-absorption spectra of
AA- and AB-stacked graphenes [26,35]. The intragroup LL
transitions satisfy the particular selection rule � = ±1 (the
same as that of monolayer graphene), whereas the rules
for intergroup transitions depend on the configuration. The
intergroup transitions are forbidden due to the derived zero
electric dipole moments in the AA-stacked system. Also,
for AB-stacked graphenes with an odd layer, the excitations
from the quantized LLs of the linear bands to those of the
parabolic bands are forbidden. On the other hand, the strong
effects of the anticrossing LLs on the absorption spectra are
quite different from those of the well-behaved LLs [51]. The
hybridization of the LLs induces new optical selection rules of
modulo 3 in addition to the � = ±1 well applied to transitions
between the well-defined LLs. Especially mandated is a need
to focus on the intra-second group transitions under magnetic
fields weaker than the critical strength, where the frequently
appearing anticrossings lead to a considerable amount of
peaks with intensities associated with the LL hybridization.
Further and thorough investigations of the optical response of
ABC-stacked graphenes is worthwhile.

205434-8



STACKING-DEPENDENT MAGNETOELECTRONIC . . . PHYSICAL REVIEW B 90, 205434 (2014)

FIG. 8. (Color online) The Landau-level spectrum of AB-stacked
tetralayer graphene.

IV. CONCLUSION

The generalized tight-binding model is developed to eluci-
date the magnetoelectronic properties of multilayer graphenes.
Particularly depending on the layer number and stacking
configuration, the feature-rich characteristics include the
sublattice dominance, the field-dependent energies and inter-
and intragroup anticrossings. For an N -layer graphene, the
LLs are clearly classified into N groups, of which each onset
energy and the field-dependent LL energies are relevant to
the zero-field band structure; the relationship between the
subenvelop functions of the 2×N sublattices is specific for
the associated stacking configuration. The spatial distributions
of the subenvelope functions are critical in describing the
electronic properties, some of which, such as the quantum

numbers and group classifications, can be determined by the
numbers of the zero points and the dominant sublattices. This
method provides an approach to describing other stacking
graphene systems.

For ABC-stacked graphenes, an increased versatility of
magnetoelectronic properties is observed for a higher number
of layers, and the classification of groups is straightforward.
There is a total number of 4N LLs with a narrow energy
width (∼10 meV) near EF = 0 that reflect the Dirac points.
They all belong to the first group, with one half being
completely filled and the other half empty. In other stacking
configurations, such field-insensitive LLs are also observed,
while their classification and energy distributions are different.
In AA-stacked graphenes, for example such LLs corresponds
to the zero-mode levels of distinct groups, with LL energies
largely separated by the interlayer atomic interaction α1.
Although these LLs are also confined nearly EF = 0, they
belong to the first few groups in AB-stacked graphenes.

The phenomenon of inter- and intragroup LL anticrossings,
detailing the electronic properties, is strikingly pronounced
in ABC-stacked graphenes. The former appears frequently
between neighboring groups, and even between remote ones
under a sufficiently strong field. The signature of the latter
results from the densely inverted LLs in the spectrum, which
is attributed to the higher number of mexican-hat energy
subbands in the zero-field case. However, the groups of the
unusually sequenced LLs and the intragroup anticrossings
start to disappear at a critical field strength BC , with BC

being higher if the number of layers is higher. On the
contrary, AB-stacked multilayer graphenes occasionally show
anticrossings only between neighboring groups, and AA-
stacked graphenes present no anticrossings from either the
same or different groups. In addition to the nonvertical hopping
integral between two adjacent layers, two hopping integrals
from next-neighboring layers also combine the LLs in the
3 modulo for ABC-stacked graphenes. This is attributed to
the specific relationship between the subenvelope functions
and the interlayer atomic interactions. Furthermore, this
hybridization of the LLs is expected to enrich the physical
properties, such as the magneto-optical properties and the
quantum Hall effects in the multilayer graphenes.
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