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Resonant Faraday and Kerr effects due to in-gap states on the surface of a topological insulator
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When Dirac electrons on the surface of a topological insulator are gapped, the resulting quantum anomalous
Hall effect leads to universal magneto-optical Faraday and Kerr effects in the low-frequency limit. However, at
higher frequencies different excitations can leave their own fingerprints on the magneto-optics and can therefore
be probed. In particular, we investigate the role of localized in-gap states—which inevitably appear in the
presence of charged impurities—on these higher-frequency magneto-optical effects. We have shown that these
states resonantly contribute to the Hall conductivity and are magneto-optically active. These in-gap states lead to
peculiar resonant signatures in the frequency dependence of the Faraday and Kerr angles, distinct in character to
the contribution of in-gap excitonic states, and they can be probed in ellipsometry measurements.
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I. INTRODUCTION

Topological insulators (TIs) represent a new class of solids
whose band structure can be characterized by a topological
invariant [1–4]. As with normal “nontopological” insulators,
their bulk has a filled valence band with an empty conduction
band separated by a gap. But unlike usual insulators, TIs
have very unconventional, symmetry-protected surface states.
Interest in TIs has grown considerably since the discovery
of two-dimensional (HgTe [5,6]) and subsequently three-
dimensional TIs (Bi2Se3, Bi2Te3, and other bismuth-based
materials [7–10]). The surface states of three-dimensional
TIs are described by a Dirac equation for massless particles,
but unlike two-dimensional systems such as graphene, there
is only one Dirac “cone” (in general, an odd number)—
something that can only be realized at the surface of a
bulk three-dimensional system [11,12]. Thus, the surface of
a TI is a veritable experimental and theoretical playground
for many interesting phenomena including but not limited
to both topological superconductivity, which gives rise to
exotic Majorana fermions [13] (these could potentially be used
as building blocks for quantum computation [14]), and the
anomalous half-integer quantum Hall effect (AQHE) [15] (see
also Refs. [16,17] for a review).

The AQHE occurs when time-reversal symmetry is broken,
opening up a gap in the Dirac surface states. Without an
external magnetic field, this effect can be realized by an
exchange field that couples to the spins of the electrons on
the surface. The exchange field can be induced either by the
proximity effect with an insulating ferromagnet [18] or by
the ordering of magnetic impurities introduced to the bulk or
surface of a TI [15,19,20]. Recently, both methods of inducing
an exchange field have been realized experimentally [21–24],
and the AQHE has been experimentally confirmed by transport
measurements [25]. The AQHE is the origin of the “image
monopole effect” for an electron in the vicinity of a TI
surface [26] as well as reflectionless chiral electronic states
localized on domain walls that separate regions with the
opposite exchange field [27].

Another way to probe the AQHE is with the magneto-
optical Faraday and Kerr effects, where the polarization of
the transmitted and reflected electromagnetic waves rotates

relative to the wave incident on the TI’s surface. At low
frequencies—when dispersion effects can be neglected—the
optics of the TI nanostructures can be described macroscop-
ically with an additional axionic θ -term in the Lagrangian
�LAE, which is insensitive to microscopic details [18,28] and
is given by

�LAE = θ
e2

2πh

∫
dr E · B. (1)

Here θ = 0 for ordinary insulators and θ = π for topolog-
ical ones. Moreover, for thin-film TIs, the Faraday angle
tan ϑF = α0 and the Kerr angle tan ϑK = 1/α0 are predicted
to be universal [29,30] and depend only on the fine-structure
constant α0 = e2/�c ≈ 1/137.

The theoretical investigation of the Faraday and Kerr
effect beyond the low-frequency regime is important not only
because real optical experiments occur at finite frequency but
also because single-particle and collective excitations on the
surface of TI start to leave their own fingerprint on optical
quantities. In particular, chiral excitons, which are collective
in-gap excitations in the gapped Dirac electron liquid, reveal
their chiral nature [31] via prominent resonances seen in the
frequency dependence of the Faraday and Kerr angles [32].
Here we consider other in-gap excitations, localized electronic
states, which are present due to inevitable impurities occurring
in the TI bulk or on its surface. In usual semiconductors, in-gap
states dominate absorption and magneto-optical effects do not
appear without a magnetic field; the exceptions are magnetic
semiconductors where there are similar effects [33].

In this paper, we have shown that localized in-gap states on
the magnetically gapped surface of TI are magneto-optically
active and lead to peculiar resonant features in frequency
dependence of the Faraday and Kerr angles. In this case, the
time-reversal symmetry is broken internally by the exchange
field—leading to a nonzero Hall conductivity. The shapes
of the resonant features differ considerably from the case
of chiral excitons, so they can be easily distinguished, as
can be seen in Fig. 1 by the total Hall conductivity taking
into account both effects. The magneto-optical effects are
controlled by the appearance of a nonzero Hall conductivity,
and similarly they inherit frequency dependence from the
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FIG. 1. (Color online) Here we plot the optical Hall conductivity
in units of half the gap (2� is the magnetically induced gap) taking
into account both the effect of localized impurity states (the subject of
this paper) and chiral excitons—which can be clearly distinguished—
and we compare it to the pure, noninteracting optical conductivities
(dashed line). The chemical potential is at μ = −� and there is a
density N/S = 0.035a−2

0 [see Eq. (8)] of Coulomb impurity states
with dimensionless coupling to electrons of α = 0.3. The exciton
contribution is calculated with dimensionless Coulomb coupling
between electrons and holes of αc = 0.18, and it is calculated in
Ref. [32]. (See Sec. II for a discussion of α and αc = e2/ε�vF.)

optical Hall conductivity—in this manner, Fig. 1 represents
the crucial finding of this paper. These localized in-gap states
also lead to prominent resonances in frequency dependence of
the ellipticities of transmitted and reflected waves; thus, they
can be effectively probed in ellipsometry measurements.

In Sec. II, we discuss the two-dimensional electronic
structure on the surface of a TI in the presence of charged
impurities. Section III is devoted to the calculation of the
optical conductivity tensor on the surface of a TI with localized
states on its surface. The magneto-optics of such a thin film are
analyzed in Sec. IV, and we conclude with some discussion
and a brief summary in Sec. V.

II. LOCALIZED IN-GAP STATES

The single-particle Hamiltonian for Dirac electrons inter-
acting with charged impurities scattered over the surface of a
TI is given by

H0 = vF[p × σ ]z + �σz −
∑

i

Ze2

ε̄|r − ri | . (2)

Here p is the momentum operator, σ is the vector of Pauli
matrices with components σi , vF is the Fermi velocity of Dirac
electrons, ri is position of the ith impurity and Ze is their
charge, ε̄ is the effective dielectric permittivity on the surface of
the TI [34], and � parametrizes the out-of-plane component of
the exchange field that gaps the surface spectrum. The in-plane
component can be gauged away and is unimportant for the
phenomena with which this paper is concerned.

In the absence of impurities, the surface spectrum is
εp = ±

√
(vFp)2 + �2 (+ for the conduction band; − for the

valence band, separated by a gap 2|�|). The wave functions
of Dirac states can be presented as |p±〉 = eip·r/�|ϕp±〉, where
the spinor part is given by

|ϕp±〉 = 1√
2εp(εp ± �)

(
� ± εp

ivFpeiθp

)
, (3)

where θp is the polar angle of the wave vector p.
If impurities are dilute enough—the case we consider

below—they can be considered independently. The dimen-
sionless effective structure constant α = Ze2/�vFε̄ measures
their coupling to Dirac states. Further, we assume positively
charged impurities (Z > 0), and the generalization to Z < 0
is straightforward. Each Coulomb impurity creates numerous
localized states with energies labeled by the quantum numbers
n and total angular momentum j ,

εnj = �|n + γ |√
(n + γ )2 + α2

, (4)

where γ =
√

j 2 − α2, n = 0,1,2, . . . for j = 1/2,3/2, . . . and
n = 1,2, . . . for j = −1/2, − 3/2, . . . (note that for n = 0, the
states are not doubly degenerate). The wave functions of the
localized states take the form

|�x;nj 〉 = 1√
2π

(
F+

nj (r)ei(j−1/2)θr

−F−
nj (r)ei(j+1/2)θr

)
, (5)

where θr is the polar angle in real space, and the functions
F±

nj (r) are given by [35]

F±
nj (r) = (−1)nλ3/2

�(1 + 2γ )

√
(1 + 2γ + n)(� ± εnj )

(�vFj + �α/λ)αn!

×(2λr)γ−1/2e−λr [(�vFj+�α/λ)F(−n,1+2γ ; 2λr)

∓�vFnF(1 − n,1 + 2γ ; 2λr)], (6)

where λ =
√

�2 − ε2
nj /�vF and F(a,b; z) = 1 + a

b
z +

a(a+1)
b(b+1)

z2

2! + · · · is the confluent hypergeometric function. It
should be noted that the state with the lowest energy (which
we refer to as the “lowest state” to differentiate it from the
many-body ground state) is well separated from excited states
that lay in the vicinity of continuum of delocalized electronic
states, as seen in Fig. 2. Thus, we focus on the lowest state
with energy ε0 ≡ ε0,1/2 = �

√
1 − 4α2 and wave functions

given by Eq. (5) with j = 1/2 and

F±
0,1/2(r) = 2α

�vF

√
2�(� ± ε0)

(1 + 2γ )

(
4α

�r

�vF

)γ−1/2

e
−2α �r

�vF , (7)

with an effective radius

a0 =
√

〈r2〉 = �vF

�

√
3 − 4α2 + 3

√
1 − 4α2

4α

∼
√

3

8

�vF

�

1

α
+ O(α). (8)

For α � 0.5, the j = 1/2 bound states become unstable and
classically these bound electrons collapse into the “nucleus”;

205432-2



RESONANT FARADAY AND KERR EFFECTS DUE TO IN- . . . PHYSICAL REVIEW B 90, 205432 (2014)

FIG. 2. (Color online) Energies of the first six states localized
on a charged impurity. The vertical line represents the α we consider
for our numerical results.

this has been extensively discussed in the case of Dirac
fermions in graphene [36,37].

We are interested in the resonant contribution of the local-
ized states to the optical conductivity, so we approximate the
delocalized scattering states by the nonperturbed delocalized
ones as written in Eq. (3). While this approximation is not
exact—the delocalized states will be modified due to the
potential—it does not affect the resonant feature, which is
due to the difference in energies.

III. OPTICAL CONDUCTIVITIES

The electromagnetic response on the surface of a TI is
described by the optical conductivity tensor. For noninteracting
electrons, this tensor can be written in the Kubo-Greenwood
formulation as

σμν(ω) = �e2

iS

∑
αβ

fα − fβ

εα − εβ

〈α|jμ|β〉 〈β|jν |α〉
�ω + εα − εβ + iδ

. (9)

Here ω is the frequency of the incident electromagnetic wave,
S is the surface area, and j = vF[σ × ẑ] is the single-particle
current operator. The sum is over all single-particle states α,
including the valence band, the conduction band, and localized
states with their corresponding energies εα and occupation
numbers fα . The conductivity can be broken up into transitions
between (i) surface bands, denoted by σ cv; (ii) a surface band
and the localized states, denoted by σ imp; and (iii) localized
states, denoted by σ imp-imp. One can separate each of these
contributions to the conductivity tensor as σ = σ cv + σ imp +
σ imp-imp. In this paper, the impurities contribute independently;
this works well when the sample is dilute enough, i.e., given
N impurities, (N/S)a2

0 	 1.
The contribution between bands can be presented as

σ cv
μν(ω) = −i�e2

×
∑

p,γ,γ ′

fp,γ − fp,γ ′

εp,γ − εp,γ ′

〈ϕp,γ |jμ|ϕp,γ ′ 〉 〈ϕp,γ ′ |jν |ϕp,γ 〉
�ω + εp,γ − εp,γ ′ + iδ

.

(10)

This quantity was evaluated previously and is given by [30]

Re
[
σ cv

xx

] = e2

h

π

8

[
1 +

(
2�

�ω

)2]
�(�|ω| − 2|μ|),

Im
[
σ cv

xx

] = e2

8h

{
4�2

�ω|μ| +
[

1 +
(

2�

�ω

)2]
ln

∣∣∣∣�ω − 2|μ|
�ω + 2|μ|

∣∣∣∣
}
,

Re
[
σ cv

xy

] = e2

4h

2�

�ω
log

∣∣∣∣�ω − 2|μ|
�ω + 2|μ|

∣∣∣∣,
Im

[
σ cv

xy

] = −e2

h

π

4

2�

�ω
�(�|ω| − 2|μ|), (11)

assuming |μ| � � (if |μ| < �, let μ → � in these expres-
sions).

The localized states on the Coulomb impurities are labeled
by λ = (ri ,n,j ), and their matrix elements can be presented in
the following form:

〈p ± |jμ|λ〉 =
∫

d2x 〈ϕp,±|jμ|�x−ri ;nj 〉 eip·x/�

= eip·ri 〈ϕp±|jμ|�p;nj 〉 , (12)

where |�p;nj 〉 is the Fourier transform of |�x;nj 〉. The expres-
sion for σ

imp
μν can be further split,

σ imp
μν = σ imp+

μν + σ imp−
μν . (13)

Here σ
imp+
μν (σ imp−

μν ) denotes the contribution due to excitations
from localized states to the conduction band (from the valence
band to localized states), which is nonzero if the localized state
is filled (empty). They can both be presented in the form

σ imp±
μν = N�e2

iS

∑
ελ≶μ

∑
p

f ±
λ − fp±
ελ ∓ εp

[ 〈λ|jμ|p±〉 〈p ± |jν |λ〉
�ω ± εp − ελ + iδ

+ 〈p ± |jμ|λ〉 〈λ|jν |p±〉
�ω + ελ ∓ εp + iδ

]
. (14)

Here we have summed over all Coulomb impurities. The phase
factor in Eq. (12) depends on the position of the impurity and
is canceled in the product of matrix elements in Eq. (14).
Integrating the matrix elements over the angle of p and
changing variables from p to εp ≡ ε while taking into account
the occupation of the bands, we obtain

σ imp±
xx = iN�e2

S

∑
ελ≶μ

∫ ∞

max{|μ|,�}

ε dε

(2π�vF)2

Mλ±
xx (ε)

ε ∓ ελ

×
[

1

�ω ± ε − ελ + iδ
+ 1

�ω + ελ ∓ ε + iδ

]
, (15)

σ imp±
xy = N�e2

S

∑
ελ≶μ

∫ ∞

max{|μ|,�}

ε dε

(2π�vF)2

Mλ±
xy (ε)

ε ∓ ελ

×
[

1

�ω ± ε − ελ + iδ
− 1

�ω + ελ ∓ ε + iδ

]
, (16)
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where we defined

Mλ±
xx (ε) ≡

∫ 2π

0
dϑp|〈p ± |jx |λ〉 |2, (17)

Mλ±
xy (ε) ≡ i

∫ 2π

0
dϑp 〈p ± |jx |λ〉 〈λ|jy |p±〉 , (18)

and we used the fact that these are real functions.
To evaluate these, we use Eq. (12). In position space, the

bound state |λ〉 is of the form shown in Eq. (5) (centered around
ri), so the Fourier transform takes the corresponding form

|�p;nj 〉 =
√

2π

(
F̃+

nj (p)eiθp(j−1/2)

iF̃−
nj (p)eiθp(j+1/2)

)
, (19)

where F̃±
nj (p) = ∫ ∞

0 dr rF±
nj (r)Jj∓1/2(pr/�) are Hankel trans-

forms of their real-space counterparts [which can be analyti-
cally evaluated given Eq. (7)].

In terms of these objects, we can evaluate the integrated
matrix elements

Mλ±
xx (ε) = (2πvF)2

2ε
[(ε ∓ �)|F̃+

nj (p)|2 + (ε ± �)|F̃−
nj (p)|2],

Mλ±
xy (ε) = (2πvF)2

2ε
[(ε ∓ �)|F̃+

nj (p)|2 − (ε ± �)|F̃−
nj (p)|2],

with p = √
ε2 − �2/vF.

Considering just the lowest state with n = 0 and j = 1/2 (labeled with λ = 0), we obtain

M0±
xx (ε) + M0±

xy (ε) = 2γ (2πvF)2

4α2

(
�vF

�

)2 
(
γ + 3

2

)2

(2γ + 1)

(ε ∓ �)(� + ε0)

ε�
2F1

(
aγ ,aγ + 1

2
; 1;

�2 − ε2

4α2�2

)2

, (20)

M0±
xx (ε) − M0±

xy (ε) = 2γ (2πvF)2

64α4

(
�vF

�

)2 
(
γ + 5

2

)2

(2γ + 1)

(ε ± �)(ε2 − �2)(� − ε0)

ε�3 2F1

(
aγ + 1

2
,aγ + 1; 2;

�2 − ε2

4α2�2

)2

, (21)

where aγ = (2γ + 3)/4 and 2F1 is the (analytic continuation of the) hypergeometric function 2F1(a,b; c; x) = 1 + ab
c

x
1! +

a(a+1)b(b+1)
c(c+1)

x2

2! + · · · .
If two bound states are at different positions, then by our diluteness assumption (insignificant wave-function overlap) transitions

between them will not contribute to the conductivity significantly. However, if the chemical potential is in between two bound
states that live at the same position (e.g., the ground and excited states of a single impurity), then transitions between those states
can contribute to the conductivity; this contribution is given by

σ imp-imp
xx = N

�e2

iS

∑
εnj < μ

εmj ′ > μ

(
�

nj

mj ′
)2

δj+1,j ′ + (
�

mj ′
nj

)2
δj,j ′+1

εnj − εmj ′
×

[
1

�ω + εnj − εmj ′ + iδ
+ 1

�ω + εmj ′ − εnj + iδ

]
(22)

and

σ imp-imp
xy = N

�e2

S

∑
εnj < μ

εmj ′ > μ

(
�

nj

mj ′
)2

δj+1,j ′ − (
�

mj ′
nj

)2
δj,j ′+1

εnj − εmj ′
×

[
1

�ω + εnj − εmj ′ + iδ
− 1

�ω + εmj ′ − εnj + iδ

]
, (23)

where we have defined

�
nj

mj ′ ≡ v2
F

∫ ∞

0
r dr F+

mj ′(r)F−
nj (r). (24)

The integral in Eq. (24) can be calculated analytically for the
functions given in Eq. (6); the result is in terms of Appell
hypergeometric functions and can be calculated with the use
of an integral identity [38]. Notice that transitions can only
occur between states that only differ by a quantum of angular
momentum as expected from the form of the single-particle
current operator. For our calculations, we do not consider
these transitions since the higher excited states merge with the
continuum—leading to at most a decreasing and smoothing of
the threshold.

For the calculation of the frequency-dependent conductiv-
ities shown in Fig. 3, we use the dimensionless parameters
α = 0.3, (N/S)a2

0 = 0.035. For a charge on the surface of a
bulk TI, α ∼ 0.09Z; however, in a thin-film geometry where
the localized state has a radius a0 � d, where d is the thickness
of the thin film, the situation is more complicated. If a0  d,
then we expect α ∼ 3.5Z, but we are in an intermediate
region where the energy level due to the more complicated
potential [34] is more accurately captured by α ∼ 0.3Z. Also,
we use four values of the chemical potential corresponding
to four different occupation situations, illustrated in Fig. 3(a).
In-gap states correspond to resonance features in Figs. 3(b)
and 3(c), which are well below the threshold of 2 max(�,|μ|).
If the in-gap states are empty, an additional peak appears at
ε0 + max{�,|μ|}. If they are occupied, it appears at frequency
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FIG. 3. (Color online) Given the four positions of the chemical
potential illustrated in (a), Coulomb coupling α = 0.3, and a density
of N/S = 0.035a2

0 ; (b) and (c) show the longitudinal and Hall
conductivities, respectively. Note that the largest features are at 2|μ|,
when the electromagnetic waves excite electrons from the valence
to the conduction band. The lower-frequency features occur when
electromagnetic waves excite electrons from the valence to the bound
states (μ � −�) or when electromagnetic waves excite electrons
from the bound state to the conduction band (μ � �).

max{�,|μ|} − ε0. The shape of the resonance depends weakly
on the value of the chemical potential, and its height disappears
at μ/|�|  1. Thus, the main role of the chemical potential,
if it is outside the gap, is the shifting of resonant frequencies,
and in the next section, which discusses the magneto-optical
effects of a topological insulator film, we exclusively consider
the chemical potential to be situated inside the gap.

It should be noted that in the above calculation, we
neglected the Drude contribution, which appears if the chem-
ical potential lies outside the gap. The Drude contribution
dominates transport, but it is not as important for the optical
conductivity at frequencies ω  1/τ . We further assume
that we have only one localized state, namely the lowest
bound state in Eq. (7). The excited in-gap states violate the
diluteness criterion: electrons can hop between these states
due to significant wave-function overlap, hence these states
will merge with continuum of delocalized states.

IV. FARADAY AND KERR EFFECTS

We consider the Faraday and Kerr effects at normal
incidence and in a thin-film geometry. These conditions
are the most favorable for observing the effects of surface
states on the optics. While the Faraday and Kerr effects are
quite insensitive to oblique incidence [39], they decrease
considerably (especially the Kerr effect) in the presence of
a mismatch of dielectric constants on the TI film surfaces and
due to longitudinal conductivity [30, 40]. This mismatch—of
bulk dielectric constant to surface effects—can be neglected
only if the film thickness is considerably smaller than the
optical wavelength in it, d 	 λ/εTI. In real samples, the
bulk contributes considerably to the longitudinal conductivity,
which could be reduced in TI films. Further, we assume that
the direction of the exchange field (sign of �) is the same on
each surface of the TI; in the opposite case, the effects of both
plates on the optics cancel one another.

In experiments, the incident wave is usually linearly
polarized, E = E0x̂. For calculational purposes, it is con-
venient to present the incident wave as a combination of
two circularly polarized waves and calculate their reflection
r± = |r±|ei�r

± and transmission t± = |t±|ei�t
± amplitudes. In

this basis, the reflected and transmitted waves are, respec-
tively, Er = E0(r+e+ + r−e−) and Et = E0(t+e+ + t−e−),
where e± = x̂ ± iŷ represent the two directions of circular
polarization. The transmittance through the film is given
by T = (|t+|2 + |t−|2)/2; the transmitted wave’s polarization
rotates through an angle ϑF = (�t

+ − �t
−)/2 (the Faraday

angle) and has ellipticity δF = (|t+| − |t−|)/(|t+| + |t−|); and
the reflected wave’s polarization rotates through an angle
ϑK = (�r

+ − �r
−)/2 (the Kerr angle) and has ellipticity δK =

(|r+| − |r−|)/(|r+| + |r−|).
The amplitudes of the reflected and transmitted waves can

be found from Maxwell’s equation, taking into account the
electric currents excited by the incident electromagnetic wave.
They are given by

t± = e2/h

e2/h + α0σ
tot±

, r± = − α0σ
tot
±

e2/h + α0σ
tot±

, (25)

where σ tot
± = σ tot

xx ∓ iσ tot
xy , e2/h is the quantum of conductance,

and α0 ≈ 1/137 is the fine-structure constant. Additionally,
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FIG. 4. (Color online) The transmittance of the electromagnetic
wave for a thin film of Bi2Se3 in the case of a filled valence band and
an unoccupied bound state (μ = −�) and an occupied bound state
(μ = �).

both sides of the thin film contribute to the optical conductivity,
so σ tot

μν = 2σμν . If we expand in the fine-structure constant,
we have ϑF ∼ 2α Re σxy/(e2/h), δF ∼ 2α Im σxy/(e2/h), and
T ∼ 1 − 4α Re σxx/(e2/h). Thus, these quantities track the
respective optical conductivities quite well.

For the numerical calculations, we have used the following
parameters, in addition to the dimensionless parameters taken
previously [α = 0.3 and (N/S)a2

0 = 0.035]. We take the pa-
rameters for Bi2Se3 for the gap to be the maximum achievable

by magnetic doping [22], � = 25 meV, and Fermi velocity,
vF = 6.2 × 105 m/s. With these numbers, our density is
N/S = 38 μm−2 and a0 = 30 nm. It should be noted that
N/S is not the total concentration of impurities, but the
concentration of impurity states with a definite energy ε0 inside
the gap. The generalization to the realistic case is discussed in
Sec. V.

The dependence of transmittance on frequency is presented
in Fig. 4. As one can easily see, the in-gap states lead to
absorption below the threshold (i.e., when �ω ∼ 2|μ|), but
it is small, not impeding the observation of transmission.
The decrease can be understood from the relation of the
longitudinal conductivity to transmission, and hence why even
magneto-optically inactive states affect transmission.

The Faraday and Kerr angles’ dependence on frequency
is presented in Figs. 5(a) and 5(c), respectively. As with
transmittance, the largest feature is at the threshold. Since
the Faraday angle depends strongly on the real part of the
Hall conductivity, we see that it matches it and has a similar
resonant structure. The Kerr angle is more sensitive to the
real part of the longitudinal conductivity, however, and we see
corresponding features at these points—decreasing the Kerr
angle from its large 90◦ rotation at zero frequency when the
frequency is on resonance with the localized state. In both
cases, the effect due to impurities is similar in nature to the
resonant feature at threshold ω = 2�.

Lastly, we show the frequency dependence of ellipticities
of transmitted and reflected waves in Figs. 5(b) and 5(d),

FIG. 5. (Color online) The measurable optical quantities of (a) the Faraday angle, (b) the ellipticity of the transmitted wave, (c) the Kerr
angle, and (d) the ellipticity of the reflected wave for Bi2Se3 in the case of a filled valence band with an unoccupied bound state (μ = −�) and
an occupied bound state (μ = �). As expected, the features correspond to the features in the optical conductivities.
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respectively. Again, we see features when the incident elec-
tromagnetic wave is on resonance with the impurity state. The
ellipticity of the transmitted wave follows the imaginary part
of the Hall conductivity, and the reflected wave again is quite
sensitive to resonant effects. Thus, in-gap states can be probed
effectively with ellipsometry.

V. CONCLUSIONS

We have shown that in-gap localized states dominate both
the absorption and magneto-optics for TI films with mag-
netically gapped surfaces. In particular, they lead to peculiar
resonances in the frequency dependencies of the Faraday and
Kerr effects. This is similar to magnetic semiconductors [33],
although in nonmagnetic semiconductors in-gap states usually
require a magnetic field to become magneto-optically active. In
the system considered in this paper, the surface spectrum does
not respect time-reversal symmetry due to the gap induced by
an exchange field. Hence, we can conclude that the effect
we observe is insensitive to details such as electron-hole
asymmetry [41], hexagonal corrections [42] to the Dirac
spectrum, or to the profile of an impurity potential, which we
assumed to be the Coulomb potential. We also assumed that
all Coulomb impurities have the same charge and are located
on the surface of TI; they can also be in the bulk of the TI,
and their coupling to the electronic Dirac states will depend
on their distance to the surface. If they are dilute enough, they
will also contribute to the optical conductivity, which can be
represented as

σ imp
μν (ω) =

∫ |�|

−|�|
dε0P (ε0)σ imp

μν (ω,ε0), (26)

where σ
imp
μν (ω,ε0) is the contribution of a single impurity bound

sates with energy ε0, and P (ε0) is the concentration of the
corresponding states. The finite distribution of levels, origi-
nating from different coupling of impurities with Dirac states,
can make the calculated resonance features shallower and
considerably wider. Additionally, there are variations of the
chemical potential δμ which correspond to electron and hole
puddles for δμ > 2� [43,44]. For δμ < 2�, the variations can
bring about variation of the occupation numbers of impurity
states in different regions, which does not qualitatively modify
our results. For our results to qualitatively still make sense, we
require the variations in the chemical potential δμ < 2�.

There have been multiple optical experiments probing
topological insulators that measure the Kerr and Faraday
effects. Jenkins et al. studied the Kerr effect and reflectivity

for a fixed frequency and varying the magnetic field [45].
Time-domain spectroscopy has been utilized on strained
HgTe [46,47]. The large Kerr effect and thickness-independent
Drude peaks have also been observed [48]. Additionally,
the quantized Faraday angle has been seen with passivated
Bi2Se3 in a terahertz experiment as well as observation of a
shifted Dirac cone [49,50]. Time-domain spectroscopy was
also used in BSTS to see both the surface state and a bulk
impurity band [51]. Recently, the same technique was used on
(Bi1−xInx)2Se3 to observe a topological phase transition as x is
varied [52]. At present, all observed features originate from the
bulk physics, but recently new ultrathin magnetically gapped
TI films have been grown [53,54], and for these samples all
conditions necessary for the observation of magneto-optical
effects are satisfied.

In these ultrathin films, the tunneling between opposite
surfaces can become important. The tunneling splits the bands
and “splits” the threshold, leading to features [55] similar to
impurity states.

Resonant features from localized in-gap states and from
chiral excitons appear below the threshold 2|�|, but their
shapes have completely different characters. The localized
impurity states are single-particle excitations, while excitons
are two-particle excitations. Continuous transitions from a
valence band to a localized state (or from the localized state to a
conduction band) contribute to optical conductivity, hence the
additional peak can be interpreted as a splitting of the threshold
2|�| → |�| + ε0 (or to |�| − ε0 if the state is occupied).
On the other hand, excitons lead to a sharp feature in the
two-particle spectrum, corresponding to their dispersion law
Eex(q). Since only excitons with zero momentum are optically
active, they lead to features of a single, resonant shape in the
magneto-optics [32].

To conclude, we have investigated the role of localized
in-gap states on the surface of a topological insulator in
the magneto-optical Faraday and Kerr effects. These in-gap
states resonantly contribute to both the longitudinal and Hall
conductivities, which in turn leads to peculiar resonances in
the frequency dependence of the Faraday and Kerr angles as
well as to the ellipticities of transmitted and reflected waves.
These resonant features that we have predicted can be directly
measured by optical experiments. In fact, the specific shape
of these resonant features allows them to be easily separated
from other in-gap excitations.
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